Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2012

Open Access 01-12-2012 | Research article

Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature

Authors: Aggelos Assiotis, Nick P Sachinis, Byron E Chalidis

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2012

Login to get access

Abstract

Background

Pulsed electromagnetic fields (PEMF) stimulation for the treatment of bone nonunion or delayed union have been in use for several years, but on a limited basis. The aim of this study was to assess the overall efficacy of the method in tibial delayed unions and nonunions and identify factors that could affect the final outcome.

Methods

We prospectively reviewed 44 patients (27 men) with a mean age of 49.6 ± 18.4 years that received PEMF therapy due to tibial shaft delayed union or nonunion. In all cases, fracture gap was less than 1 cm and infection or soft tissue defects were absent.

Results

Fracture union was confirmed in 34 cases (77.3%). No relationship was found between union rate and age (p = 0.819), fracture side (left or right) (p = 0.734), fracture type (simple or comminuted, open or closed) (p = 0.111), smoking (p = 0.245), diabetes (p = 0.68) and initial treatment method applied (plates, nail, plaster of paris) (p = 0.395). The time of treatment onset didn’t affect the incidence of fracture healing (p = 0.841). Although statistical significance was not demonstrated, longer treatment duration showed a trend of increased probability of union (p = 0.081).

Conclusion

PEMF stimulation is an effective non-invasive method for addressing non-infected tibial union abnormalities. Its success is not associated with specific fracture or patient related variables and it couldn’t be clearly considered a time-dependent phenomenon.
Appendix
Available only for authorised users
Literature
1.
go back to reference Victoria G, Petrisor B, Drew B, Dick D: Bone stimulation for fracture healing: What's all the fuss?. Indian journal of orthopaedics. 2009, 43: 117-120. 10.4103/0019-5413.50844.PubMedCentralCrossRefPubMed Victoria G, Petrisor B, Drew B, Dick D: Bone stimulation for fracture healing: What's all the fuss?. Indian journal of orthopaedics. 2009, 43: 117-120. 10.4103/0019-5413.50844.PubMedCentralCrossRefPubMed
2.
go back to reference Kanakaris NK, Paliobeis C, Nlanidakis N, Giannoudis PV: Biological enhancement of tibial diaphyseal aseptic non-unions: the efficacy of autologous bone grafting, BMPs and reaming by-products. Injury. 2007, 38 (Suppl 2): S65-S75.CrossRefPubMed Kanakaris NK, Paliobeis C, Nlanidakis N, Giannoudis PV: Biological enhancement of tibial diaphyseal aseptic non-unions: the efficacy of autologous bone grafting, BMPs and reaming by-products. Injury. 2007, 38 (Suppl 2): S65-S75.CrossRefPubMed
3.
go back to reference Nolte P, van der Krans A, Patka P, Janssen I, Ryaby J, Albers G: Low-intensity pulsed ultrasound in the treatment of nonunions. J Trauma. 2001, 51: 693-702. 10.1097/00005373-200110000-00012.CrossRefPubMed Nolte P, van der Krans A, Patka P, Janssen I, Ryaby J, Albers G: Low-intensity pulsed ultrasound in the treatment of nonunions. J Trauma. 2001, 51: 693-702. 10.1097/00005373-200110000-00012.CrossRefPubMed
4.
go back to reference Gustilo RB, Anderson JT: Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am. 1976, 58: 453-458.PubMed Gustilo RB, Anderson JT: Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am. 1976, 58: 453-458.PubMed
5.
go back to reference The classic: Fundamental aspects of fracture treatment by Iwao Yasuda, reprinted from. J. Kyoto Med. Soc. 1953, 4: 395-406. Clinical orthopaedics and related research 1977, 124:5–8 The classic: Fundamental aspects of fracture treatment by Iwao Yasuda, reprinted from. J. Kyoto Med. Soc. 1953, 4: 395-406. Clinical orthopaedics and related research 1977, 124:5–8
6.
go back to reference Hannouche D, Petite H, Sedel L: Current trends in the enhancement of fracture healing. J Bone Joint Surg Br. 2001, 83: 157-164. 10.1302/0301-620X.83B2.12106.CrossRefPubMed Hannouche D, Petite H, Sedel L: Current trends in the enhancement of fracture healing. J Bone Joint Surg Br. 2001, 83: 157-164. 10.1302/0301-620X.83B2.12106.CrossRefPubMed
8.
go back to reference Mollon B, da Silva V, Busse J, Einhorn T, Bhandari M: Electrical stimulation for long-bone fracture-healing: a meta-analysis of randomized controlled trials. J Bone Joint Surg Am. 2008, 90: 2322-2330. 10.2106/JBJS.H.00111.CrossRefPubMed Mollon B, da Silva V, Busse J, Einhorn T, Bhandari M: Electrical stimulation for long-bone fracture-healing: a meta-analysis of randomized controlled trials. J Bone Joint Surg Am. 2008, 90: 2322-2330. 10.2106/JBJS.H.00111.CrossRefPubMed
9.
go back to reference Aaron R, Ciombor D, Simon B: Treatment of nonunions with electric and electromagnetic fields. Clin Orthop Relat Res. 2004, 419: 21-29.CrossRefPubMed Aaron R, Ciombor D, Simon B: Treatment of nonunions with electric and electromagnetic fields. Clin Orthop Relat Res. 2004, 419: 21-29.CrossRefPubMed
10.
go back to reference Ciombor D, Aaron R: The role of electrical stimulation in bone repair. Foot Ankle Clin. 2005, 10: 579-593. 10.1016/j.fcl.2005.06.006.CrossRefPubMed Ciombor D, Aaron R: The role of electrical stimulation in bone repair. Foot Ankle Clin. 2005, 10: 579-593. 10.1016/j.fcl.2005.06.006.CrossRefPubMed
11.
go back to reference Kuzyk PR, Schemitsch EH: The science of electrical stimulation therapy for fracture healing. Indian J Orthop. 2009, 43: 127-131. 10.4103/0019-5413.50846.PubMedCentralCrossRefPubMed Kuzyk PR, Schemitsch EH: The science of electrical stimulation therapy for fracture healing. Indian J Orthop. 2009, 43: 127-131. 10.4103/0019-5413.50846.PubMedCentralCrossRefPubMed
12.
go back to reference Barker AT, Dixon RA, Sharrard WJ, Sutcliffe ML: Pulsed magnetic field therapy for tibial non-union. Interim results of a double-blind trial. Lancet. 1984, 1: 994-996.CrossRefPubMed Barker AT, Dixon RA, Sharrard WJ, Sutcliffe ML: Pulsed magnetic field therapy for tibial non-union. Interim results of a double-blind trial. Lancet. 1984, 1: 994-996.CrossRefPubMed
13.
go back to reference Bassett CA, Mitchell SN, Gaston SR: Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg Am. 1981, 63: 511-523.PubMed Bassett CA, Mitchell SN, Gaston SR: Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg Am. 1981, 63: 511-523.PubMed
14.
go back to reference de Haas WG, Beaupre A, Cameron H, English E: The Canadian experience with pulsed magnetic fields in the treatment of ununited tibial fractures. Clin Orthop Relat Res. 1986, 208: 55-58.PubMed de Haas WG, Beaupre A, Cameron H, English E: The Canadian experience with pulsed magnetic fields in the treatment of ununited tibial fractures. Clin Orthop Relat Res. 1986, 208: 55-58.PubMed
15.
go back to reference de Haas WG, Watson J, Morrison DM: Non-invasive treatment of ununited fractures of the tibia using electrical stimulation. J Bone Joint Surg Br. 1980, 62-B: 465-470.PubMed de Haas WG, Watson J, Morrison DM: Non-invasive treatment of ununited fractures of the tibia using electrical stimulation. J Bone Joint Surg Br. 1980, 62-B: 465-470.PubMed
16.
go back to reference Sharrard WJ: A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Joint Surg Br. 1990, 72: 347-355.PubMed Sharrard WJ: A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Joint Surg Br. 1990, 72: 347-355.PubMed
17.
go back to reference Sharrard WJ, Sutcliffe ML, Robson MJ, Maceachern AG: The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation. J Bone Joint Surg Br. 1982, 64: 189-193.PubMed Sharrard WJ, Sutcliffe ML, Robson MJ, Maceachern AG: The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation. J Bone Joint Surg Br. 1982, 64: 189-193.PubMed
18.
go back to reference Simonis R, Parnell E, Ray P, Peacock J: Electrical treatment of tibial non-union: a prospective, randomised, double-blind trial. Injury. 2003, 34: 357-362. 10.1016/S0020-1383(02)00209-7.CrossRefPubMed Simonis R, Parnell E, Ray P, Peacock J: Electrical treatment of tibial non-union: a prospective, randomised, double-blind trial. Injury. 2003, 34: 357-362. 10.1016/S0020-1383(02)00209-7.CrossRefPubMed
19.
go back to reference Gupta AK, Srivastava KP, Avasthi S: Pulsed electromagnetic stimulation in nonunion of tibial diaphyseal fractures. Indian J Orthop. 2009, 43: 156-160. 10.4103/0019-5413.50850.PubMedCentralCrossRefPubMed Gupta AK, Srivastava KP, Avasthi S: Pulsed electromagnetic stimulation in nonunion of tibial diaphyseal fractures. Indian J Orthop. 2009, 43: 156-160. 10.4103/0019-5413.50850.PubMedCentralCrossRefPubMed
20.
go back to reference Scott G, King J: A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Joint Surg Am. 1994, 76: 820-826.PubMed Scott G, King J: A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Joint Surg Am. 1994, 76: 820-826.PubMed
Metadata
Title
Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature
Authors
Aggelos Assiotis
Nick P Sachinis
Byron E Chalidis
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2012
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/1749-799X-7-24

Other articles of this Issue 1/2012

Journal of Orthopaedic Surgery and Research 1/2012 Go to the issue