Skip to main content
Top
Published in: Radiation Oncology 1/2014

Open Access 01-12-2014 | Research

Comparison of primary target volumes delineated on four-dimensional CT and 18 F-FDG PET/CT of non-small-cell lung cancer

Authors: Yi-Li Duan, Jian-Bin Li, Ying-Jie Zhang, Wei Wang, Feng-Xiang Li, Xiao-Rong Sun, Yan-Luan Guo, Dong-Ping Shang

Published in: Radiation Oncology | Issue 1/2014

Login to get access

Abstract

Background

To determine the optimal threshold of 18 F-fluorodexyglucose (18 F-FDG) positron emission tomography CT (PET/CT) images that generates the best volumetric match to internal gross target volume (IGTV) based on four-dimensional CT (4DCT) images.

Methods

Twenty patients with non-small cell lung cancer (NSCLC) underwent enhanced three-dimensional CT (3DCT) scan followed by enhanced 4DCT scan of the thorax under normal free breathing with the administration of intravenous contrast agents. A total of 100 ml of ioversol was injected intravenously, 2 ml/s for 3DCT and 1 ml/s for 4DCT. Then 18 F-FDG PET/CT scan was performed based on the same positioning parameters (the same immobilization devices and identical position verified by laser localizer as well as skin marks). Gross target volumes (GTVs) of the primary tumor were contoured on the ten phases images of 4DCT to generate IGTV10. GTVPET were determined with eight different threshold using an auto-contouring function. The differences in the position, volume, concordance index (CI) and degree of inclusion (DI) of the targets between GTVPET and IGTV10 were compared.

Results

The images from seventeen patients were suitable for further analysis. Significant differences between the centric coordinate positions of GTVPET (excluding GTVPET15%) and IGTV10 were observed only in z axes (P < 0.05). GTVPET15%, GTVPET25% and GTVPET2.0 were not statistically different from IGTV10 (P < 0.05). GTVPET15% approximated closely to IGTV10 with median percentage volume changes of 4.86%. The best CI was between IGTV10 and GTVPET15% (0.57). The best DI of IGTV10 in GTVPET was IGTV10 in GTVPET15% (0.80).

Conclusion

None of the PET-based contours had both close spatial and volumetric approximation to the 4DCT IGTV10. At present 3D-PET/CT should not be used for IGTV generation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer statistics, 2009. CA Cancer J Clin 2009, 59: 225-249.CrossRefPubMed Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer statistics, 2009. CA Cancer J Clin 2009, 59: 225-249.CrossRefPubMed
2.
go back to reference Devesa SS, Bray F, Vizcaino AP, Parkin DM: International lung cancer trends by histologic type: male:female differences diminishing and adenocarcinoma rates rising. Int J Cancer 2005, 117: 294-299.CrossRefPubMed Devesa SS, Bray F, Vizcaino AP, Parkin DM: International lung cancer trends by histologic type: male:female differences diminishing and adenocarcinoma rates rising. Int J Cancer 2005, 117: 294-299.CrossRefPubMed
3.
go back to reference Novello S, le Chevalier T: Is there a standard strategy in the management of locally advanced non-small cell lung cancer? Lung Cancer 2001,34(Suppl. 4):S9-S14.CrossRefPubMed Novello S, le Chevalier T: Is there a standard strategy in the management of locally advanced non-small cell lung cancer? Lung Cancer 2001,34(Suppl. 4):S9-S14.CrossRefPubMed
4.
go back to reference Sause W, Kolesar P, Taylor S IV, Johnson D, Livingston R, Komaki R, Emami B, Curran W Jr, Byhardt R, Dar AR, Turrisi A 3rd: Final results of phase III trial in regionally advanced unresectable non-small cell lung cancer: Radiation Therapy Oncology Group, Eastern Cooperative Oncology Group, and Southwest Oncology Group. Chest 2000, 117: 358-364.CrossRefPubMed Sause W, Kolesar P, Taylor S IV, Johnson D, Livingston R, Komaki R, Emami B, Curran W Jr, Byhardt R, Dar AR, Turrisi A 3rd: Final results of phase III trial in regionally advanced unresectable non-small cell lung cancer: Radiation Therapy Oncology Group, Eastern Cooperative Oncology Group, and Southwest Oncology Group. Chest 2000, 117: 358-364.CrossRefPubMed
5.
go back to reference Curran W, Scott C, Langer C: Long term benefit is observed in a phase III comparison of sequential vs. concurrent chemoradiation for patients with unresectable NSCLC: RTOG 9410 [abstract]. Proc Am Soc Clin Oncol 2003, S621a. Curran W, Scott C, Langer C: Long term benefit is observed in a phase III comparison of sequential vs. concurrent chemoradiation for patients with unresectable NSCLC: RTOG 9410 [abstract]. Proc Am Soc Clin Oncol 2003, S621a.
6.
go back to reference Chang JY, Dong L, Liu H, Starkschall G, Balter P, Mohan R, Liao Z, Cox JD, Komaki R: Image-guided radiation therapy for non small cell lung cancer. J Thorac Oncol 2008, 3: 177-186.CrossRefPubMed Chang JY, Dong L, Liu H, Starkschall G, Balter P, Mohan R, Liao Z, Cox JD, Komaki R: Image-guided radiation therapy for non small cell lung cancer. J Thorac Oncol 2008, 3: 177-186.CrossRefPubMed
7.
go back to reference International Commission on Radiation Units and Measurements: Prescribing, recording, and reporting photon beam therapy (supplement to ICRU report 50). ICRU report 62. Bethesda, MD: ICRU; 1999. International Commission on Radiation Units and Measurements: Prescribing, recording, and reporting photon beam therapy (supplement to ICRU report 50). ICRU report 62. Bethesda, MD: ICRU; 1999.
8.
go back to reference Underberg RW, Lagerwaard FJ, Cuijpers JP, Slotman BJ, van Sörnsen de Koste JR, Senan S: Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer. Int J Radiat Oncol Biol Phys 2004, 60: 1283-1290.CrossRefPubMed Underberg RW, Lagerwaard FJ, Cuijpers JP, Slotman BJ, van Sörnsen de Koste JR, Senan S: Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer. Int J Radiat Oncol Biol Phys 2004, 60: 1283-1290.CrossRefPubMed
9.
go back to reference Guckenberger M, Wilbert J, Meyer J, Baier K, Richter A, Flentje M: Is a single respiratory correlated 4D-CT study sufficient for evaluation of breathing motion? Int J Radiat Oncol Biol Phys 2007, 67: 1352-1359.CrossRefPubMed Guckenberger M, Wilbert J, Meyer J, Baier K, Richter A, Flentje M: Is a single respiratory correlated 4D-CT study sufficient for evaluation of breathing motion? Int J Radiat Oncol Biol Phys 2007, 67: 1352-1359.CrossRefPubMed
10.
go back to reference Ezhil M, Vedam S, Balter P, Choi B, Mirkovic D, Starkschall G, Chang JY: Determination of patient specific internal gross tumor volumes for lung cancer using four dimensional computed tomography. Radiat Oncol 2009, 4: 4.PubMedCentralCrossRefPubMed Ezhil M, Vedam S, Balter P, Choi B, Mirkovic D, Starkschall G, Chang JY: Determination of patient specific internal gross tumor volumes for lung cancer using four dimensional computed tomography. Radiat Oncol 2009, 4: 4.PubMedCentralCrossRefPubMed
11.
go back to reference Ge H, Cai J, Kelsey CR, Yin FF: Quantification and minimization of uncertainties of internal target volume for stereotactic body radiation therapy of lung cancer. Int J Radiat Oncol Biol Phys 2013, 85: 438-443.CrossRefPubMed Ge H, Cai J, Kelsey CR, Yin FF: Quantification and minimization of uncertainties of internal target volume for stereotactic body radiation therapy of lung cancer. Int J Radiat Oncol Biol Phys 2013, 85: 438-443.CrossRefPubMed
12.
go back to reference Shim SS, Lee KS, Kim BT, Chung MJ, Lee EJ, Han J, Choi JY, Kwon OJ, Shim YM, Kim S: Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology 2005, 236: 1011-1019.CrossRefPubMed Shim SS, Lee KS, Kim BT, Chung MJ, Lee EJ, Han J, Choi JY, Kwon OJ, Shim YM, Kim S: Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology 2005, 236: 1011-1019.CrossRefPubMed
13.
go back to reference Ashamalla H, Rafla S, Parikh K, Mokhtar B, Goswami G, Kambam S, Abdel-Dayem H, Guirguis A, Ross P, Evola A: The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys 2005, 63: 1016-1023.CrossRefPubMed Ashamalla H, Rafla S, Parikh K, Mokhtar B, Goswami G, Kambam S, Abdel-Dayem H, Guirguis A, Ross P, Evola A: The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys 2005, 63: 1016-1023.CrossRefPubMed
14.
go back to reference Fox JL, Rengan R, O'Meara W, Yorke E, Erdi Y, Nehmeh S, Leibel SA, Rosenzweig KE: Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys 2005, 62: 70-75.CrossRefPubMed Fox JL, Rengan R, O'Meara W, Yorke E, Erdi Y, Nehmeh S, Leibel SA, Rosenzweig KE: Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys 2005, 62: 70-75.CrossRefPubMed
15.
go back to reference Mac Manus MP, Hicks RJ: The role of positron emission tomography/computed tomography in radiation therapy planning for patients with lung cancer. Semin Nucl Med 2012, 42: 308-319.CrossRefPubMed Mac Manus MP, Hicks RJ: The role of positron emission tomography/computed tomography in radiation therapy planning for patients with lung cancer. Semin Nucl Med 2012, 42: 308-319.CrossRefPubMed
16.
go back to reference Caldwell CB, Mah K, Skinner M, Danjoux CE: Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 2003, 55: 1381-1393.CrossRefPubMed Caldwell CB, Mah K, Skinner M, Danjoux CE: Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 2003, 55: 1381-1393.CrossRefPubMed
17.
go back to reference Li FX, Li JB, Zhang YJ, Liu TH, Tian SY, Xu M, Shang DP, Ma CS: Comparison of the planning target volume based on three-dimensional CT and four-dimensional CT images of non-small-cell lung cancer. Radiother Oncol 2011, 99: 176-180.CrossRefPubMed Li FX, Li JB, Zhang YJ, Liu TH, Tian SY, Xu M, Shang DP, Ma CS: Comparison of the planning target volume based on three-dimensional CT and four-dimensional CT images of non-small-cell lung cancer. Radiother Oncol 2011, 99: 176-180.CrossRefPubMed
18.
go back to reference Hanna GG, McAleese J, Carson KJ, Stewart DP, Cosgrove VP, Eakin RL, Zatari A, Lynch T, Jarritt PH, Young VA, O'Sullivan JM, Hounsell AR: 18 F-FDG PET-CT simulation for non-small cell lung cancer: what is the impact in patients already staged by PET-CT? Int J Radiat Oncol Biol Phys 2010, 77: 24-30.CrossRefPubMed Hanna GG, McAleese J, Carson KJ, Stewart DP, Cosgrove VP, Eakin RL, Zatari A, Lynch T, Jarritt PH, Young VA, O'Sullivan JM, Hounsell AR: 18 F-FDG PET-CT simulation for non-small cell lung cancer: what is the impact in patients already staged by PET-CT? Int J Radiat Oncol Biol Phys 2010, 77: 24-30.CrossRefPubMed
19.
go back to reference van Baardwijk A, Bosmans G, Boersma L, Buijsen J, Wanders S, Hochstenbag M, van Suylen RJ, Dekker A, Dehing-Oberije C, Houben R, Bentzen SM, van Kroonenburgh M, Lambin P, De Ruysscher D: PET-CT–based auto-contouring in non–small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 2007, 68: 771-778.CrossRefPubMed van Baardwijk A, Bosmans G, Boersma L, Buijsen J, Wanders S, Hochstenbag M, van Suylen RJ, Dekker A, Dehing-Oberije C, Houben R, Bentzen SM, van Kroonenburgh M, Lambin P, De Ruysscher D: PET-CT–based auto-contouring in non–small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 2007, 68: 771-778.CrossRefPubMed
20.
go back to reference Hof H, Rhern B, Haering P, Kopp-Schneider A, Debus J, Herfarth K: 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumors: Comparison with a conventional technique using individual margins. Radiother Oncol 2009, 93: 419-423.CrossRefPubMed Hof H, Rhern B, Haering P, Kopp-Schneider A, Debus J, Herfarth K: 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumors: Comparison with a conventional technique using individual margins. Radiother Oncol 2009, 93: 419-423.CrossRefPubMed
21.
go back to reference Grills IS, Yan D, Black QC, Wong CY, Martinez AA, Kestin LL: Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007, 67: 709-719.CrossRefPubMed Grills IS, Yan D, Black QC, Wong CY, Martinez AA, Kestin LL: Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007, 67: 709-719.CrossRefPubMed
22.
go back to reference Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naqa I, Siegel BA, Bradley JD: 18 F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006, 47: 1808-1812.PubMed Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naqa I, Siegel BA, Bradley JD: 18 F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006, 47: 1808-1812.PubMed
23.
go back to reference Gondi V, Bradley K, Mehta M, Howard A, Khuntia D, Ritter M, Tomé W: Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007, 67: 187-195.CrossRefPubMed Gondi V, Bradley K, Mehta M, Howard A, Khuntia D, Ritter M, Tomé W: Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007, 67: 187-195.CrossRefPubMed
24.
go back to reference Faria SL, Menard S, Devic S, Sirois C, Souhami L, Lisbona R, Freeman CR: Impact of FDG-PET/CT on radiotherapy volume delineation in non-small-cell lung cancer and correlation of imaging stage with pathologic findings. Int J Radiat Oncol Biol Phys 2008, 70: 1035-1038.CrossRefPubMed Faria SL, Menard S, Devic S, Sirois C, Souhami L, Lisbona R, Freeman CR: Impact of FDG-PET/CT on radiotherapy volume delineation in non-small-cell lung cancer and correlation of imaging stage with pathologic findings. Int J Radiat Oncol Biol Phys 2008, 70: 1035-1038.CrossRefPubMed
25.
go back to reference Hanna GG, van Sörnsen de Koste JR, Dahele MR, Carson KJ, Haasbeek CJ, Migchielsen R, Hounsell AR, Senan S: Defining target volumes for stereotactic ablative radiotherapy of early-stage lung tumours: a comparison of three-dimensional 18F-fluorodeoxyglucose positron emission tomography and four-dimensional computed tomography. Clin Oncol (R Coll Radiol) 2012, 24: e71-e80.CrossRef Hanna GG, van Sörnsen de Koste JR, Dahele MR, Carson KJ, Haasbeek CJ, Migchielsen R, Hounsell AR, Senan S: Defining target volumes for stereotactic ablative radiotherapy of early-stage lung tumours: a comparison of three-dimensional 18F-fluorodeoxyglucose positron emission tomography and four-dimensional computed tomography. Clin Oncol (R Coll Radiol) 2012, 24: e71-e80.CrossRef
26.
go back to reference Okubo M, Nishimura Y, Nakamatsu K, Okumura M, Shibata T, Kanamori S, Hanaoka K, Hosono M: Static and moving phantom studies for radiation treatment planning in a positron emission tomography and computed tomography (PET/CT) system. Ann Nucl Med 2008, 22: 579-586.CrossRefPubMed Okubo M, Nishimura Y, Nakamatsu K, Okumura M, Shibata T, Kanamori S, Hanaoka K, Hosono M: Static and moving phantom studies for radiation treatment planning in a positron emission tomography and computed tomography (PET/CT) system. Ann Nucl Med 2008, 22: 579-586.CrossRefPubMed
27.
go back to reference Callahan J, Kron T, Schneider-Kolsky M, Dunn L, Thompson M, Siva S, Aarons Y, Binns D, Hicks RJ: Validation of a 4D-PET maximum intensity projection for delineation of an internal target volume. Int J Radiation Oncol Biol Phys 2013, 86: 749-754.CrossRef Callahan J, Kron T, Schneider-Kolsky M, Dunn L, Thompson M, Siva S, Aarons Y, Binns D, Hicks RJ: Validation of a 4D-PET maximum intensity projection for delineation of an internal target volume. Int J Radiation Oncol Biol Phys 2013, 86: 749-754.CrossRef
28.
go back to reference Hanna GG, Hounsell AR, O'Sullivan JM: Geometrical analysis of radiotherapy target volume delineation: a systematic review of reported comparison methods. Clin Oncol (R Coll Radiol) 2010, 22: 515-525.CrossRef Hanna GG, Hounsell AR, O'Sullivan JM: Geometrical analysis of radiotherapy target volume delineation: a systematic review of reported comparison methods. Clin Oncol (R Coll Radiol) 2010, 22: 515-525.CrossRef
Metadata
Title
Comparison of primary target volumes delineated on four-dimensional CT and 18 F-FDG PET/CT of non-small-cell lung cancer
Authors
Yi-Li Duan
Jian-Bin Li
Ying-Jie Zhang
Wei Wang
Feng-Xiang Li
Xiao-Rong Sun
Yan-Luan Guo
Dong-Ping Shang
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2014
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-9-182

Other articles of this Issue 1/2014

Radiation Oncology 1/2014 Go to the issue