Skip to main content
Top
Published in: Radiation Oncology 1/2013

Open Access 01-12-2013 | Research

Prostate stereotactic body radiotherapy with simultaneous integrated boost: which is the best planning method?

Authors: Alison Tree, Caroline Jones, Aslam Sohaib, Vincent Khoo, Nicholas van As

Published in: Radiation Oncology | Issue 1/2013

Login to get access

Abstract

Background

The delivery of a simultaneous integrated boost to the intra-prostatic tumour nodule may improve local control. The ability to deliver such treatments with hypofractionated SBRT was attempted using RapidArc (Varian Medical systems, Palo Alto, CA) and Multiplan (Accuray inc, Sunnyvale, CA).

Materials and methods

15 patients with dominant prostate nodules had RapidArc and Multiplan plans created using a 5 mm isotropic margin, except 3 mm posteriorly, aiming to deliver 47.5 Gy in 5 fractions to the boost whilst treating the whole prostate to 36.25 Gy in 5 fractions. An additional RapidArc plan was created using an 8 mm isotropic margin, except 5 mm posteriorly, to account for lack of intrafraction tracking.

Results

Both RapidArc and Multiplan can produce clinically acceptable boost plans to a dose of 47.5 Gy in 5 fractions. The mean rectal doses were lower for RapidArc plans (D50 13.2 Gy vs 15.5 Gy) but the number of missed constraints was the same for both planning methods (11/75). When the margin was increased to 8 mm/5 mm for the RapidArc plans to account for intrafraction motion, 37/75 constraints were missed.

Conclusions

RapidArc and Multiplan can produce clinically acceptable simultaneous integrated boost plans, but the mean rectal D50 and D20 with RapidArc are lower. If the margins are increased to account for intrafraction motion, the RapidArc plans exceed at least one dose constraint in 13/15 cases. Delivering a simultaneous boost with hypofractionation appears feasible, but requires small margins needing intrafraction motion tracking.
Appendix
Available only for authorised users
Literature
1.
go back to reference Al-Mamgani A, et al.: Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 2008,72(4):980-8. 10.1016/j.ijrobp.2008.02.073CrossRefPubMed Al-Mamgani A, et al.: Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 2008,72(4):980-8. 10.1016/j.ijrobp.2008.02.073CrossRefPubMed
2.
go back to reference Dearnaley DP, et al.: Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol 2007,8(6):475-87. 10.1016/S1470-2045(07)70143-2CrossRefPubMed Dearnaley DP, et al.: Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol 2007,8(6):475-87. 10.1016/S1470-2045(07)70143-2CrossRefPubMed
3.
go back to reference Pollack A, et al.: Prostate cancer radiation dose response: results of the M D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 2002,53(5):1097-105. 10.1016/S0360-3016(02)02829-8CrossRefPubMed Pollack A, et al.: Prostate cancer radiation dose response: results of the M D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 2002,53(5):1097-105. 10.1016/S0360-3016(02)02829-8CrossRefPubMed
4.
go back to reference Zelefsky MJ, et al.: Long-term results of conformal radiotherapy for prostate cancer: impact of dose escalation on biochemical tumor control and distant metastases-free survival outcomes. Int J Radiat Oncol Biol Phys 2008,71(4):1028-33. 10.1016/j.ijrobp.2007.11.066CrossRefPubMed Zelefsky MJ, et al.: Long-term results of conformal radiotherapy for prostate cancer: impact of dose escalation on biochemical tumor control and distant metastases-free survival outcomes. Int J Radiat Oncol Biol Phys 2008,71(4):1028-33. 10.1016/j.ijrobp.2007.11.066CrossRefPubMed
5.
go back to reference Brenner DJ, et al.: Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys 2002,52(1):6-13. 10.1016/S0360-3016(01)02664-5CrossRefPubMed Brenner DJ, et al.: Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys 2002,52(1):6-13. 10.1016/S0360-3016(01)02664-5CrossRefPubMed
6.
go back to reference Miralbell R, et al.: Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: alpha/beta = 1.4 (0.9-2.2) Gy. Int J Radiat Oncol Biol Phys 2012,82(1):e17-24. 10.1016/j.ijrobp.2010.10.075CrossRefPubMed Miralbell R, et al.: Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: alpha/beta = 1.4 (0.9-2.2) Gy. Int J Radiat Oncol Biol Phys 2012,82(1):e17-24. 10.1016/j.ijrobp.2010.10.075CrossRefPubMed
7.
go back to reference Dasu A, Toma-Dasu I: Prostate alpha/beta revisited – an analysis of clinical results from 14 168 patients. Acta Oncol 2012,51(8):963-74. 10.3109/0284186X.2012.719635CrossRefPubMed Dasu A, Toma-Dasu I: Prostate alpha/beta revisited – an analysis of clinical results from 14 168 patients. Acta Oncol 2012,51(8):963-74. 10.3109/0284186X.2012.719635CrossRefPubMed
8.
go back to reference Dearnaley D, et al.: Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: preliminary safety results from the CHHiP randomised controlled trial. Lancet Oncol 2012,13(1):43-54. 10.1016/S1470-2045(11)70293-5CrossRefPubMed Dearnaley D, et al.: Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: preliminary safety results from the CHHiP randomised controlled trial. Lancet Oncol 2012,13(1):43-54. 10.1016/S1470-2045(11)70293-5CrossRefPubMed
9.
go back to reference Arcangeli G, et al.: A prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer. Int J Radiat Oncol Biol Phys 2010,78(1):11-8. 10.1016/j.ijrobp.2009.07.1691CrossRefPubMed Arcangeli G, et al.: A prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer. Int J Radiat Oncol Biol Phys 2010,78(1):11-8. 10.1016/j.ijrobp.2009.07.1691CrossRefPubMed
10.
go back to reference Yeoh EE, et al.: Hypofractionated versus conventionally fractionated radiotherapy for prostate carcinoma: final results of phase III randomized trial. Int J Radiat Oncol Biol Phys 2011,81(5):1271-8. 10.1016/j.ijrobp.2010.07.1984CrossRefPubMed Yeoh EE, et al.: Hypofractionated versus conventionally fractionated radiotherapy for prostate carcinoma: final results of phase III randomized trial. Int J Radiat Oncol Biol Phys 2011,81(5):1271-8. 10.1016/j.ijrobp.2010.07.1984CrossRefPubMed
11.
13.
go back to reference King CR, et al.: Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int J Radiat Oncol Biol Phys 2009,73(4):1043-8. 10.1016/j.ijrobp.2008.05.059CrossRefPubMed King CR, et al.: Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int J Radiat Oncol Biol Phys 2009,73(4):1043-8. 10.1016/j.ijrobp.2008.05.059CrossRefPubMed
14.
go back to reference Meier R, et al.: Stereotactic body radiotherapy for intermediate-risk organ-confined prostate cancer: interim toxicity and quality of life outcomes from a multi-institutional study. Int J Radiat Oncol Biol Phys 2012,84(3):S148.CrossRef Meier R, et al.: Stereotactic body radiotherapy for intermediate-risk organ-confined prostate cancer: interim toxicity and quality of life outcomes from a multi-institutional study. Int J Radiat Oncol Biol Phys 2012,84(3):S148.CrossRef
15.
go back to reference Arrayeh E, et al.: Does local recurrence of prostate cancer after radiation therapy occur at the site of primary tumor? Results of a longitudinal MRI and MRSI study. Int J Radiat Oncol Biol Phys 2012,82(5):e787-93. 10.1016/j.ijrobp.2011.11.030CrossRefPubMedPubMedCentral Arrayeh E, et al.: Does local recurrence of prostate cancer after radiation therapy occur at the site of primary tumor? Results of a longitudinal MRI and MRSI study. Int J Radiat Oncol Biol Phys 2012,82(5):e787-93. 10.1016/j.ijrobp.2011.11.030CrossRefPubMedPubMedCentral
16.
go back to reference Cellini N, et al.: Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning. Int J Radiat Oncol Biol Phys 2002,53(3):595-9. 10.1016/S0360-3016(02)02795-5CrossRefPubMed Cellini N, et al.: Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning. Int J Radiat Oncol Biol Phys 2002,53(3):595-9. 10.1016/S0360-3016(02)02795-5CrossRefPubMed
17.
go back to reference Fuller DB, et al.: Virtual HDR CyberKnife treatment for localized prostatic carcinoma: dosimetry comparison with HDR brachytherapy and preliminary clinical observations. Int J Radiat Oncol Biol Phys 2008,70(5):1588-97. 10.1016/j.ijrobp.2007.11.067CrossRefPubMed Fuller DB, et al.: Virtual HDR CyberKnife treatment for localized prostatic carcinoma: dosimetry comparison with HDR brachytherapy and preliminary clinical observations. Int J Radiat Oncol Biol Phys 2008,70(5):1588-97. 10.1016/j.ijrobp.2007.11.067CrossRefPubMed
19.
go back to reference Davis BJ, et al.: The radial distance of extraprostatic extension of prostate carcinoma: implications for prostate brachytherapy. Cancer 1999,85(12):2630-7. 10.1002/(SICI)1097-0142(19990615)85:12<2630::AID-CNCR20>3.0.CO;2-LCrossRefPubMed Davis BJ, et al.: The radial distance of extraprostatic extension of prostate carcinoma: implications for prostate brachytherapy. Cancer 1999,85(12):2630-7. 10.1002/(SICI)1097-0142(19990615)85:12<2630::AID-CNCR20>3.0.CO;2-LCrossRefPubMed
20.
go back to reference Chao KK, et al.: Clinicopathologic analysis of extracapsular extension in prostate cancer: should the clinical target volume be expanded posterolaterally to account for microscopic extension? Int J Radiat Oncol Biol Phys 2006,65(4):999-1007. 10.1016/j.ijrobp.2006.02.039CrossRefPubMed Chao KK, et al.: Clinicopathologic analysis of extracapsular extension in prostate cancer: should the clinical target volume be expanded posterolaterally to account for microscopic extension? Int J Radiat Oncol Biol Phys 2006,65(4):999-1007. 10.1016/j.ijrobp.2006.02.039CrossRefPubMed
21.
go back to reference McNair HA, et al.: A comparison of the use of bony anatomy and internal markers for offline verification and an evaluation of the potential benefit of online and offline verification protocols for prostate radiotherapy. Int J Radiat Oncol Biol Phys 2008,71(1):41-50. 10.1016/j.ijrobp.2007.09.002CrossRefPubMed McNair HA, et al.: A comparison of the use of bony anatomy and internal markers for offline verification and an evaluation of the potential benefit of online and offline verification protocols for prostate radiotherapy. Int J Radiat Oncol Biol Phys 2008,71(1):41-50. 10.1016/j.ijrobp.2007.09.002CrossRefPubMed
22.
go back to reference Adamson J, Wu Q: Inferences about prostate intrafraction motion from pre- and posttreatment volumetric imaging. Int J Radiat Oncol Biol Phys 2009,75(1):260-7. 10.1016/j.ijrobp.2009.03.007CrossRefPubMedPubMedCentral Adamson J, Wu Q: Inferences about prostate intrafraction motion from pre- and posttreatment volumetric imaging. Int J Radiat Oncol Biol Phys 2009,75(1):260-7. 10.1016/j.ijrobp.2009.03.007CrossRefPubMedPubMedCentral
23.
go back to reference Beltran C, Herman MG, Davis BJ: Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys 2008,70(1):289-95. 10.1016/j.ijrobp.2007.08.040CrossRefPubMed Beltran C, Herman MG, Davis BJ: Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys 2008,70(1):289-95. 10.1016/j.ijrobp.2007.08.040CrossRefPubMed
24.
go back to reference Kupelian P, et al.: Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 2007,67(4):1088-98. 10.1016/j.ijrobp.2006.10.026CrossRefPubMed Kupelian P, et al.: Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 2007,67(4):1088-98. 10.1016/j.ijrobp.2006.10.026CrossRefPubMed
25.
go back to reference Schmuecking M, et al.: Dynamic MRI and CAD vs. choline MRS: where is the detection level for a lesion characterisation in prostate cancer? Int J Radiat Biol 2009,85(9):814-24. 10.1080/09553000903090027CrossRefPubMed Schmuecking M, et al.: Dynamic MRI and CAD vs. choline MRS: where is the detection level for a lesion characterisation in prostate cancer? Int J Radiat Biol 2009,85(9):814-24. 10.1080/09553000903090027CrossRefPubMed
26.
go back to reference Kirkham AP, Emberton M, Allen C: How good is MRI at detecting and characterising cancer within the prostate? Eur Urol 2006,50(6):1163-1174. discussion 1175 10.1016/j.eururo.2006.06.025CrossRefPubMed Kirkham AP, Emberton M, Allen C: How good is MRI at detecting and characterising cancer within the prostate? Eur Urol 2006,50(6):1163-1174. discussion 1175 10.1016/j.eururo.2006.06.025CrossRefPubMed
27.
go back to reference Turkbey B, Pinto PA, Choyke PL: Imaging techniques for prostate cancer: implications for focal therapy. Nat Rev Urol 2009,6(4):191-203. 10.1038/nrurol.2009.27CrossRefPubMedPubMedCentral Turkbey B, Pinto PA, Choyke PL: Imaging techniques for prostate cancer: implications for focal therapy. Nat Rev Urol 2009,6(4):191-203. 10.1038/nrurol.2009.27CrossRefPubMedPubMedCentral
28.
go back to reference Testa C, et al.: Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11C-choline PET/CT. Radiology 2007,244(3):797-806. 10.1148/radiol.2443061063CrossRefPubMed Testa C, et al.: Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11C-choline PET/CT. Radiology 2007,244(3):797-806. 10.1148/radiol.2443061063CrossRefPubMed
29.
go back to reference Tamada T, et al.: Prostate cancer detection in patients with total serum prostate-specific antigen levels of 4–10 ng/mL: diagnostic efficacy of diffusion-weighted imaging, dynamic contrast-enhanced MRI, and T2-weighted imaging. AJR Am J Roentgenol 2011,197(3):664-70. 10.2214/AJR.10.5923CrossRefPubMed Tamada T, et al.: Prostate cancer detection in patients with total serum prostate-specific antigen levels of 4–10 ng/mL: diagnostic efficacy of diffusion-weighted imaging, dynamic contrast-enhanced MRI, and T2-weighted imaging. AJR Am J Roentgenol 2011,197(3):664-70. 10.2214/AJR.10.5923CrossRefPubMed
30.
go back to reference Riches SF, et al.: MRI in the detection of prostate cancer: combined apparent diffusion coefficient, metabolite ratio, and vascular parameters. AJR Am J Roentgenol 2009,193(6):1583-91. 10.2214/AJR.09.2540CrossRefPubMed Riches SF, et al.: MRI in the detection of prostate cancer: combined apparent diffusion coefficient, metabolite ratio, and vascular parameters. AJR Am J Roentgenol 2009,193(6):1583-91. 10.2214/AJR.09.2540CrossRefPubMed
31.
go back to reference Kozlowski P, et al.: Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis–correlation with biopsy and histopathology. J Magn Reson Imaging 2006,24(1):108-13. 10.1002/jmri.20626CrossRefPubMed Kozlowski P, et al.: Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis–correlation with biopsy and histopathology. J Magn Reson Imaging 2006,24(1):108-13. 10.1002/jmri.20626CrossRefPubMed
32.
go back to reference Selnaes KM, et al.: Peripheral zone prostate cancer localization by multiparametric magnetic resonance at 3 T: unbiased cancer identification by matching to histopathology. Invest Radiol 2012,47(11):624-33. 10.1097/RLI.0b013e318263f0fdCrossRefPubMed Selnaes KM, et al.: Peripheral zone prostate cancer localization by multiparametric magnetic resonance at 3 T: unbiased cancer identification by matching to histopathology. Invest Radiol 2012,47(11):624-33. 10.1097/RLI.0b013e318263f0fdCrossRefPubMed
33.
go back to reference Afaq A, et al.: Clinical utility of diffusion-weighted magnetic resonance imaging in prostate cancer. BJU Int 2011,108(11):1716-22. 10.1111/j.1464-410X.2011.10256.xCrossRefPubMed Afaq A, et al.: Clinical utility of diffusion-weighted magnetic resonance imaging in prostate cancer. BJU Int 2011,108(11):1716-22. 10.1111/j.1464-410X.2011.10256.xCrossRefPubMed
34.
go back to reference van Dorsten FA, et al.: Combined quantitative dynamic contrast-enhanced MR imaging and (1)H MR spectroscopic imaging of human prostate cancer. J Magn Reson Imaging 2004,20(2):279-87. 10.1002/jmri.20113CrossRefPubMed van Dorsten FA, et al.: Combined quantitative dynamic contrast-enhanced MR imaging and (1)H MR spectroscopic imaging of human prostate cancer. J Magn Reson Imaging 2004,20(2):279-87. 10.1002/jmri.20113CrossRefPubMed
35.
go back to reference Groenendaal G, et al.: Pathologic validation of a model based on diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for tumor delineation in the prostate peripheral zone. Int J Radiat Oncol Biol Phys 2012,82(3):e537-44. 10.1016/j.ijrobp.2011.07.021CrossRefPubMed Groenendaal G, et al.: Pathologic validation of a model based on diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for tumor delineation in the prostate peripheral zone. Int J Radiat Oncol Biol Phys 2012,82(3):e537-44. 10.1016/j.ijrobp.2011.07.021CrossRefPubMed
36.
go back to reference Groenendaal G, et al.: The effect of hormonal treatment on conspicuity of prostate cancer: implications for focal boosting radiotherapy. Radiother Oncol 2012,103(2):233-8. 10.1016/j.radonc.2011.12.007CrossRefPubMed Groenendaal G, et al.: The effect of hormonal treatment on conspicuity of prostate cancer: implications for focal boosting radiotherapy. Radiother Oncol 2012,103(2):233-8. 10.1016/j.radonc.2011.12.007CrossRefPubMed
37.
go back to reference Pinkawa M, et al.: Intensity-modulated radiotherapy for prostate cancer implementing molecular imaging with 18F-choline PET-CT to define a simultaneous integrated boost. Strahlenther Onkol 2010,186(11):600-6. 10.1007/s00066-010-2122-5CrossRefPubMed Pinkawa M, et al.: Intensity-modulated radiotherapy for prostate cancer implementing molecular imaging with 18F-choline PET-CT to define a simultaneous integrated boost. Strahlenther Onkol 2010,186(11):600-6. 10.1007/s00066-010-2122-5CrossRefPubMed
38.
go back to reference Seppala J, et al.: Carbon-11 acetate PET/CT based dose escalated IMRT in prostate cancer. Radiother Oncol 2009,93(2):234-40. 10.1016/j.radonc.2009.08.010CrossRefPubMed Seppala J, et al.: Carbon-11 acetate PET/CT based dose escalated IMRT in prostate cancer. Radiother Oncol 2009,93(2):234-40. 10.1016/j.radonc.2009.08.010CrossRefPubMed
39.
go back to reference Housri N, et al.: Parameters favorable to intraprostatic radiation dose escalation in men with localized prostate cancer. Int J Radiat Oncol Biol Phys 2011,80(2):614-20. 10.1016/j.ijrobp.2010.06.050CrossRefPubMedPubMedCentral Housri N, et al.: Parameters favorable to intraprostatic radiation dose escalation in men with localized prostate cancer. Int J Radiat Oncol Biol Phys 2011,80(2):614-20. 10.1016/j.ijrobp.2010.06.050CrossRefPubMedPubMedCentral
40.
go back to reference Tree A, Khoo VS, van As N: To deliver a focal boost during whole prostate gland irradiation using Cyberknife. Radiother Oncol 2012,103(s1):s494.CrossRef Tree A, Khoo VS, van As N: To deliver a focal boost during whole prostate gland irradiation using Cyberknife. Radiother Oncol 2012,103(s1):s494.CrossRef
41.
go back to reference Ling CC, et al.: Dose-rate effects in external beam radiotherapy redux. Radiother Oncol 2010,95(3):261-8. 10.1016/j.radonc.2010.03.014CrossRefPubMed Ling CC, et al.: Dose-rate effects in external beam radiotherapy redux. Radiother Oncol 2010,95(3):261-8. 10.1016/j.radonc.2010.03.014CrossRefPubMed
42.
go back to reference Litzenberg DW, et al.: Influence of intrafraction motion on margins for prostate radiotherapy. Int J Radiat Oncol Biol Phys 2006,65(2):548-53. 10.1016/j.ijrobp.2005.12.033CrossRefPubMed Litzenberg DW, et al.: Influence of intrafraction motion on margins for prostate radiotherapy. Int J Radiat Oncol Biol Phys 2006,65(2):548-53. 10.1016/j.ijrobp.2005.12.033CrossRefPubMed
43.
go back to reference Langen KM, et al.: Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys 2008,71(4):1084-90. 10.1016/j.ijrobp.2007.11.054CrossRefPubMed Langen KM, et al.: Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys 2008,71(4):1084-90. 10.1016/j.ijrobp.2007.11.054CrossRefPubMed
44.
go back to reference Lips IM, et al.: Single blind randomized phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial. Trials 2011, 12: 255. 10.1186/1745-6215-12-255CrossRefPubMedPubMedCentral Lips IM, et al.: Single blind randomized phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial. Trials 2011, 12: 255. 10.1186/1745-6215-12-255CrossRefPubMedPubMedCentral
45.
go back to reference Fonteyne V, et al.: Intensity-modulated radiotherapy as primary therapy for prostate cancer: report on acute toxicity after dose escalation with simultaneous integrated boost to intraprostatic lesion. Int J Radiat Oncol Biol Phys 2008,72(3):799-807. 10.1016/j.ijrobp.2008.01.040CrossRefPubMed Fonteyne V, et al.: Intensity-modulated radiotherapy as primary therapy for prostate cancer: report on acute toxicity after dose escalation with simultaneous integrated boost to intraprostatic lesion. Int J Radiat Oncol Biol Phys 2008,72(3):799-807. 10.1016/j.ijrobp.2008.01.040CrossRefPubMed
46.
go back to reference De Meerleer G, et al.: The magnetic resonance detected intraprostatic lesion in prostate cancer: planning and delivery of intensity-modulated radiotherapy. Radiother Oncol 2005,75(3):325-33. 10.1016/j.radonc.2005.04.014CrossRefPubMed De Meerleer G, et al.: The magnetic resonance detected intraprostatic lesion in prostate cancer: planning and delivery of intensity-modulated radiotherapy. Radiother Oncol 2005,75(3):325-33. 10.1016/j.radonc.2005.04.014CrossRefPubMed
47.
go back to reference Pinkawa M, et al.: Dose-escalation using intensity-modulated radiotherapy for prostate cancer - evaluation of quality of life with and without (18)F-choline PET-CT detected simultaneous integrated boost. Radiat Oncol 2012, 7: 14. 10.1186/1748-717X-7-14CrossRefPubMedPubMedCentral Pinkawa M, et al.: Dose-escalation using intensity-modulated radiotherapy for prostate cancer - evaluation of quality of life with and without (18)F-choline PET-CT detected simultaneous integrated boost. Radiat Oncol 2012, 7: 14. 10.1186/1748-717X-7-14CrossRefPubMedPubMedCentral
48.
go back to reference Ippolito E, et al.: Intensity-modulated radiotherapy with simultaneous integrated boost to dominant intraprostatic lesion: preliminary report on toxicity. Am J Clin Oncol 2012,35(2):158-62. 10.1097/COC.0b013e318209cd8fCrossRefPubMed Ippolito E, et al.: Intensity-modulated radiotherapy with simultaneous integrated boost to dominant intraprostatic lesion: preliminary report on toxicity. Am J Clin Oncol 2012,35(2):158-62. 10.1097/COC.0b013e318209cd8fCrossRefPubMed
49.
go back to reference Dose EscaLation to intraprostatic tumour nodules in localisEd prostATE cancer: A phase II study examining the toxicity and feasibility of a dose escalated boost to a magnetic resonance imaging identified tumour nodule or nodules in localised prostate cancer. [Accessed 9th September 2013]; Available from: http://www.controlled-trials.com/ISRCTN04483921 Dose EscaLation to intraprostatic tumour nodules in localisEd prostATE cancer: A phase II study examining the toxicity and feasibility of a dose escalated boost to a magnetic resonance imaging identified tumour nodule or nodules in localised prostate cancer. [Accessed 9th September 2013]; Available from: http://​www.​controlled-trials.​com/​ISRCTN04483921
Metadata
Title
Prostate stereotactic body radiotherapy with simultaneous integrated boost: which is the best planning method?
Authors
Alison Tree
Caroline Jones
Aslam Sohaib
Vincent Khoo
Nicholas van As
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2013
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-8-228

Other articles of this Issue 1/2013

Radiation Oncology 1/2013 Go to the issue