Skip to main content
Top
Published in: Radiation Oncology 1/2013

Open Access 01-12-2013 | Research

Preclinical investigations towards the first spacer gel application in prostate cancer treatment during particle therapy at HIT

Authors: Antoni Ruciński, Julia Bauer, Patrick Campbell, Stephan Brons, Daniel Unholtz, Gregor Habl, Klaus Herfarth, Jürgen Debus, Christoph Bert, Katia Parodi, Oliver Jäkel, Thomas Haberer

Published in: Radiation Oncology | Issue 1/2013

Login to get access

Abstract

Background

The application of spacer gel represents a promising approach to reliably spare the rectal frontal wall during particle therapy (IJROBP 76:1251-1258, 2010). In order to qualify the spacer gel for the clinical use in particle therapy, a variety of measurements were performed in order to ensure the biological compatibility of the gel, its physical stability during and after the irradiation, and a proper definition of the gel in terms of the Hounsfield Unit (HU) values for the treatment planning system. The potential for the use of the spacer gel for particle therapy monitoring with off-line Positron Emission Tomography (PET) was also investigated.

Results

The spacer gel implanted to the prostate patient in direct neighbourhood to the clinical target volume does not interfere with the particle therapy treatment planning procedure applied at Heidelberg Ion Beam Therapy Centre (HIT). The performed measurements show that Bragg-peak position of the particles can be properly predicted on the basis of computed tomography imaging with the treatment planning system used at HIT (measured water equivalent path length of 1.011 ±0.011 (2σ), measured Hounsfield Unit of 28.9 ±6.1 (2σ)). The spacer gel samples remain physically unchanged after irradiation with a dose exceeding the therapeutic dose level. The independently measured Bragg-Peak position does not change within the time interval of 10 weeks.

Conclusions

As a result of the presented experiments, the first clinical application of spacer gel implant during prostate cancer treatment with carbon ions and protons was possible at HIT in 2012. The reported pre-clinical investigations demonstrate that use of spacer gel is safe in particle therapy in presence of therapy target motion and patient positioning induced particle range variations. The spacer gel injected between prostate and rectum enlarge the distance between both organs, which is expected to clinically significantly decrease the undesirable exposure of the most critical organ at risk, i.e. rectal frontal wall. Further research on the composition of spacer gel material might lead to additional clinical benefits by validation of particle therapy of prostate via post-therapeutic PET-imaging or by patient positioning based on the gel as a radio-opaque marker.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dearnaley D, Hall E, Jackson C, Lawrence D, Huddart R, Eeles R, Gadd J, Warrington A, Bidmead M, Horwich A: Phase III pilot study of dose escalation using conformal radiotherapy in prostate cancer PSA control and side effects. Brit J Cancer 2005,92(3):488-498.PubMedPubMedCentral Dearnaley D, Hall E, Jackson C, Lawrence D, Huddart R, Eeles R, Gadd J, Warrington A, Bidmead M, Horwich A: Phase III pilot study of dose escalation using conformal radiotherapy in prostate cancer PSA control and side effects. Brit J Cancer 2005,92(3):488-498.PubMedPubMedCentral
2.
go back to reference Kuban D, Tucker S, Dong L, Starkschall G, Huang E, Cheung M, Lee A, Pollack A: Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys 2008,70(1):67-74. 10.1016/j.ijrobp.2007.06.054CrossRefPubMed Kuban D, Tucker S, Dong L, Starkschall G, Huang E, Cheung M, Lee A, Pollack A: Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys 2008,70(1):67-74. 10.1016/j.ijrobp.2007.06.054CrossRefPubMed
3.
go back to reference Schardt D, Elsässer T, Schulz-Ertner D: Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev Mod Phys 2010, 82: 383-425. 10.1103/RevModPhys.82.383CrossRef Schardt D, Elsässer T, Schulz-Ertner D: Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev Mod Phys 2010, 82: 383-425. 10.1103/RevModPhys.82.383CrossRef
15.
go back to reference Bauer J, Unholtz D, Sommerer F, Kurz C, Haberer T, Herfarth K, Welzel T, Combs S, Debus J, Parodi K: Implementation and initial clinical experience of offline PET/CT-based verification of scanned carbon ion treatment. Radiother Oncol 2012. 10.1016/j.radonc.2013.02.018 Bauer J, Unholtz D, Sommerer F, Kurz C, Haberer T, Herfarth K, Welzel T, Combs S, Debus J, Parodi K: Implementation and initial clinical experience of offline PET/CT-based verification of scanned carbon ion treatment. Radiother Oncol 2012. 10.1016/j.radonc.2013.02.018
18.
go back to reference Jäkel O, Jacob C, Schardt D, Karger C, Hartmann G: Relation between carbon ion ranges and x-ray CT numbers. Med Phys 2001.,28(4): Jäkel O, Jacob C, Schardt D, Karger C, Hartmann G: Relation between carbon ion ranges and x-ray CT numbers. Med Phys 2001.,28(4):
21.
go back to reference Battistoni G, Muraro S, Sala P, Cerutti F, Ferrari A, Roesler S, Fassó A, Ranft J: The FLUKA code: Description and benchmarking. AIP Conf Proc 2007, 896: 31-49.CrossRef Battistoni G, Muraro S, Sala P, Cerutti F, Ferrari A, Roesler S, Fassó A, Ranft J: The FLUKA code: Description and benchmarking. AIP Conf Proc 2007, 896: 31-49.CrossRef
22.
go back to reference Fassó A, Ferrari A, Ranft J, Sala P: FLUKA: a multi-particle transport code. Tech. rep., CERN-2005-10, INFN/TC_05/11, SLAC-R-773 2005 Fassó A, Ferrari A, Ranft J, Sala P: FLUKA: a multi-particle transport code. Tech. rep., CERN-2005-10, INFN/TC_05/11, SLAC-R-773 2005
26.
go back to reference Bert C, Durante M: Motion in radiotherapy particle therapy. Phys Med Biol 2011, 56: 113-144. 10.1088/0031-9155/56/16/R01CrossRef Bert C, Durante M: Motion in radiotherapy particle therapy. Phys Med Biol 2011, 56: 113-144. 10.1088/0031-9155/56/16/R01CrossRef
Metadata
Title
Preclinical investigations towards the first spacer gel application in prostate cancer treatment during particle therapy at HIT
Authors
Antoni Ruciński
Julia Bauer
Patrick Campbell
Stephan Brons
Daniel Unholtz
Gregor Habl
Klaus Herfarth
Jürgen Debus
Christoph Bert
Katia Parodi
Oliver Jäkel
Thomas Haberer
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2013
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-8-134

Other articles of this Issue 1/2013

Radiation Oncology 1/2013 Go to the issue