Skip to main content
Top
Published in: Radiation Oncology 1/2011

Open Access 01-12-2011 | Research

First steps towards a fast-neutron therapy planning program

Authors: Sylvia Garny, Werner Rühm, Maria Zankl, Franz M Wagner, Herwig G Paretzke

Published in: Radiation Oncology | Issue 1/2011

Login to get access

Abstract

Background

The Monte Carlo code GEANT4 was used to implement first steps towards a treatment planning program for fast-neutron therapy at the FRM II research reactor in Garching, Germany. Depth dose curves were calculated inside a water phantom using measured primary neutron and simulated primary photon spectra and compared with depth dose curves measured earlier. The calculations were performed with GEANT4 in two different ways, simulating a simple box geometry and splitting this box into millions of small voxels (this was done to validate the voxelisation procedure that was also used to voxelise the human body).

Results

In both cases, the dose distributions were very similar to those measured in the water phantom, up to a depth of 30 cm. In order to model the situation of patients treated at the FRM II MEDAPP therapy beamline for salivary gland tumors, a human voxel phantom was implemented in GEANT4 and irradiated with the implemented MEDAPP neutron and photon spectra. The 3D dose distribution calculated inside the head of the phantom was similar to the depth dose curves in the water phantom, with some differences that are explained by differences in elementary composition. The lateral dose distribution was studied at various depths. The calculated cumulative dose volume histograms for the voxel phantom show the exposure of organs at risk surrounding the tumor.

Conclusions

In order to minimize the dose to healthy tissue, a conformal treatment is necessary. This can only be accomplished with the help of an advanced treatment planning system like the one developed here. Although all calculations were done for absorbed dose only, any biological dose weighting can be implemented easily, to take into account the increased radiobiological effectiveness of neutrons compared to photons.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wagner F, Kneschaurek P, Kastenmüller A, Loeper-Kabasakal B, Kampfer S, Breitkreutz H, Waschkowski W, Molls M, Petry W: The munich fission neutron therapy facility MEDAPP at the research reactor FRM II. Strahlenther Onkol 2008,184(12):643-646.CrossRefPubMed Wagner F, Kneschaurek P, Kastenmüller A, Loeper-Kabasakal B, Kampfer S, Breitkreutz H, Waschkowski W, Molls M, Petry W: The munich fission neutron therapy facility MEDAPP at the research reactor FRM II. Strahlenther Onkol 2008,184(12):643-646.CrossRefPubMed
2.
go back to reference Loeper-Kabasakal B, Posch A, Auberger T, Wagner F, Kampfer S, Kneschaurek P, Petry W, Lukas P, Molls M: Fission neutron therapy at FRM II: Indications and first results. Radiat Meas 2010, 45: 1436-1437.CrossRef Loeper-Kabasakal B, Posch A, Auberger T, Wagner F, Kampfer S, Kneschaurek P, Petry W, Lukas P, Molls M: Fission neutron therapy at FRM II: Indications and first results. Radiat Meas 2010, 45: 1436-1437.CrossRef
3.
go back to reference Wagner F, Bücherl T, Kampfer S, Kastenmüller A, Waschkowski W: Thermal Neutron Converter for Irradiations with Fission Neutrons. Nuclear Physics and Atomic Energy 2007,3(21):30-36. Wagner F, Bücherl T, Kampfer S, Kastenmüller A, Waschkowski W: Thermal Neutron Converter for Irradiations with Fission Neutrons. Nuclear Physics and Atomic Energy 2007,3(21):30-36.
4.
go back to reference Risler R, Popescu A: Dosimetry measurements at the fast neutron therapy facility in Seattle. Radiat Meas 2010, 45: 1452-1454.CrossRef Risler R, Popescu A: Dosimetry measurements at the fast neutron therapy facility in Seattle. Radiat Meas 2010, 45: 1452-1454.CrossRef
5.
go back to reference Kroc T: Preliminary investigations of Monte Carlo simulations of neutron energy and let spectra for fast neutron therapy facilities. Radiat Meas 2010, 45: 1334-1337.CrossRef Kroc T: Preliminary investigations of Monte Carlo simulations of neutron energy and let spectra for fast neutron therapy facilities. Radiat Meas 2010, 45: 1334-1337.CrossRef
6.
go back to reference Swanepoel M: The role of the 14N ( n , p ) 14 C reaction in neutron irradiation of soft tissues. Radiat Meas 2010, 45: 1458-1460.CrossRef Swanepoel M: The role of the 14N ( n , p ) 14 C reaction in neutron irradiation of soft tissues. Radiat Meas 2010, 45: 1458-1460.CrossRef
7.
go back to reference Garny S, Leuthold G, Mares V, Paretzke H, Rühm W: GEANT4 transport calculations for neutrons and photons below 15 MeV. IEEE Trans Nucl Sci 2009,56(4):2392-2396.CrossRef Garny S, Leuthold G, Mares V, Paretzke H, Rühm W: GEANT4 transport calculations for neutrons and photons below 15 MeV. IEEE Trans Nucl Sci 2009,56(4):2392-2396.CrossRef
8.
go back to reference Garny S, Mares V, Rühm W: Response functions of a Bonner sphere spectrometer calculated with GEANT4. Nucl Instrum Methods Phys Res, Sect A 2009, 604: 612-617.CrossRef Garny S, Mares V, Rühm W: Response functions of a Bonner sphere spectrometer calculated with GEANT4. Nucl Instrum Methods Phys Res, Sect A 2009, 604: 612-617.CrossRef
9.
go back to reference Garny S, Mares V, Roos H, Rühm W, Wagner F: Measurement of the neutron spectrum and neutron dose at the FRM II therapy beamline with Bonner spheres. Radiat Mens 2011, 46: 92-97.CrossRef Garny S, Mares V, Roos H, Rühm W, Wagner F: Measurement of the neutron spectrum and neutron dose at the FRM II therapy beamline with Bonner spheres. Radiat Mens 2011, 46: 92-97.CrossRef
10.
go back to reference Reynaert N, van der Marck S, Schaart D, der Zee WV, Vliet-Vroegindeweij CV, Tomsej M, Jansen J, Heijmen B, Coghe M, Wagter CD: Monte Carlo treatment planning for photon and electron beams. Radiat Phys Chem 2007, 76: 643-686.CrossRef Reynaert N, van der Marck S, Schaart D, der Zee WV, Vliet-Vroegindeweij CV, Tomsej M, Jansen J, Heijmen B, Coghe M, Wagter CD: Monte Carlo treatment planning for photon and electron beams. Radiat Phys Chem 2007, 76: 643-686.CrossRef
11.
go back to reference Bednarz B, Xu X: A feasibility study to calculate unshielded fetal doses to pregnant patients in 6-MV photon treatments using Monte Carlo methods and anatomically realistic phantoms. Med Phys 2008,35(7):3054-3061.PubMedCentralCrossRefPubMed Bednarz B, Xu X: A feasibility study to calculate unshielded fetal doses to pregnant patients in 6-MV photon treatments using Monte Carlo methods and anatomically realistic phantoms. Med Phys 2008,35(7):3054-3061.PubMedCentralCrossRefPubMed
12.
go back to reference Jang SY, Liu HH: Underestimation of Low-Dose Radiation in Treatment Planning of Intensity-Modulated Radiotherapy. Int J Radiat Oncol Biol Phys 2008,71(5):1537-1546.CrossRefPubMed Jang SY, Liu HH: Underestimation of Low-Dose Radiation in Treatment Planning of Intensity-Modulated Radiotherapy. Int J Radiat Oncol Biol Phys 2008,71(5):1537-1546.CrossRefPubMed
13.
14.
go back to reference Laub W, Alber M, Birkner M, Nüsslin F: Monte Carlo dose computation for IMRT optimization. Phys Med Biol 2000, 45: 1741-1754.CrossRefPubMed Laub W, Alber M, Birkner M, Nüsslin F: Monte Carlo dose computation for IMRT optimization. Phys Med Biol 2000, 45: 1741-1754.CrossRefPubMed
15.
16.
go back to reference Taschereau R, Roy R, Pouloit J: A comparison of methods to calculate biological effectiveness (RBE) from Monte Carlo simulations. Med Dosim 2003, 28: 21-26.CrossRefPubMed Taschereau R, Roy R, Pouloit J: A comparison of methods to calculate biological effectiveness (RBE) from Monte Carlo simulations. Med Dosim 2003, 28: 21-26.CrossRefPubMed
17.
go back to reference Fippel M, Soukup M: A Monte Carlo dose calculation algorithm for proton therapy. Med Phys 2004,31(8):2263-2273.CrossRefPubMed Fippel M, Soukup M: A Monte Carlo dose calculation algorithm for proton therapy. Med Phys 2004,31(8):2263-2273.CrossRefPubMed
18.
go back to reference Koch N, Newhauser WD, Titt U, D G, Coombes K, Starkschall G: Monte Carlo calculations and measurements of absorbed dose per monitor unit for the treatment of uveal melanoma with proton therapy. Phys Med Biol 2008, 53: 1581.PubMedCentralCrossRefPubMed Koch N, Newhauser WD, Titt U, D G, Coombes K, Starkschall G: Monte Carlo calculations and measurements of absorbed dose per monitor unit for the treatment of uveal melanoma with proton therapy. Phys Med Biol 2008, 53: 1581.PubMedCentralCrossRefPubMed
19.
go back to reference Newhauser W, Fontenot J, Zheng Y, Taddei P, Mirkovic D, Titt U, Zhu X, Sahoo N, Schaffner B, Langenegger A, Koch N, Zhang X, Mohan R: SUFFT25: A Monte-Carlo based dose engine for proton radiotherapy treatment planning. Med Phys 2007,34(6):2325. Newhauser W, Fontenot J, Zheng Y, Taddei P, Mirkovic D, Titt U, Zhu X, Sahoo N, Schaffner B, Langenegger A, Koch N, Zhang X, Mohan R: SUFFT25: A Monte-Carlo based dose engine for proton radiotherapy treatment planning. Med Phys 2007,34(6):2325.
20.
go back to reference Jiang H, Paganetti H: Adaptation of GEANT4 to Monte Carlo dose calculations based on CT data. Med Phys 2004,31(10):2811-2818.CrossRefPubMed Jiang H, Paganetti H: Adaptation of GEANT4 to Monte Carlo dose calculations based on CT data. Med Phys 2004,31(10):2811-2818.CrossRefPubMed
21.
go back to reference Paganetti H, Jiang H, Lee SY, Kooy HM: Accurate Monte Carlo simulations for nozzle design, commissioningand quality assurance for a proton radiation therapy facility. Med Phys 2004,31(7):2107-2118.CrossRefPubMed Paganetti H, Jiang H, Lee SY, Kooy HM: Accurate Monte Carlo simulations for nozzle design, commissioningand quality assurance for a proton radiation therapy facility. Med Phys 2004,31(7):2107-2118.CrossRefPubMed
22.
go back to reference Enger SA, af Rosenschöld PM, Rezaei A, Lundqvist H: Monte Carlo calculations of thermal neutron capture in gadolinium: A comparison of GEANT4 and MCNP with measurements. Med Phys 2006,33(2):337-341.CrossRefPubMed Enger SA, af Rosenschöld PM, Rezaei A, Lundqvist H: Monte Carlo calculations of thermal neutron capture in gadolinium: A comparison of GEANT4 and MCNP with measurements. Med Phys 2006,33(2):337-341.CrossRefPubMed
23.
go back to reference Pignol J, Slabbert J, Binns P: Monte Carlo simulation of fast neutron spectra: Mean lineal energy estimation with an effectiveness function and correlation to RBE. Int J Radiation Oncology Biol Phys 2001, 49: 251-260.CrossRef Pignol J, Slabbert J, Binns P: Monte Carlo simulation of fast neutron spectra: Mean lineal energy estimation with an effectiveness function and correlation to RBE. Int J Radiation Oncology Biol Phys 2001, 49: 251-260.CrossRef
24.
go back to reference Jiang H, Wang B, Xu XG, Suit HD, Paganetti H: Simulation of organ-specific patient effective dose due to secondary neutrons in proton radiation treatment. Phys Med Biol 2005, 50: 43374353. Jiang H, Wang B, Xu XG, Suit HD, Paganetti H: Simulation of organ-specific patient effective dose due to secondary neutrons in proton radiation treatment. Phys Med Biol 2005, 50: 43374353.
25.
go back to reference Taddei P, Mirkovic D, Fontenot J, Giebeler A, Zheng Y, Kornguth D, Mohan R, Newhauser W: Stray radiation dose and second cancer risk for a pediatric patient receiving craniospinal irradiation with proton beams. Phys Med Biol 2009,54(8):2259-2275.PubMedCentralCrossRefPubMed Taddei P, Mirkovic D, Fontenot J, Giebeler A, Zheng Y, Kornguth D, Mohan R, Newhauser W: Stray radiation dose and second cancer risk for a pediatric patient receiving craniospinal irradiation with proton beams. Phys Med Biol 2009,54(8):2259-2275.PubMedCentralCrossRefPubMed
26.
go back to reference Yonai S, Matsufuji N, Kanai T: Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: Identification of the main source and reduction in the secondary neutron dose. Med Phys 2009,36(10):4830-4839.CrossRefPubMed Yonai S, Matsufuji N, Kanai T: Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: Identification of the main source and reduction in the secondary neutron dose. Med Phys 2009,36(10):4830-4839.CrossRefPubMed
27.
go back to reference Zheng Y, Fontenot J, Taddei P, Mirkovic D, Newhauser W: Monte Carlo simulations of neutron spectral uence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit. Phys Med Biol 2008, 53: 187-201.CrossRefPubMed Zheng Y, Fontenot J, Taddei P, Mirkovic D, Newhauser W: Monte Carlo simulations of neutron spectral uence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit. Phys Med Biol 2008, 53: 187-201.CrossRefPubMed
28.
go back to reference Carrier JF, Archambault L, Beaulieu L: Validation of GEANT4, an object-oriented Monte Carlo toolkit, for simulations in medical physics. Med Phys 2004,31(3):484-492.CrossRefPubMed Carrier JF, Archambault L, Beaulieu L: Validation of GEANT4, an object-oriented Monte Carlo toolkit, for simulations in medical physics. Med Phys 2004,31(3):484-492.CrossRefPubMed
29.
go back to reference Karger CP, Jäkel O: Current Status and New Developments in Ion Therapy. Strahlenther Onkol 2007, 183: 295-300.CrossRefPubMed Karger CP, Jäkel O: Current Status and New Developments in Ion Therapy. Strahlenther Onkol 2007, 183: 295-300.CrossRefPubMed
30.
go back to reference Kampfer S, Wagner F, Loeper B, Kneschaurek P: Erste dosimetrische Ergebnisse an der neuen Neutronentherapieanlage am FRM IIb. In 37. Jahrestagung der Deutschen Gesellschaft für Medizinische Physik. L. Bogner, B. Dobler; 2006:318-319. Kampfer S, Wagner F, Loeper B, Kneschaurek P: Erste dosimetrische Ergebnisse an der neuen Neutronentherapieanlage am FRM IIb. In 37. Jahrestagung der Deutschen Gesellschaft für Medizinische Physik. L. Bogner, B. Dobler; 2006:318-319.
31.
go back to reference Schlattl H, Zankl M, Petoussi-HenßN : Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures. Phys Med Biol 2007, 52: 2123-2145.CrossRefPubMed Schlattl H, Zankl M, Petoussi-HenßN : Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures. Phys Med Biol 2007, 52: 2123-2145.CrossRefPubMed
33.
go back to reference Garny S: Development of a biophysical treatment planning system for the FRM II neutron therapy beamline. In Phd-thesis. Technische Universitat München; 2009. Garny S: Development of a biophysical treatment planning system for the FRM II neutron therapy beamline. In Phd-thesis. Technische Universitat München; 2009.
36.
go back to reference ICRP: Basic anatomical and physiological data for use in radiological protection: reference values. Report 89, International Commission on Radiological Protection; 2002. ICRP: Basic anatomical and physiological data for use in radiological protection: reference values. Report 89, International Commission on Radiological Protection; 2002.
37.
go back to reference Breitkreutz H, Wagner F, Röhrmoser A, Petry W: Characterisation of the fast reactor neutron beam MEDAPP at FRM II. Nucl Instrum Methods Phys Res, Sect A 2008, 593: 466-471.CrossRef Breitkreutz H, Wagner F, Röhrmoser A, Petry W: Characterisation of the fast reactor neutron beam MEDAPP at FRM II. Nucl Instrum Methods Phys Res, Sect A 2008, 593: 466-471.CrossRef
38.
go back to reference Breitkreutz H: Spektrale Charakterisierung des Therapiestrahls am FRM II. In Diplomarbeit. Technische Universitat München; 2007. Breitkreutz H: Spektrale Charakterisierung des Therapiestrahls am FRM II. In Diplomarbeit. Technische Universitat München; 2007.
39.
go back to reference Schmid E, Schraube H, Bauchinger M: Chromosome aberration frequencies in human lymphocytes irradiated in a phantom by mixed beam of fission neutrons and γ -rays. Int J Radiat Biol 1998, 73/3: 263-267. Schmid E, Schraube H, Bauchinger M: Chromosome aberration frequencies in human lymphocytes irradiated in a phantom by mixed beam of fission neutrons and γ -rays. Int J Radiat Biol 1998, 73/3: 263-267.
40.
go back to reference Magaddino V, Wagner F, Kummermehr J: Preclinical screening of the biological effectiveness of a therapeutic neutron beam at SR10, FRM II. Experimetelle Strahlentherapie und Klinische Strahlenbiologie 2007, 16: 129-131. Magaddino V, Wagner F, Kummermehr J: Preclinical screening of the biological effectiveness of a therapeutic neutron beam at SR10, FRM II. Experimetelle Strahlentherapie und Klinische Strahlenbiologie 2007, 16: 129-131.
41.
go back to reference Garny S, Rühm W, Wagner FM, Paretzke HG: Neutron Therapy at the FRMII - Calculation of Dose inside a Voxel Phantom. 11th World Congress on Medical Physics and Biomedical Engineering 2009. Garny S, Rühm W, Wagner FM, Paretzke HG: Neutron Therapy at the FRMII - Calculation of Dose inside a Voxel Phantom. 11th World Congress on Medical Physics and Biomedical Engineering 2009.
42.
go back to reference Oya N, Zölzer F, Werner F, Streffer C: Similar Extent of Apoptosis Induction at Doses of X-Rays and Neutrons Isoeffective for Cell Inactivation. Strahlenther Onkol 2008, 184: 270-275.CrossRefPubMed Oya N, Zölzer F, Werner F, Streffer C: Similar Extent of Apoptosis Induction at Doses of X-Rays and Neutrons Isoeffective for Cell Inactivation. Strahlenther Onkol 2008, 184: 270-275.CrossRefPubMed
43.
go back to reference Slabbert J, August L, Vral A, Symons J: The relative biological effectiveness of a high energy neutron beam for micronuclei induction in T-lymphocytes of different individuals. Radiat Meas 2010, 45: 1455-1457.CrossRef Slabbert J, August L, Vral A, Symons J: The relative biological effectiveness of a high energy neutron beam for micronuclei induction in T-lymphocytes of different individuals. Radiat Meas 2010, 45: 1455-1457.CrossRef
44.
go back to reference Vandersickel V, Mancini M, Slabbert J, Marras E, Thierens H, Perletti G, Vral A: The radiosensitizing effect of Ku70/80 knockdown Research in MCF10A cells irradiated with X-rays and p(66)+Be(40) neutrons. Radiat Oncol 2010, 5: 30-37.PubMedCentralCrossRefPubMed Vandersickel V, Mancini M, Slabbert J, Marras E, Thierens H, Perletti G, Vral A: The radiosensitizing effect of Ku70/80 knockdown Research in MCF10A cells irradiated with X-rays and p(66)+Be(40) neutrons. Radiat Oncol 2010, 5: 30-37.PubMedCentralCrossRefPubMed
Metadata
Title
First steps towards a fast-neutron therapy planning program
Authors
Sylvia Garny
Werner Rühm
Maria Zankl
Franz M Wagner
Herwig G Paretzke
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2011
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-6-163

Other articles of this Issue 1/2011

Radiation Oncology 1/2011 Go to the issue