Skip to main content
Top
Published in: Radiation Oncology 1/2010

Open Access 01-12-2010 | Research

Comparison of T2 and FLAIR imaging for target delineation in high grade gliomas

Authors: Bronwyn Stall, Leor Zach, Holly Ning, John Ondos, Barbara Arora, Uma Shankavaram, Robert W Miller, Deborah Citrin, Kevin Camphausen

Published in: Radiation Oncology | Issue 1/2010

Login to get access

Abstract

Background

FLAIR and T2 weighted MRIs are used based on institutional preference to delineate high grade gliomas and surrounding edema for radiation treatment planning. Although these sequences have inherent physical differences there is limited data on the clinical and dosimetric impact of using either or both sequences.

Methods

40 patients with high grade gliomas consecutively treated between 2002 and 2008 of which 32 had pretreatment MRIs with T1, T2 and FLAIR available for review were selected for this study. These MRIs were fused with the treatment planning CT. Normal structures, clinical tumor volume (CTV) and planning tumor volume (PTV) were then defined on the T2 and FLAIR sequences. A Venn diagram analysis was performed for each pair of tumor volumes as well as a fractional component analysis to assess the contribution of each sequence to the union volume. For each patient the tumor volumes were compared in terms of total volume in cubic centimeters as well as anatomic location using a discordance index. The overlap of the tumor volumes with critical structures was calculated as a measure of predicted toxicity. For patients with MRI documented failures, the tumor volumes obtained using the different sequences were compared with the recurrent gross tumor volume (rGTV).

Results

The FLAIR CTVs and PTVs were significantly larger than the T2 CTVs and PTVs (p < 0.0001 and p = 0.0001 respectively). Based on the discordance index, the abnormality identified using the different sequences also differed in location. Fractional component analysis showed that the intersection of the tumor volumes as defined on both T2 and FLAIR defined the majority of the union volume contributing 63.6% to the CTV union and 82.1% to the PTV union. T2 alone uniquely identified 12.9% and 5.2% of the CTV and PTV unions respectively while FLAIR alone uniquely identified 25.7% and 12% of the CTV and PTV unions respectively. There was no difference in predicted toxicity to normal structures using T2 or FLAIR. At the time of analysis, 26 failures had occurred of which 19 patients had MRIs documenting the recurrence. The rGTV correlated best with the FLAIR CTV but the percentage overlap was not significantly different from that with T2. There was no statistical difference in the percentage overlap with the rGTV and the PTVs generated using either T2 or FLAIR.

Conclusions

Although both T2 and FLAIR MRI sequences are used to define high grade glial neoplasm and surrounding edema, our results show that the volumes generated using these techniques are different and not interchangeable. These differences have bearing on the use of intensity modulated radiation therapy (IMRT) and highly conformal treatment as well as on future clinical trials where the bias of using one technique over the other may influence the study outcome.
Appendix
Available only for authorised users
Literature
1.
go back to reference CBTRUS (2008): Statistical Report: Primary Brain Tumors in the United States, 2000-2004. Central Brain Tumor Registry of the United States 2008. CBTRUS (2008): Statistical Report: Primary Brain Tumors in the United States, 2000-2004. Central Brain Tumor Registry of the United States 2008.
2.
go back to reference Garden AS, Maor MH, Yung WK: Outcome and patterns of failure following limited-volume irradiation for malignant astrocytomas. Radiother Oncol 1991, 20: 99-110. 10.1016/0167-8140(91)90143-5CrossRefPubMed Garden AS, Maor MH, Yung WK: Outcome and patterns of failure following limited-volume irradiation for malignant astrocytomas. Radiother Oncol 1991, 20: 99-110. 10.1016/0167-8140(91)90143-5CrossRefPubMed
3.
go back to reference Halperin EC, Bentel G, Heinz ER: Radiation therapy treatment planning in supratentorial glioblastoma multiforme: an analysis based on post mortem topographic anatomy with CT correlations. Int J Radiat Oncol Biol Phys 1989, 17: 1347-1350. 10.1016/0360-3016(89)90548-8CrossRefPubMed Halperin EC, Bentel G, Heinz ER: Radiation therapy treatment planning in supratentorial glioblastoma multiforme: an analysis based on post mortem topographic anatomy with CT correlations. Int J Radiat Oncol Biol Phys 1989, 17: 1347-1350. 10.1016/0360-3016(89)90548-8CrossRefPubMed
4.
go back to reference Kelly PJ, Daumas-Duport C, Kispert DB: Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 1987, 66: 865-874. 10.3171/jns.1987.66.6.0865CrossRefPubMed Kelly PJ, Daumas-Duport C, Kispert DB: Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 1987, 66: 865-874. 10.3171/jns.1987.66.6.0865CrossRefPubMed
5.
go back to reference Wallner KE, Galicich JH, Krol G: Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 1989, 16: 1405-1409. 10.1016/0360-3016(89)90941-3CrossRefPubMed Wallner KE, Galicich JH, Krol G: Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 1989, 16: 1405-1409. 10.1016/0360-3016(89)90941-3CrossRefPubMed
6.
go back to reference Curran WJ Jr, Scott CB, Horton J: Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst 1993, 85: 704-710. 10.1093/jnci/85.9.704CrossRefPubMed Curran WJ Jr, Scott CB, Horton J: Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst 1993, 85: 704-710. 10.1093/jnci/85.9.704CrossRefPubMed
7.
go back to reference Mirimanoff RO, Gorlia T, Mason W: Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J Clin Oncol 2006, 24: 2563-2569. 10.1200/JCO.2005.04.5963CrossRefPubMed Mirimanoff RO, Gorlia T, Mason W: Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J Clin Oncol 2006, 24: 2563-2569. 10.1200/JCO.2005.04.5963CrossRefPubMed
8.
go back to reference Ten Haken RK, Thornton AF Jr, Sandler HM: A quantitative assessment of the addition of MRI to CT-based, 3-D treatment planning of brain tumors. Radiother Oncol 1992, 25: 121-133. 10.1016/0167-8140(92)90018-PCrossRefPubMed Ten Haken RK, Thornton AF Jr, Sandler HM: A quantitative assessment of the addition of MRI to CT-based, 3-D treatment planning of brain tumors. Radiother Oncol 1992, 25: 121-133. 10.1016/0167-8140(92)90018-PCrossRefPubMed
9.
go back to reference Thornton AF Jr, Sandler HM, Ten Haken RK: The clinical utility of magnetic resonance imaging in 3-dimensional treatment planning of brain neoplasms. Int J Radiat Oncol Biol Phys 1992, 24: 767-775. 10.1016/0360-3016(92)90727-YCrossRefPubMed Thornton AF Jr, Sandler HM, Ten Haken RK: The clinical utility of magnetic resonance imaging in 3-dimensional treatment planning of brain neoplasms. Int J Radiat Oncol Biol Phys 1992, 24: 767-775. 10.1016/0360-3016(92)90727-YCrossRefPubMed
10.
go back to reference Emami B, Lyman J, Brown A: Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991, 21: 109-122.CrossRefPubMed Emami B, Lyman J, Brown A: Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991, 21: 109-122.CrossRefPubMed
11.
go back to reference Chan JL, Lee SW, Fraass BA: Survival and failure patterns of high-grade Gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 2002, 20: 1635-1642. 10.1200/JCO.20.6.1635CrossRefPubMed Chan JL, Lee SW, Fraass BA: Survival and failure patterns of high-grade Gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 2002, 20: 1635-1642. 10.1200/JCO.20.6.1635CrossRefPubMed
12.
go back to reference Stupp R, Mason WP, Bent MJ: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005, 352: 987-996. 10.1056/NEJMoa043330CrossRefPubMed Stupp R, Mason WP, Bent MJ: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005, 352: 987-996. 10.1056/NEJMoa043330CrossRefPubMed
13.
go back to reference Kamrava M: Acute Toxicity in a Phase II Clinical Trial of Valproic Acid in Combination with Temodar and Radiation Therapy in Patients with Glioblastoma Multiforme. Int J Radiat Oncol Biol Phys 2008,72(Suppl 1):211.CrossRef Kamrava M: Acute Toxicity in a Phase II Clinical Trial of Valproic Acid in Combination with Temodar and Radiation Therapy in Patients with Glioblastoma Multiforme. Int J Radiat Oncol Biol Phys 2008,72(Suppl 1):211.CrossRef
14.
go back to reference Massey V, Wallner KE: Patterns of second recurrence of malignant astrocytomas. Int J Radiat Oncol Biol Phys 1990, 18: 395-398. 10.1016/0360-3016(90)90106-TCrossRefPubMed Massey V, Wallner KE: Patterns of second recurrence of malignant astrocytomas. Int J Radiat Oncol Biol Phys 1990, 18: 395-398. 10.1016/0360-3016(90)90106-TCrossRefPubMed
16.
go back to reference Leeds NE, Kieffer SA: Evolution of diagnostic neuroradiology from 1904 to 1999. Radiology 2000, 217: 309-318.CrossRefPubMed Leeds NE, Kieffer SA: Evolution of diagnostic neuroradiology from 1904 to 1999. Radiology 2000, 217: 309-318.CrossRefPubMed
17.
go back to reference Aristizibal SA, Caldwell WL: Time-dose-volume relationships in the treatment of glioblastoma multiforme. Radiology 1971, 101: 201-202.CrossRefPubMed Aristizibal SA, Caldwell WL: Time-dose-volume relationships in the treatment of glioblastoma multiforme. Radiology 1971, 101: 201-202.CrossRefPubMed
18.
go back to reference Concannon JP, Kramer S, Berry R: The extent of intracranial gliomata at autopsy and its relationship to techniques used in radiation therapy of brain tumors. Am J Roentgenol Radium Ther Nucl Med 1960, 84: 99-107.PubMed Concannon JP, Kramer S, Berry R: The extent of intracranial gliomata at autopsy and its relationship to techniques used in radiation therapy of brain tumors. Am J Roentgenol Radium Ther Nucl Med 1960, 84: 99-107.PubMed
19.
go back to reference Kilgore EJ, Elster AD: Walter Dandy and the history of ventriculography. Radiology 1995, 194: 657-660.CrossRefPubMed Kilgore EJ, Elster AD: Walter Dandy and the history of ventriculography. Radiology 1995, 194: 657-660.CrossRefPubMed
20.
go back to reference Kramer S: Radiation therapy in the management of malignant gliomas. Proc Natl Cancer Conf 1972, 7: 823-826.PubMed Kramer S: Radiation therapy in the management of malignant gliomas. Proc Natl Cancer Conf 1972, 7: 823-826.PubMed
21.
go back to reference Salazar OM, Rubin P: The spread of glioblastoma multiforme as a determining factor in the radiation treated volume. Int J Radiat Oncol Biol Phys 1976, 1: 627-637. 10.1016/0360-3016(76)90144-9CrossRefPubMed Salazar OM, Rubin P: The spread of glioblastoma multiforme as a determining factor in the radiation treated volume. Int J Radiat Oncol Biol Phys 1976, 1: 627-637. 10.1016/0360-3016(76)90144-9CrossRefPubMed
22.
go back to reference Todd DH: Choice of Volume in the X-Ray Treatment of Supratentorial Gliomas. Br J Radiol 1963, 36: 645-649. 10.1259/0007-1285-36-429-645CrossRefPubMed Todd DH: Choice of Volume in the X-Ray Treatment of Supratentorial Gliomas. Br J Radiol 1963, 36: 645-649. 10.1259/0007-1285-36-429-645CrossRefPubMed
23.
go back to reference Hess CF, Schaaf JC, Kortmann RD: Malignant glioma: patterns of failure following individually tailored limited volume irradiation. Radiother Oncol 1994, 30: 146-149. 10.1016/0167-8140(94)90044-2CrossRefPubMed Hess CF, Schaaf JC, Kortmann RD: Malignant glioma: patterns of failure following individually tailored limited volume irradiation. Radiother Oncol 1994, 30: 146-149. 10.1016/0167-8140(94)90044-2CrossRefPubMed
24.
go back to reference Hochberg FH, Pruitt A: Assumptions in the radiotherapy of glioblastoma. Neurology 1980, 30: 907-911.CrossRefPubMed Hochberg FH, Pruitt A: Assumptions in the radiotherapy of glioblastoma. Neurology 1980, 30: 907-911.CrossRefPubMed
25.
go back to reference Salazar OM, Rubin P, McDonald JV: Patterns of failure in intracranial astrocytomas after irradiation: analysis of dose and field factors. AJR Am J Roentgenol 1976, 126: 279-292.CrossRefPubMed Salazar OM, Rubin P, McDonald JV: Patterns of failure in intracranial astrocytomas after irradiation: analysis of dose and field factors. AJR Am J Roentgenol 1976, 126: 279-292.CrossRefPubMed
26.
go back to reference Shapiro WR, Green SB, Burger PC: Randomized trial of three chemotherapy regimens and two radiotherapy regimens and two radiotherapy regimens in postoperative treatment of malignant glioma. Brain Tumor Cooperative Group Trial 8001. J Neurosurg 1989, 71: 1-9. 10.3171/jns.1989.71.1.0001CrossRefPubMed Shapiro WR, Green SB, Burger PC: Randomized trial of three chemotherapy regimens and two radiotherapy regimens and two radiotherapy regimens in postoperative treatment of malignant glioma. Brain Tumor Cooperative Group Trial 8001. J Neurosurg 1989, 71: 1-9. 10.3171/jns.1989.71.1.0001CrossRefPubMed
27.
go back to reference Sharma RR, Singh DP, Pathak A: Local control of high-grade gliomas with limited volume irradiation versus whole brain irradiation. Neurol India 2003, 51: 512-517.PubMed Sharma RR, Singh DP, Pathak A: Local control of high-grade gliomas with limited volume irradiation versus whole brain irradiation. Neurol India 2003, 51: 512-517.PubMed
28.
go back to reference Walker MD, Alexander E Jr, Hunt WE: Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg 1978, 49: 333-343. 10.3171/jns.1978.49.3.0333CrossRefPubMed Walker MD, Alexander E Jr, Hunt WE: Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg 1978, 49: 333-343. 10.3171/jns.1978.49.3.0333CrossRefPubMed
29.
go back to reference De Coene B, Hajnal JV, Gatehouse P: MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. AJNR Am J Neuroradiol 1992, 13: 1555-1564.PubMed De Coene B, Hajnal JV, Gatehouse P: MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. AJNR Am J Neuroradiol 1992, 13: 1555-1564.PubMed
30.
go back to reference Bydder GM, Young IR: MR imaging: clinical use of the inversion recovery sequence. J Comput Assist Tomogr 1985, 9: 659-675. 10.1097/00004728-198507010-00002CrossRefPubMed Bydder GM, Young IR: MR imaging: clinical use of the inversion recovery sequence. J Comput Assist Tomogr 1985, 9: 659-675. 10.1097/00004728-198507010-00002CrossRefPubMed
32.
go back to reference Grosu AL, Weber W, Feldman HJ: First experience with I-123-alpha-methyl tyrosine spect in the 3-D radiation treatment planning of brain gliomas. Int J Radiat Oncol Biol Phys 2000, 47: 517-526. 10.1016/S0360-3016(00)00423-5CrossRefPubMed Grosu AL, Weber W, Feldman HJ: First experience with I-123-alpha-methyl tyrosine spect in the 3-D radiation treatment planning of brain gliomas. Int J Radiat Oncol Biol Phys 2000, 47: 517-526. 10.1016/S0360-3016(00)00423-5CrossRefPubMed
33.
go back to reference Mosskin M, Erickson K, Hindmarsh T: Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 1989, 30: 225-232. 10.3109/02841858909174670CrossRefPubMed Mosskin M, Erickson K, Hindmarsh T: Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 1989, 30: 225-232. 10.3109/02841858909174670CrossRefPubMed
34.
go back to reference Pirzkall A, McKnight TR, Graves EE: MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol Biol Phys 2001, 50: 915-928. 10.1016/S0360-3016(01)01548-6CrossRefPubMed Pirzkall A, McKnight TR, Graves EE: MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol Biol Phys 2001, 50: 915-928. 10.1016/S0360-3016(01)01548-6CrossRefPubMed
Metadata
Title
Comparison of T2 and FLAIR imaging for target delineation in high grade gliomas
Authors
Bronwyn Stall
Leor Zach
Holly Ning
John Ondos
Barbara Arora
Uma Shankavaram
Robert W Miller
Deborah Citrin
Kevin Camphausen
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2010
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-5-5

Other articles of this Issue 1/2010

Radiation Oncology 1/2010 Go to the issue