Skip to main content
Top
Published in: Scoliosis and Spinal Disorders 1/2012

Open Access 01-12-2012 | Methodology

Brace technology thematic series: the progressive action short brace (PASB)

Authors: Angelo G Aulisa, Giuseppe Mastantuoni, Marco Laineri, Francesco Falciglia, Marco Giordano, Emanuele Marzetti, Vincenzo Guzzanti

Published in: Scoliosis and Spinal Disorders | Issue 1/2012

Login to get access

Abstract

Background

The Progressive Action Short Brace (PASB) is a custom-made thoraco-lumbar-sacral orthosis (TLSO), devised in 1976 by Dr. Lorenzo Aulisa (Institute of Orthopedics at the Catholic University of the Sacred Heart, Rome, Italy). The PASB was designed to overcome the limits imposed by the trunk anatomy. Indeed, the particular geometry of the brace is able to generate internal forces that modify the elastic reaction of the spine. The PASB is indicated for the conservative treatment of lumbar and thoraco-lumbar scoliosis. The aim of this article is to explain the biomechanic principles of the PASB and the rationale underlying its design. Recently published studies reporting the results of PASB-based treatment of adolescent scoliotic patients are also discussed.

Description and principles

On the coronal plane, the upper margin of the PASB, at the side of the curve concavity, prevents the homolateral bending of the scoliotic curve. The opposite upper margin ends just beneath the apical vertebra. The principle underlying such configuration is that the deflection of the inferior tract of a curved elastic structure, fixed at the bottom end, causes straightening of its upper tract. Therefore, whenever the patient bends towards the convexity of the scoliotic curve, the spine is deflected. On the sagittal plane, the inferior margins of the PASB reach the pelvitrochanteric region, in order to stabilize the brace on the pelvis. The transverse section of the brace above the pelvic grip consists of asymmetrical ellipses. This allows the spine to rotate towards the concave side only, leading to the continuous generation of derotating moments. On the sagittal plane, the brace is contoured so as to reduce the lumbar lordosis. The PASB, by allowing only those movements counteracting the progression of the curve, is able to produce corrective forces that are not dissipated. Therefore, the brace is based on the principle that a constrained spine dynamics can achieve the correction of a curve by inverting the abnormal load distribution during skeletal growth.

Results

Since its introduction in 1976, several studies have been published supporting the validity of the biomechanical principles to which the brace is inspired. In this article, we present the outcome of a case series comprising 110 patients with lumbar and thoraco-lumbar curves treated with PASB brace. Antero-posterior radiographs were used to estimate the curve magnitude (CM) and the torsion of the apical vertebra (TA) at 5 time points: beginning of treatment (t1), one year after the beginning of treatment (t2), intermediate time between t1 and t4 (t3), end of weaning (t4), 2-year minimum follow-up from t4 (t5). The average CM value was 29.3°Cobb at t1 and 13.0°Cobb at t5. TA was 15.8° Perdroille at t1 and 5.0° Perdriolle at t5. These results support the efficacy of the PASB in the management of scoliotic patients with lumbar and thoraco-lumbar curves.

Conclusion

The results obtained in patients treated with the PASB confirm the validity of our original biomechanical approach. The efficacy of the PASB derives not only from its unique biomechanical features but also from the simplicity of its design, construction and management.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lupparelli S, Pola E, Pitta L, Mazza O, De Santis V, Aulisa L: Biomechanical factors affecting progression of structural scoliotic curves of the spine. Stud Health Technol Inform. 2002, 91: 81-85.PubMed Lupparelli S, Pola E, Pitta L, Mazza O, De Santis V, Aulisa L: Biomechanical factors affecting progression of structural scoliotic curves of the spine. Stud Health Technol Inform. 2002, 91: 81-85.PubMed
2.
go back to reference Lupparelli S, Tamburrelli F, Padua R, Marrocco R, Aulisa L: The progressive action short brace (PASB): A Different approach to the conservative treatment of thoracolumbar and lumbar idiopathic curves. 1999, Research into Spinal Deformities 2, IOS Press, 281-284. Lupparelli S, Tamburrelli F, Padua R, Marrocco R, Aulisa L: The progressive action short brace (PASB): A Different approach to the conservative treatment of thoracolumbar and lumbar idiopathic curves. 1999, Research into Spinal Deformities 2, IOS Press, 281-284.
3.
go back to reference Aulisa L, Vinciguerra A, Tamburrelli F, Lupparelli S, Di Legge V: Biomechanical Analysis of the Elastic Behaviour of the Spine with Aging. 1997, Research into Spinal Deformities l, IOS Press, 229-231. Aulisa L, Vinciguerra A, Tamburrelli F, Lupparelli S, Di Legge V: Biomechanical Analysis of the Elastic Behaviour of the Spine with Aging. 1997, Research into Spinal Deformities l, IOS Press, 229-231.
4.
go back to reference Castro FP: Adolescent idiopathic scoliosis, bracing, and the Hueter-Volkmann principle. Spine J. 2003, 3: 180-185. 10.1016/S1529-9430(02)00557-0.CrossRefPubMed Castro FP: Adolescent idiopathic scoliosis, bracing, and the Hueter-Volkmann principle. Spine J. 2003, 3: 180-185. 10.1016/S1529-9430(02)00557-0.CrossRefPubMed
5.
go back to reference Weiss HR, Hawes MC: Adolescent idiopathic scoliosis, bracing and the Hueter-Volkmann principle. Spine J. 2004, 4: 484-485.CrossRefPubMed Weiss HR, Hawes MC: Adolescent idiopathic scoliosis, bracing and the Hueter-Volkmann principle. Spine J. 2004, 4: 484-485.CrossRefPubMed
6.
go back to reference Stokes IA: Mechanical modulation of spinal growth and progression of adolescent scoliosis. Stud Health Technol Inform. 2008, 135: 75-83.PubMed Stokes IA: Mechanical modulation of spinal growth and progression of adolescent scoliosis. Stud Health Technol Inform. 2008, 135: 75-83.PubMed
7.
go back to reference Stokes IA, Burwell RG, Dangerfield PH: Biomechanical spinal growth modulation and progressive adolescent scoliosis - a test of the 'vicious cycle' pathogenetic hypothesis: Summary of an electronic focus group debate of the IBSE. Scoliosis. 2006, 1: 16-10.1186/1748-7161-1-16.CrossRefPubMedPubMedCentral Stokes IA, Burwell RG, Dangerfield PH: Biomechanical spinal growth modulation and progressive adolescent scoliosis - a test of the 'vicious cycle' pathogenetic hypothesis: Summary of an electronic focus group debate of the IBSE. Scoliosis. 2006, 1: 16-10.1186/1748-7161-1-16.CrossRefPubMedPubMedCentral
8.
go back to reference Grivas TB, Vasiliadis E, Malakasis M, Mouzakis V, Segos D: Intervertebral disc biomechanics in the pathogenesis of idiopathic scoliosis. Stud Health Technol Inform. 2006, 123: 80-83.PubMed Grivas TB, Vasiliadis E, Malakasis M, Mouzakis V, Segos D: Intervertebral disc biomechanics in the pathogenesis of idiopathic scoliosis. Stud Health Technol Inform. 2006, 123: 80-83.PubMed
9.
go back to reference Di Benedetto A, Vinciguerra A, Pennestrì E, Aulisa L: Biomechanics of scoliosis using a new type of brace Ediz. 1981, Roma: ESA, 1-31. Di Benedetto A, Vinciguerra A, Pennestrì E, Aulisa L: Biomechanics of scoliosis using a new type of brace Ediz. 1981, Roma: ESA, 1-31.
10.
go back to reference Stokes IAF: Hueter-Volkmann effect. State of the Art Reviews. Spine. 2000, 14: 349-357. Stokes IAF: Hueter-Volkmann effect. State of the Art Reviews. Spine. 2000, 14: 349-357.
11.
go back to reference Quagliarella L, Aulisa L, Lupparelli S, Tartarone M: Pressures exerted by braces used for conservative treatment of idiopathic scoliosis: an experimental measurement. Health Technol and Inform. 1997, 37: 255-258. Quagliarella L, Aulisa L, Lupparelli S, Tartarone M: Pressures exerted by braces used for conservative treatment of idiopathic scoliosis: an experimental measurement. Health Technol and Inform. 1997, 37: 255-258.
12.
go back to reference Rigo M, Negrini S, Weiss H, Grivas T, Maruyama T, Kotwicki T: SOSORT consensus paper on brace action: TLSO biomechanics of correction (investigating the rationale for force vector selection). Scoliosis. 2006, 1: 11-10.1186/1748-7161-1-11.CrossRefPubMedPubMedCentral Rigo M, Negrini S, Weiss H, Grivas T, Maruyama T, Kotwicki T: SOSORT consensus paper on brace action: TLSO biomechanics of correction (investigating the rationale for force vector selection). Scoliosis. 2006, 1: 11-10.1186/1748-7161-1-11.CrossRefPubMedPubMedCentral
13.
go back to reference Di Benedetto A, Vinciguerra A, Pennestrì E, Aulisa L: Biomechanics of Scoliosis Using a New Type of Brace. Proceedings of the 8th Canadian Congress of Applied Mechanics. 1981, Moncton, .N-.B, Canada, 785-786. Di Benedetto A, Vinciguerra A, Pennestrì E, Aulisa L: Biomechanics of Scoliosis Using a New Type of Brace. Proceedings of the 8th Canadian Congress of Applied Mechanics. 1981, Moncton, .N-.B, Canada, 785-786.
14.
go back to reference Aulisa L, Tranquilli Leali P, Valassina A, Merolli A: Treatment of lumbar and thoraco-lumbar curves by the corrective and derotating action of a short brace of new design. International Symposium on 3-D Scoliotic Deformities. Edited by: Jane Dansereau. 1992, New York: Gustav Fischer Verlag, 317-324. Aulisa L, Tranquilli Leali P, Valassina A, Merolli A: Treatment of lumbar and thoraco-lumbar curves by the corrective and derotating action of a short brace of new design. International Symposium on 3-D Scoliotic Deformities. Edited by: Jane Dansereau. 1992, New York: Gustav Fischer Verlag, 317-324.
15.
go back to reference Beausejour M, Petit Y, Grimard G, Aubin CE, Dansereau J, Labelle H: Relationships between strap tension, interface pressures and spine correction in brace treatment of scoliosis. Stud Health Technol Inform. 2002, 88: 207-211.PubMed Beausejour M, Petit Y, Grimard G, Aubin CE, Dansereau J, Labelle H: Relationships between strap tension, interface pressures and spine correction in brace treatment of scoliosis. Stud Health Technol Inform. 2002, 88: 207-211.PubMed
16.
go back to reference Aulisa L, Di Benedetto A, Vinciguerra A: [Un'analisi biomeccanica del sistema tutore-rachide nelle scoliosi idiopatiche]. (Article in Italian). Arch Putti. 1981, 31: 185-194.PubMed Aulisa L, Di Benedetto A, Vinciguerra A: [Un'analisi biomeccanica del sistema tutore-rachide nelle scoliosi idiopatiche]. (Article in Italian). Arch Putti. 1981, 31: 185-194.PubMed
17.
go back to reference Moe JH, Kettleson DN: Idiopathic scoliosis: analysis of curve patterns and the preliminary results of Mil-Waukee brace treatment in one hundred sixty-nine patients. J Bone Joint Surg Am. 1970, 52: 1509-1533.PubMed Moe JH, Kettleson DN: Idiopathic scoliosis: analysis of curve patterns and the preliminary results of Mil-Waukee brace treatment in one hundred sixty-nine patients. J Bone Joint Surg Am. 1970, 52: 1509-1533.PubMed
18.
go back to reference Bunnell WP: Treatment of idiopathic scoliosis. Orthop Clin North Am. 1979, 10: 813-827.PubMed Bunnell WP: Treatment of idiopathic scoliosis. Orthop Clin North Am. 1979, 10: 813-827.PubMed
19.
go back to reference Keiser RP, Shufflebarger HL: The Milwaukee brace in idiopathic scoliosis: evaluation of 123 completed cases. Clin Orthop. 1976, 118: 19-24.PubMed Keiser RP, Shufflebarger HL: The Milwaukee brace in idiopathic scoliosis: evaluation of 123 completed cases. Clin Orthop. 1976, 118: 19-24.PubMed
20.
go back to reference Bassett GS, Bunnell WP, MacEwen GD: Treatment of idiopathic scoliosis with the Wilmington brace: results in patients with a twenty to thirty-nine-degree curve. J Bone Joint Surg Am. 1986, 68: 602-605.PubMed Bassett GS, Bunnell WP, MacEwen GD: Treatment of idiopathic scoliosis with the Wilmington brace: results in patients with a twenty to thirty-nine-degree curve. J Bone Joint Surg Am. 1986, 68: 602-605.PubMed
21.
go back to reference Winter RB: Classification and terminology. Moe's Textbook of Scoliosis and Other Spinal Deformities. Edited by: Lonstein JE, Bradford DS, Winter RB, Ogilvie JW. 1995, Philadelphia: WB Saunders Company, 39: 44-3 Winter RB: Classification and terminology. Moe's Textbook of Scoliosis and Other Spinal Deformities. Edited by: Lonstein JE, Bradford DS, Winter RB, Ogilvie JW. 1995, Philadelphia: WB Saunders Company, 39: 44-3
22.
go back to reference Bunnell WP: Treatment of idiopathic scoliosis. Orthop Clin North Am. 1979, 10: 813-827.PubMed Bunnell WP: Treatment of idiopathic scoliosis. Orthop Clin North Am. 1979, 10: 813-827.PubMed
23.
go back to reference Aulisa AG, Guzzanti V, Marzetti E, Menghi A, Giordano M, Aulisa L: Correlation between hump dimensions and severity curves in idiopathic scoliosis before and after conservative treatment. Spine (Phila Pa 1976). 2011, Aulisa AG, Guzzanti V, Marzetti E, Menghi A, Giordano M, Aulisa L: Correlation between hump dimensions and severity curves in idiopathic scoliosis before and after conservative treatment. Spine (Phila Pa 1976). 2011,
24.
go back to reference Aulisa L, Tamburrelli F, Lupparelli S, Serra F, Pitta L: Treatment of thoracolumbar and lumbar idiopathic scoliotic curves with the progressive action short brace (P.A.S.B.): Analysis of results. Research into Spinal Deformities 2. Edited by: IAF StoKes. 1999, IOS Press, 358-361. Aulisa L, Tamburrelli F, Lupparelli S, Serra F, Pitta L: Treatment of thoracolumbar and lumbar idiopathic scoliotic curves with the progressive action short brace (P.A.S.B.): Analysis of results. Research into Spinal Deformities 2. Edited by: IAF StoKes. 1999, IOS Press, 358-361.
25.
go back to reference Aulisa AG, Guzzanti V, Galli M, Perisano C, Falciglia F, Aulisa L: Treatment of thoraco-lumbar curves in adolescent females affected by idiopathic scoliosis with a progressive action short brace (PASB): assessment of results according to the SRS committee on bracing and nonoperative management standardization criteria. Scoliosis. 2009, 4: 21-10.1186/1748-7161-4-21.CrossRefPubMedPubMedCentral Aulisa AG, Guzzanti V, Galli M, Perisano C, Falciglia F, Aulisa L: Treatment of thoraco-lumbar curves in adolescent females affected by idiopathic scoliosis with a progressive action short brace (PASB): assessment of results according to the SRS committee on bracing and nonoperative management standardization criteria. Scoliosis. 2009, 4: 21-10.1186/1748-7161-4-21.CrossRefPubMedPubMedCentral
26.
go back to reference Aulisa L, Lupparelli S, Pola E, Aulisa AG, Mastantuoni G, Pitta L: Biomechanics of the conservative treatment in idiopathic scoliotic curves in surgical "grey-area" Healt technology and informatics, 91 V, Research into Spinal Deformities 4, B. Edited by: Grivas. 2002, IOS Press, 412-418. Aulisa L, Lupparelli S, Pola E, Aulisa AG, Mastantuoni G, Pitta L: Biomechanics of the conservative treatment in idiopathic scoliotic curves in surgical "grey-area" Healt technology and informatics, 91 V, Research into Spinal Deformities 4, B. Edited by: Grivas. 2002, IOS Press, 412-418.
27.
go back to reference Vinciguerra A, Aulisa L, Quagliarella L: Biomechanical instability of the spine in adult scoliosis. Prog in Spin Path. 1990, 5: 37-48. Vinciguerra A, Aulisa L, Quagliarella L: Biomechanical instability of the spine in adult scoliosis. Prog in Spin Path. 1990, 5: 37-48.
28.
go back to reference Aulisa AG, Guzzanti V, Perisano C, Marzetti E, Specchia A, Galli M, Giordano M, Aulisa L: Determination of quality of life in adolescents with idiopathic scoliosis subjected to conservative treatment. Scoliosis. 2010, 5: 21-10.1186/1748-7161-5-21.CrossRefPubMedPubMedCentral Aulisa AG, Guzzanti V, Perisano C, Marzetti E, Specchia A, Galli M, Giordano M, Aulisa L: Determination of quality of life in adolescents with idiopathic scoliosis subjected to conservative treatment. Scoliosis. 2010, 5: 21-10.1186/1748-7161-5-21.CrossRefPubMedPubMedCentral
29.
go back to reference Vinciguerra A, Di Benedetto A, Aulisa L: Sulla determinazione delle caratteristiche elastiche del rachide toraco-lombare. Article in Italian. Min Orthop. 1984, 35: 133-138. Vinciguerra A, Di Benedetto A, Aulisa L: Sulla determinazione delle caratteristiche elastiche del rachide toraco-lombare. Article in Italian. Min Orthop. 1984, 35: 133-138.
Metadata
Title
Brace technology thematic series: the progressive action short brace (PASB)
Authors
Angelo G Aulisa
Giuseppe Mastantuoni
Marco Laineri
Francesco Falciglia
Marco Giordano
Emanuele Marzetti
Vincenzo Guzzanti
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Scoliosis and Spinal Disorders / Issue 1/2012
Electronic ISSN: 2397-1789
DOI
https://doi.org/10.1186/1748-7161-7-6

Other articles of this Issue 1/2012

Scoliosis and Spinal Disorders 1/2012 Go to the issue