Skip to main content
Top
Published in: International Breastfeeding Journal 1/2009

Open Access 01-12-2009 | Research

Is increased fat content of hindmilk due to the size or the number of milk fat globules?

Authors: Katsumi Mizuno, Yoshiko Nishida, Motohiro Taki, Masahiko Murase, Yoshiharu Mukai, Kazuo Itabashi, Kazuhiro Debari, Ai Iiyama

Published in: International Breastfeeding Journal | Issue 1/2009

Login to get access

Abstract

Background

It is known that the fat content of breast milk is higher in hindmilk than in foremilk. However, it has not been determined if this increased fat content results from an increase in the number of milk fat globules (MFGs), an increase in the size of MFGs, or both. This study aims to determine which factor plays the most important role.

Methods

Thirteen breastfeeding mothers were enrolled in the study and we obtained 52 samples from 26 breasts before (foremilk) and after (hindmilk) a breastfeeding session. The fat content was evaluated by creamatocrit (CrCt) values. MFG size was measured with the laser light scattering method. We compared CrCt values and MFG size between foremilk and hindmilk.

Results

Although the CrCt values were higher in the hindmilk (8.6 ± 3.6%) than in the foremilk (3.7 ± 1.7%), the MFG size did not change (4.2 ± 1.0 μm and 4.6 ± 2.1 μm, foremilk and hindmilk, respectively). There was no relationship between the changes in CrCt versus MFG size from foremilk to hindmilk.

Conclusion

The results indicate that the increase in fat content results mainly from the increased number of MFGs, which may be released into the milk flow as the mammary lobe becomes progressively emptied.
Appendix
Available only for authorised users
Literature
1.
go back to reference Daly SE, Di Rosso A, Owens RA, Hartmann PE: Degree of breast emptying explains changes in the fat content, but not fatty acid composition of human milk. Exp Physiol. 1993, 78: 741-55.CrossRefPubMed Daly SE, Di Rosso A, Owens RA, Hartmann PE: Degree of breast emptying explains changes in the fat content, but not fatty acid composition of human milk. Exp Physiol. 1993, 78: 741-55.CrossRefPubMed
2.
go back to reference Whittlestone WG: Variations in the fat content of milk throughout the milking process. J Dairy Res. 1953, 20: 146-53. 10.1017/S0022029900006798.CrossRef Whittlestone WG: Variations in the fat content of milk throughout the milking process. J Dairy Res. 1953, 20: 146-53. 10.1017/S0022029900006798.CrossRef
3.
4.
go back to reference Atwood CS, Hartmann PE: Collection of fore and hind milk from the sow and the changes in milk composition during suckling. J Dairy Res. 1992, 59: 287-298. 10.1017/S0022029900030569.CrossRefPubMed Atwood CS, Hartmann PE: Collection of fore and hind milk from the sow and the changes in milk composition during suckling. J Dairy Res. 1992, 59: 287-298. 10.1017/S0022029900030569.CrossRefPubMed
5.
go back to reference Mulder H, Walstra P: The Milk Fat Globule. Emulsion Science as Applied to Milk Products and Comparable Foods. Commonwealth Agricultural Bureaux, Farnham Royal, Bucks, UK, 1974. Mulder H, Walstra P: The Milk Fat Globule. Emulsion Science as Applied to Milk Products and Comparable Foods. Commonwealth Agricultural Bureaux, Farnham Royal, Bucks, UK, 1974.
6.
go back to reference Hamosh M, Bitman J, Wood DL, Hamosh P, Mehta NR: Lipids in milk and the first steps in their digestion. Pediatrics. 1985, 75 (1 Pt2): 146-150.PubMed Hamosh M, Bitman J, Wood DL, Hamosh P, Mehta NR: Lipids in milk and the first steps in their digestion. Pediatrics. 1985, 75 (1 Pt2): 146-150.PubMed
7.
go back to reference Jensen RG, Ferris AM, Lammi-Keefe CJ, Henderson RA: Lipids of bovine and human milks: A comparison. J Dairy Sci. 1990, 73: 223-240.CrossRefPubMed Jensen RG, Ferris AM, Lammi-Keefe CJ, Henderson RA: Lipids of bovine and human milks: A comparison. J Dairy Sci. 1990, 73: 223-240.CrossRefPubMed
8.
go back to reference Hamosh M, Peterson JA, Henderson TR, Scallan CD, Kiwan R, Ceriani RL, Armand M, Mehta NR, Hamosh P: Protective function of human milk: the milk fat globule. Semin Perinatol. 1999, 23 (3): 242-249. 10.1016/S0146-0005(99)80069-X.CrossRefPubMed Hamosh M, Peterson JA, Henderson TR, Scallan CD, Kiwan R, Ceriani RL, Armand M, Mehta NR, Hamosh P: Protective function of human milk: the milk fat globule. Semin Perinatol. 1999, 23 (3): 242-249. 10.1016/S0146-0005(99)80069-X.CrossRefPubMed
9.
go back to reference Keenan TW, Dylewski DP: Intracellular origin of milk lipid globules and the nature and structure of the milk lipid globule membrane. Advanced Dairy Chemistry: Lipids. Edited by: Fox PF. London: Chapman & Hall, 1995, 89-130. Keenan TW, Dylewski DP: Intracellular origin of milk lipid globules and the nature and structure of the milk lipid globule membrane. Advanced Dairy Chemistry: Lipids. Edited by: Fox PF. London: Chapman & Hall, 1995, 89-130.
10.
go back to reference Keenan TW: Milk lipid globules and their surrounding membrane: A brief history and perspectives for future research. J Mammary Gland Biol Neoplasia. 2001, 6: 365-371. 10.1023/A:1011383826719.CrossRefPubMed Keenan TW: Milk lipid globules and their surrounding membrane: A brief history and perspectives for future research. J Mammary Gland Biol Neoplasia. 2001, 6: 365-371. 10.1023/A:1011383826719.CrossRefPubMed
11.
go back to reference Ollivier-Bousquet M: Milk lipid and protein traffic in mammary epithelial cells: Joint and independent pathways. Reprod Nutr Dev. 2002, 42: 149-162. 10.1051/rnd:2002014.CrossRefPubMed Ollivier-Bousquet M: Milk lipid and protein traffic in mammary epithelial cells: Joint and independent pathways. Reprod Nutr Dev. 2002, 42: 149-162. 10.1051/rnd:2002014.CrossRefPubMed
12.
go back to reference Francois CA, Connor SL, Wander RC, Connor WE: Acute effects of dietary fatty acids on the fatty acids of human milk. Am J Clin Nutr. 1998, 67: 301-308.PubMed Francois CA, Connor SL, Wander RC, Connor WE: Acute effects of dietary fatty acids on the fatty acids of human milk. Am J Clin Nutr. 1998, 67: 301-308.PubMed
13.
go back to reference Mather IH, Keenan TW: Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia. 1998, 3: 259-273. 10.1023/A:1018711410270.CrossRefPubMed Mather IH, Keenan TW: Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia. 1998, 3: 259-273. 10.1023/A:1018711410270.CrossRefPubMed
14.
go back to reference Heid HW, Keenan TW: Intracellular origin and secretion of milk fat globules. Eur J Cell Biol. 2005, 84: 245-258. 10.1016/j.ejcb.2004.12.002.CrossRefPubMed Heid HW, Keenan TW: Intracellular origin and secretion of milk fat globules. Eur J Cell Biol. 2005, 84: 245-258. 10.1016/j.ejcb.2004.12.002.CrossRefPubMed
15.
go back to reference Mizuno K, Nishida Y, Mizuno N, Taki M, Murase M, Itahashi K: The important role of deep attachment in the uniform drainage of breast milk from mammary lobe. Acta Paediatr. 2008, 97: 1200-1204. 10.1111/j.1651-2227.2008.00911.x.CrossRefPubMed Mizuno K, Nishida Y, Mizuno N, Taki M, Murase M, Itahashi K: The important role of deep attachment in the uniform drainage of breast milk from mammary lobe. Acta Paediatr. 2008, 97: 1200-1204. 10.1111/j.1651-2227.2008.00911.x.CrossRefPubMed
16.
go back to reference Meier PP, Engstrom JL, Murtaugh MA, Vasan U, Meier WA, Schanler RJ: Mothers' milk feedings in the neonatal intensive care unit: accuracy of the creamatocrit technique. J Perinatol. 2002, 22: 646-649. 10.1038/sj.jp.7210825.CrossRefPubMed Meier PP, Engstrom JL, Murtaugh MA, Vasan U, Meier WA, Schanler RJ: Mothers' milk feedings in the neonatal intensive care unit: accuracy of the creamatocrit technique. J Perinatol. 2002, 22: 646-649. 10.1038/sj.jp.7210825.CrossRefPubMed
17.
go back to reference Meier PP: Breastfeeding in the special care nursery. Prematures and infants with medical problems. Pediatr Clin North Am. 2001, 48: 425-442. 10.1016/S0031-3955(08)70035-X.CrossRefPubMed Meier PP: Breastfeeding in the special care nursery. Prematures and infants with medical problems. Pediatr Clin North Am. 2001, 48: 425-442. 10.1016/S0031-3955(08)70035-X.CrossRefPubMed
18.
go back to reference Michalski MC, Briard V, Michel F, Tasson F, Poulan P: Size distribution of fat globules in human colostrum, breast milk, and infant formula. J Dairy Sci. 2005, 88: 1927-1940.CrossRefPubMed Michalski MC, Briard V, Michel F, Tasson F, Poulan P: Size distribution of fat globules in human colostrum, breast milk, and infant formula. J Dairy Sci. 2005, 88: 1927-1940.CrossRefPubMed
19.
go back to reference Mizuno K, Nishida Y, Sakurai M, Miura F, Inoue M, Mizutani K, Takeuchi T, Itabashi K, Ozawa K, Takase M: Accuracy of creamatocrit technique and its efficacy in preterm infants' management. Journal of the Japan Pediatric Society. 2006, 110: 1242-1246. Mizuno K, Nishida Y, Sakurai M, Miura F, Inoue M, Mizutani K, Takeuchi T, Itabashi K, Ozawa K, Takase M: Accuracy of creamatocrit technique and its efficacy in preterm infants' management. Journal of the Japan Pediatric Society. 2006, 110: 1242-1246.
20.
go back to reference Rüegg M, Blanc B: The fat globule size distribution in human milk. Biochim Biophys Acta. 1981, 666: 7-14.CrossRefPubMed Rüegg M, Blanc B: The fat globule size distribution in human milk. Biochim Biophys Acta. 1981, 666: 7-14.CrossRefPubMed
21.
go back to reference Simonin C, Rüegg M, Sidiropoulos D: Comparison of the fat content and fat globule size distribution of breast milk from mothers delivering term and preterm. Am J Clin Nutr. 1984, 40: 820-826.PubMed Simonin C, Rüegg M, Sidiropoulos D: Comparison of the fat content and fat globule size distribution of breast milk from mothers delivering term and preterm. Am J Clin Nutr. 1984, 40: 820-826.PubMed
22.
go back to reference Jensen RG, Ferris AM, Lammi-Keefe CJ: Lipids in human milk and infant formulas. Annu Rev Nutr. 1992, 12: 417-441. 10.1146/annurev.nu.12.070192.002221.CrossRefPubMed Jensen RG, Ferris AM, Lammi-Keefe CJ: Lipids in human milk and infant formulas. Annu Rev Nutr. 1992, 12: 417-441. 10.1146/annurev.nu.12.070192.002221.CrossRefPubMed
23.
go back to reference Wiking L, Stagsted J, Björck L, Nielsen JH: Milk fat globule size is affected by fat production in dairy cows. Int Dairy J. 2004, 14: 909-913.CrossRef Wiking L, Stagsted J, Björck L, Nielsen JH: Milk fat globule size is affected by fat production in dairy cows. Int Dairy J. 2004, 14: 909-913.CrossRef
24.
go back to reference Whittlestone WG, Perrin DR: Variations in the fat content of human milk during suckling. J Dairy Res. 1954, 21: 204-206. 10.1017/S0022029900007299.CrossRef Whittlestone WG, Perrin DR: Variations in the fat content of human milk during suckling. J Dairy Res. 1954, 21: 204-206. 10.1017/S0022029900007299.CrossRef
25.
go back to reference Briard V, Leconte N, Michel F, Michalski MC: The fatty acid composition of small and large naturally occurring milk fat globules. Eur J Lipid Sci Technol. 2003, 105: 677-682. 10.1002/ejlt.200300812.CrossRef Briard V, Leconte N, Michel F, Michalski MC: The fatty acid composition of small and large naturally occurring milk fat globules. Eur J Lipid Sci Technol. 2003, 105: 677-682. 10.1002/ejlt.200300812.CrossRef
26.
go back to reference Michalski MC, Ollivon M, Briard V, Leconte N, Lopez C: Native fat globules of different sizes selected from raw milk: thermal and structural behavior. Chem Phys Lipids. 2004, 132: 247-261. 10.1016/j.chemphyslip.2004.08.007.CrossRefPubMed Michalski MC, Ollivon M, Briard V, Leconte N, Lopez C: Native fat globules of different sizes selected from raw milk: thermal and structural behavior. Chem Phys Lipids. 2004, 132: 247-261. 10.1016/j.chemphyslip.2004.08.007.CrossRefPubMed
27.
go back to reference Fauquant C, Briard N, Leconte N, Michalski MC: Differently sized native milk fat globules separated by microfiltration: Fatty acid composition of the milk fat globule membrane and triglyceride core. Eur J Lipid Sci Technol. 2005, 107: 80-86. 10.1002/ejlt.200401063.CrossRef Fauquant C, Briard N, Leconte N, Michalski MC: Differently sized native milk fat globules separated by microfiltration: Fatty acid composition of the milk fat globule membrane and triglyceride core. Eur J Lipid Sci Technol. 2005, 107: 80-86. 10.1002/ejlt.200401063.CrossRef
28.
go back to reference Fauquant C, Briard N, Leconte N, Guichardant M, Michalski MC: Membrane phospholipids and sterols in microfiltered milk fat globules. Eur J Lipid Sci Technol. 2007, 109: 1167-1173. 10.1002/ejlt.200700119.CrossRef Fauquant C, Briard N, Leconte N, Guichardant M, Michalski MC: Membrane phospholipids and sterols in microfiltered milk fat globules. Eur J Lipid Sci Technol. 2007, 109: 1167-1173. 10.1002/ejlt.200700119.CrossRef
29.
go back to reference Michalski MC, Leconte N, Briard-Bion V, Fauquant J, Maubois JL, Goudedranche H: Microfiltration of raw whole milk to select fractions with different fat globule size distributions: Process optimization and analysis. J Dairy Sci. 2006, 89: 3778-3790.CrossRefPubMed Michalski MC, Leconte N, Briard-Bion V, Fauquant J, Maubois JL, Goudedranche H: Microfiltration of raw whole milk to select fractions with different fat globule size distributions: Process optimization and analysis. J Dairy Sci. 2006, 89: 3778-3790.CrossRefPubMed
30.
go back to reference Argov N, Wachsmann-Hogiu S, Freeman SL, Huser T, Lebrilla CB, German JB: Size-dependent lipid content in human milk fat globules. J Agric Food Chem. 2008, 56: 7446-7450. 10.1021/jf801026a.CrossRefPubMed Argov N, Wachsmann-Hogiu S, Freeman SL, Huser T, Lebrilla CB, German JB: Size-dependent lipid content in human milk fat globules. J Agric Food Chem. 2008, 56: 7446-7450. 10.1021/jf801026a.CrossRefPubMed
31.
go back to reference Lethuaut L, Metro F, Genot C: Effect of droplet size on lipid oxidation rates of oil-in-water emulsions stabilized by protein. J Am Oil Chem Soc. 2002, 79: 425-430. 10.1007/s11746-002-0500-z.CrossRef Lethuaut L, Metro F, Genot C: Effect of droplet size on lipid oxidation rates of oil-in-water emulsions stabilized by protein. J Am Oil Chem Soc. 2002, 79: 425-430. 10.1007/s11746-002-0500-z.CrossRef
32.
go back to reference Michalski MC, Calzada C, Makino A, Michaud S, Guichardant M: Oxidation products of polyunsaturated fatty acids in infant formulas compared to human milk – a preliminary study. Mol Nutr Food Res. 2008, 52: 1478-1485. 10.1002/mnfr.200700451.CrossRefPubMed Michalski MC, Calzada C, Makino A, Michaud S, Guichardant M: Oxidation products of polyunsaturated fatty acids in infant formulas compared to human milk – a preliminary study. Mol Nutr Food Res. 2008, 52: 1478-1485. 10.1002/mnfr.200700451.CrossRefPubMed
Metadata
Title
Is increased fat content of hindmilk due to the size or the number of milk fat globules?
Authors
Katsumi Mizuno
Yoshiko Nishida
Motohiro Taki
Masahiko Murase
Yoshiharu Mukai
Kazuo Itabashi
Kazuhiro Debari
Ai Iiyama
Publication date
01-12-2009
Publisher
BioMed Central
Published in
International Breastfeeding Journal / Issue 1/2009
Electronic ISSN: 1746-4358
DOI
https://doi.org/10.1186/1746-4358-4-7

Other articles of this Issue 1/2009

International Breastfeeding Journal 1/2009 Go to the issue