Skip to main content
Top
Published in: Diagnostic Pathology 1/2013

Open Access 01-12-2013 | Research

Impaired binding of standard initiation factors eIF3b, eIF4G and eIF4B to domain V of the live-attenuated coxsackievirus B3 Sabin3-like IRES - alternatives for 5′UTR-related cardiovirulence mechanisms

Authors: Amira Souii, Jawhar Gharbi, Manel Ben M’hadheb-Gharbi

Published in: Diagnostic Pathology | Issue 1/2013

Login to get access

Abstract

Abstract

Internal ribosome entry site (IRES) elements fold into highly organized conserved secondary and probably tertiary structures that guide the ribosome to an internal site of the RNA at the IRES 3′end. The composition of the cellular proteome is under the control of multiple processes, one of the most important being translation initiation. In each poliovirus Sabin vaccine strain, a single point mutation in the IRES secondary-structure domain V is a major determinant of neurovirulence and translation attenuation. Here we are extrapolating poliovirus findings to a genomic related virus named coxsackievirus B3 CVB3); a causative agent of viral myocarditis. We have previously reported that Sabin3-like mutation (U473 → C) introduced in the domain V sequence of the CVB3 IRES led to a defective mutant with a serious reduction in translation efficiency and ribosomal initiation complex assembly, besides an impaired RNA-protein binding pattern. With the aim to identify proteins interacting with both CVB3 wild-type and Sabin3-like domain V RNAs and to assess the effect of the Sabin3-like mutation on these potential interactions, we have used a proteomic approach. This procedure allowed the identification of three RNA-binding proteins interacting with the domain V: eIF4G (p220), eIF3b (p116) and eIF4B (p80). Moreover, we report that this single-nucleotide exchange impairs the interaction pattern and the binding affinity of these standard translation initiation factors within the IRES domain V of the mutant strain. Taken together, these data indicate how this decisive Sabin3-like mutation mediates viral translation attenuation; playing a key role in the understanding of the cardiovirulence attenuation within this construct. Hence, these data provide further evidence for the crucial role of RNA structure for the IRES activity, and reinforce the idea of a distribution of function between the different IRES structural domains.

Virtual slide

The virtual slide(s) for this article can be found here: http://​www.​diagnosticpathol​ogy.​diagnomx.​eu/​vs/​6160165131045880​.
Appendix
Available only for authorised users
Literature
1.
go back to reference Martínez-Salas E: The impact of RNA structure on picornavirus IRES activity. Trends Microbiol. 2008, 16: 230-237. 10.1016/j.tim.2008.01.013.CrossRefPubMed Martínez-Salas E: The impact of RNA structure on picornavirus IRES activity. Trends Microbiol. 2008, 16: 230-237. 10.1016/j.tim.2008.01.013.CrossRefPubMed
2.
go back to reference Spriggs KA, Bushell M, Willis AE: Translational regulation of gene expression during conditions of cell stress. Mol Cell. 2010, 40: 228-237. 10.1016/j.molcel.2010.09.028.CrossRefPubMed Spriggs KA, Bushell M, Willis AE: Translational regulation of gene expression during conditions of cell stress. Mol Cell. 2010, 40: 228-237. 10.1016/j.molcel.2010.09.028.CrossRefPubMed
3.
go back to reference Komar AA, Hatzoglou M: Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle. 2011, 10: 229-240. 10.4161/cc.10.2.14472.PubMedCentralCrossRefPubMed Komar AA, Hatzoglou M: Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle. 2011, 10: 229-240. 10.4161/cc.10.2.14472.PubMedCentralCrossRefPubMed
4.
go back to reference Martìnez-Salas E, Piñeiro D, Fernàndez N: Alternative mechanisms to initiate translation in eukaryotic mRNAs. Comp Funct Genomics. 2012, 2012: 2012-10.1155/2012/391546CrossRef Martìnez-Salas E, Piñeiro D, Fernàndez N: Alternative mechanisms to initiate translation in eukaryotic mRNAs. Comp Funct Genomics. 2012, 2012: 2012-10.1155/2012/391546CrossRef
5.
go back to reference Jang SK, Krausslich HG, Nicklin MJH, Duke GM, Palmenberg AC, Wimmer E: A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol. 1988, 62: 2636-2643.PubMedCentralPubMed Jang SK, Krausslich HG, Nicklin MJH, Duke GM, Palmenberg AC, Wimmer E: A segment of the 5 nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol. 1988, 62: 2636-2643.PubMedCentralPubMed
6.
go back to reference Pelletier J, Sonenberg N: Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988, 334: 320-325. 10.1038/334320a0.CrossRefPubMed Pelletier J, Sonenberg N: Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988, 334: 320-325. 10.1038/334320a0.CrossRefPubMed
7.
go back to reference Willcocks MM, Locker N, Gomwalk Z: Structural features of the Seneca valley virus internal ribosome entry site (IRES) element: a picornavirus with a pestivirus-like IRES. J Virol. 2011, 85: 4452-4461. 10.1128/JVI.01107-10.PubMedCentralCrossRefPubMed Willcocks MM, Locker N, Gomwalk Z: Structural features of the Seneca valley virus internal ribosome entry site (IRES) element: a picornavirus with a pestivirus-like IRES. J Virol. 2011, 85: 4452-4461. 10.1128/JVI.01107-10.PubMedCentralCrossRefPubMed
8.
go back to reference Yu Y, Sweeney TR, Kafasla P, Jackson RJ, Pestova TV, Hellen CU: The mechanism of translation initiation on aichivirus RNA mediated by a novel type of picornavirus IRES. EMBO J. 2011, 30: 4423-4436. 10.1038/emboj.2011.306.PubMedCentralCrossRefPubMed Yu Y, Sweeney TR, Kafasla P, Jackson RJ, Pestova TV, Hellen CU: The mechanism of translation initiation on aichivirus RNA mediated by a novel type of picornavirus IRES. EMBO J. 2011, 30: 4423-4436. 10.1038/emboj.2011.306.PubMedCentralCrossRefPubMed
9.
go back to reference Honda M, Ping LH, Rijnbrand RCA: Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. Virology. 1996, 222: 31-42. 10.1006/viro.1996.0395.CrossRefPubMed Honda M, Ping LH, Rijnbrand RCA: Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. Virology. 1996, 222: 31-42. 10.1006/viro.1996.0395.CrossRefPubMed
10.
go back to reference Rijnbrand R, van der Straaten T, van Rijn PA, Spaan WJM, Bredenbeek PJ: Internal entry of ribosomes is directed by the 5′ non coding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon. J Virol. 1997, 71: 451-457.PubMedCentralPubMed Rijnbrand R, van der Straaten T, van Rijn PA, Spaan WJM, Bredenbeek PJ: Internal entry of ribosomes is directed by the 5 non coding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon. J Virol. 1997, 71: 451-457.PubMedCentralPubMed
11.
go back to reference Vallejos M, Ramdohr P, Valiente-Echeverría F: The 5′-untranslated region of the mouse mammary tumor virus mRNA exhibits cap-independent translation initiation. Nucleic Acids Res. 2009, 38: 618-632.PubMedCentralCrossRefPubMed Vallejos M, Ramdohr P, Valiente-Echeverría F: The 5-untranslated region of the mouse mammary tumor virus mRNA exhibits cap-independent translation initiation. Nucleic Acids Res. 2009, 38: 618-632.PubMedCentralCrossRefPubMed
12.
go back to reference Vallejos M, Deforges J, Plank TD: Activity of the human immunodeficiency virus type 1 cell cycle-dependent internal ribosomal entry site is modulated by IRES transacting factors. Nucleic Acids Res. 2011, 39: 6186-6200. 10.1093/nar/gkr189.PubMedCentralCrossRefPubMed Vallejos M, Deforges J, Plank TD: Activity of the human immunodeficiency virus type 1 cell cycle-dependent internal ribosomal entry site is modulated by IRES transacting factors. Nucleic Acids Res. 2011, 39: 6186-6200. 10.1093/nar/gkr189.PubMedCentralCrossRefPubMed
13.
go back to reference Locker N, Chamond N, Sargueil B: A conserved structure within the HIV gag open reading frame that controls translation initiation directly recruits the 40S subunit and eIF3. Nucleic Acids Res. 2011, 39: 2367-2377. 10.1093/nar/gkq1118.PubMedCentralCrossRefPubMed Locker N, Chamond N, Sargueil B: A conserved structure within the HIV gag open reading frame that controls translation initiation directly recruits the 40S subunit and eIF3. Nucleic Acids Res. 2011, 39: 2367-2377. 10.1093/nar/gkq1118.PubMedCentralCrossRefPubMed
14.
go back to reference Czibener C, Alvarez D, Scodeller E, Gamarnik AV: Characterization of internal ribosomal entry sites of triatomavirus. J Gen Virol. 2005, 86: 2275-2280. 10.1099/vir.0.80842-0.CrossRefPubMed Czibener C, Alvarez D, Scodeller E, Gamarnik AV: Characterization of internal ribosomal entry sites of triatomavirus. J Gen Virol. 2005, 86: 2275-2280. 10.1099/vir.0.80842-0.CrossRefPubMed
15.
go back to reference Lu J, Hu Y, Hu L: Ectropis obliqua picorna-like virus IRES-driven internal initiation of translation in cell systems derived from different origins. J Gen Virol. 2007, 88: 2834-2838. 10.1099/vir.0.83201-0.CrossRefPubMed Lu J, Hu Y, Hu L: Ectropis obliqua picorna-like virus IRES-driven internal initiation of translation in cell systems derived from different origins. J Gen Virol. 2007, 88: 2834-2838. 10.1099/vir.0.83201-0.CrossRefPubMed
16.
go back to reference Fernandez-Miragall O, Hernandez C: An internal ribosome entry site directs translation of the 3′-gene from pelargonium flower break virus genomic RNA: implications for infectivity. PLoS ONE. 2011, 6: e22617-10.1371/journal.pone.0022617.PubMedCentralCrossRefPubMed Fernandez-Miragall O, Hernandez C: An internal ribosome entry site directs translation of the 3-gene from pelargonium flower break virus genomic RNA: implications for infectivity. PLoS ONE. 2011, 6: e22617-10.1371/journal.pone.0022617.PubMedCentralCrossRefPubMed
17.
go back to reference Garlapati S, Wang CC: Structural elements in the 5′-untranslated region of giardiavirus transcript essential for internal ribosome entry site-mediated translation initiation. Eukaryot Cell. 2005, 4: 742-754. 10.1128/EC.4.4.742-754.2005.PubMedCentralCrossRefPubMed Garlapati S, Wang CC: Structural elements in the 5-untranslated region of giardiavirus transcript essential for internal ribosome entry site-mediated translation initiation. Eukaryot Cell. 2005, 4: 742-754. 10.1128/EC.4.4.742-754.2005.PubMedCentralCrossRefPubMed
18.
go back to reference Isaksson A, Berggren M, Ekeland-Sjoberg K, Samuelsson T, Ricksten A: Cell specific internal translation efficiency of Epstein-Barr virus present in solid organ transplant patients. J Med Virol. 2007, 79: 573-581. 10.1002/jmv.20854.CrossRefPubMed Isaksson A, Berggren M, Ekeland-Sjoberg K, Samuelsson T, Ricksten A: Cell specific internal translation efficiency of Epstein-Barr virus present in solid organ transplant patients. J Med Virol. 2007, 79: 573-581. 10.1002/jmv.20854.CrossRefPubMed
19.
go back to reference Merrick WC: Cap-dependent and cap-independent translation in eukaryotic systems. Gene. 2004, 332: 1-11.CrossRefPubMed Merrick WC: Cap-dependent and cap-independent translation in eukaryotic systems. Gene. 2004, 332: 1-11.CrossRefPubMed
20.
go back to reference Sonenberg N, Hinnebusch AG: Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009, 136: 731-745. 10.1016/j.cell.2009.01.042.PubMedCentralCrossRefPubMed Sonenberg N, Hinnebusch AG: Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009, 136: 731-745. 10.1016/j.cell.2009.01.042.PubMedCentralCrossRefPubMed
21.
go back to reference Pacheco A, Reigadas S, Martínez-Salas E: Riboproteomic analysis of polypeptides interacting with the internal ribosome-entry site element of foot-and-mouth disease viral RNA. Proteomics. 2008, 8: 4782-4790. 10.1002/pmic.200800338.CrossRefPubMed Pacheco A, Reigadas S, Martínez-Salas E: Riboproteomic analysis of polypeptides interacting with the internal ribosome-entry site element of foot-and-mouth disease viral RNA. Proteomics. 2008, 8: 4782-4790. 10.1002/pmic.200800338.CrossRefPubMed
22.
go back to reference De Breyne S, Yu Y, Unbehaun A, Pestova TV, Hellen CUT: Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites. Proc Natl Acad Sci U S A. 2009, 106: 9197-9202. 10.1073/pnas.0900153106.PubMedCentralCrossRefPubMed De Breyne S, Yu Y, Unbehaun A, Pestova TV, Hellen CUT: Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites. Proc Natl Acad Sci U S A. 2009, 106: 9197-9202. 10.1073/pnas.0900153106.PubMedCentralCrossRefPubMed
23.
go back to reference Belsham GJ: Divergent picornavirus IRES elements. Virus Res. 2009, 139: 183-192. 10.1016/j.virusres.2008.07.001.CrossRefPubMed Belsham GJ: Divergent picornavirus IRES elements. Virus Res. 2009, 139: 183-192. 10.1016/j.virusres.2008.07.001.CrossRefPubMed
25.
26.
go back to reference Fernandez-Miragall O, Martinez-Salas E: Structural organization of a viral IRES depends on the integrity of the GNRA motif. RNA. 2003, 9: 1333-1344. 10.1261/rna.5950603.PubMedCentralCrossRefPubMed Fernandez-Miragall O, Martinez-Salas E: Structural organization of a viral IRES depends on the integrity of the GNRA motif. RNA. 2003, 9: 1333-1344. 10.1261/rna.5950603.PubMedCentralCrossRefPubMed
27.
go back to reference Berry KE, Waghray S, Mortimer SA, Bai Y, Doudna JA: Crystal structure of the HCV IRES central domain reveals strategy for start-codon positioning. Structure. 2011, 19: 1456-1466. 10.1016/j.str.2011.08.002.PubMedCentralCrossRefPubMed Berry KE, Waghray S, Mortimer SA, Bai Y, Doudna JA: Crystal structure of the HCV IRES central domain reveals strategy for start-codon positioning. Structure. 2011, 19: 1456-1466. 10.1016/j.str.2011.08.002.PubMedCentralCrossRefPubMed
28.
go back to reference Fernandez N, Garcia-Sacristan A, Ramajo J, Briones C, Martinez-Salas E: Structural analysis provides insights into the modular organization of picornavirus IRES. Virology. 2011, 409: 251-261. 10.1016/j.virol.2010.10.013.CrossRefPubMed Fernandez N, Garcia-Sacristan A, Ramajo J, Briones C, Martinez-Salas E: Structural analysis provides insights into the modular organization of picornavirus IRES. Virology. 2011, 409: 251-261. 10.1016/j.virol.2010.10.013.CrossRefPubMed
29.
go back to reference Nakashima N, Uchiumi T: Functional analysis of structural motifs in dicistroviruses. Virus Res. 2009, 139: 137-147. 10.1016/j.virusres.2008.06.006.CrossRefPubMed Nakashima N, Uchiumi T: Functional analysis of structural motifs in dicistroviruses. Virus Res. 2009, 139: 137-147. 10.1016/j.virusres.2008.06.006.CrossRefPubMed
30.
go back to reference Lee EK, Kim W, Tominaga K, Martindale JL, Yang X, Subaran SS, Carlson OD, Mercken EM, Kulkarni RN, Akamatsu W: RNA-binding protein HuD controls insulin translation. Mol Cell. 2012, 45: 826-835. 10.1016/j.molcel.2012.01.016.PubMedCentralCrossRefPubMed Lee EK, Kim W, Tominaga K, Martindale JL, Yang X, Subaran SS, Carlson OD, Mercken EM, Kulkarni RN, Akamatsu W: RNA-binding protein HuD controls insulin translation. Mol Cell. 2012, 45: 826-835. 10.1016/j.molcel.2012.01.016.PubMedCentralCrossRefPubMed
31.
go back to reference Sweet T, Kovalak C, Coller J: The DEAD-Box protein Dhh1 promotes decapping by slowing ribosome movement. PLoS Biol. 2012, 10: e1001342-10.1371/journal.pbio.1001342.PubMedCentralCrossRefPubMed Sweet T, Kovalak C, Coller J: The DEAD-Box protein Dhh1 promotes decapping by slowing ribosome movement. PLoS Biol. 2012, 10: e1001342-10.1371/journal.pbio.1001342.PubMedCentralCrossRefPubMed
32.
go back to reference Lakhan SE, Harle L: Cardiac fibrosis in the elderly, normotensive athlete: case report and review of the literature. Diagn Pathol. 2008, 3: 12-10.1186/1746-1596-3-12.PubMedCentralCrossRefPubMed Lakhan SE, Harle L: Cardiac fibrosis in the elderly, normotensive athlete: case report and review of the literature. Diagn Pathol. 2008, 3: 12-10.1186/1746-1596-3-12.PubMedCentralCrossRefPubMed
33.
go back to reference Tavora F, Gonzalez-Cuyar LF, Dalal JS, O’Malley MT, Zhao R, Peng HQ, Burke AP: Fatal parvoviral myocarditis: a case report and review of literature. Diagn Pathol. 2008, 3: 21-10.1186/1746-1596-3-21.PubMedCentralCrossRefPubMed Tavora F, Gonzalez-Cuyar LF, Dalal JS, O’Malley MT, Zhao R, Peng HQ, Burke AP: Fatal parvoviral myocarditis: a case report and review of literature. Diagn Pathol. 2008, 3: 21-10.1186/1746-1596-3-21.PubMedCentralCrossRefPubMed
34.
go back to reference Yang D, Wilson JE, Anderson DR, Bohunek L, Cordeiro C, Kandol R, Mcmanus BM: In vitro mutational and inhibitory analysis of the cis-actingtranslational elements within the 5′ untranslated region of coxsackievirus B3: potential targets for antiviral action of antisense oligomers. Virology. 1997, 228: 63-73. 10.1006/viro.1996.8366.CrossRefPubMed Yang D, Wilson JE, Anderson DR, Bohunek L, Cordeiro C, Kandol R, Mcmanus BM: In vitro mutational and inhibitory analysis of the cis-actingtranslational elements within the 5′ untranslated region of coxsackievirus B3: potential targets for antiviral action of antisense oligomers. Virology. 1997, 228: 63-73. 10.1006/viro.1996.8366.CrossRefPubMed
35.
go back to reference Yang D, Cheung P, Sun Y, Yuan J, Zhang H, Carthy CM, Anderson DR, Bohunek L, Wilson JE, Mcmanus BM: A shine-dalgarno-like sequence mediates in vitro ribosomal internal entry and subsequent scanning for translation initiation of coxsackievirus B3 RNA. Virology. 2003, 305: 31-43. 10.1006/viro.2002.1770.CrossRefPubMed Yang D, Cheung P, Sun Y, Yuan J, Zhang H, Carthy CM, Anderson DR, Bohunek L, Wilson JE, Mcmanus BM: A shine-dalgarno-like sequence mediates in vitro ribosomal internal entry and subsequent scanning for translation initiation of coxsackievirus B3 RNA. Virology. 2003, 305: 31-43. 10.1006/viro.2002.1770.CrossRefPubMed
36.
go back to reference Jackson RJ, Kaminski A: Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA. 1995, 1: 985-1000.PubMedCentralPubMed Jackson RJ, Kaminski A: Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA. 1995, 1: 985-1000.PubMedCentralPubMed
37.
go back to reference Bhattacharyya S, Verma B, Pandey G, Das S: The structure and function of a cis-acting element located upstream of the IRES that influences coxsackievirus B3 RNA translation. Virology. 2008, 377: 345-354. 10.1016/j.virol.2008.04.019.CrossRefPubMed Bhattacharyya S, Verma B, Pandey G, Das S: The structure and function of a cis-acting element located upstream of the IRES that influences coxsackievirus B3 RNA translation. Virology. 2008, 377: 345-354. 10.1016/j.virol.2008.04.019.CrossRefPubMed
38.
go back to reference Liu Z, Carthy CM, Cheung P, Bohunek L, Wilson JE, McManus BM, Yang D: Structural and functional analysis of the 5′ untranslated region of coxsackievirus B3 RNA: In vivo translational and infectivity studies of full-length mutants. Virology. 1999, 265: 206-217. 10.1006/viro.1999.0048.CrossRefPubMed Liu Z, Carthy CM, Cheung P, Bohunek L, Wilson JE, McManus BM, Yang D: Structural and functional analysis of the 5′ untranslated region of coxsackievirus B3 RNA: In vivo translational and infectivity studies of full-length mutants. Virology. 1999, 265: 206-217. 10.1006/viro.1999.0048.CrossRefPubMed
39.
go back to reference Skinner MA, Racaniello VR, Dunn G, Cooper J, Minor PD, Almond JW: New model for the secondary structure of the 5′ non-coding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. J Mol Biol. 1989, 207: 379-392. 10.1016/0022-2836(89)90261-1.CrossRefPubMed Skinner MA, Racaniello VR, Dunn G, Cooper J, Minor PD, Almond JW: New model for the secondary structure of the 5′ non-coding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. J Mol Biol. 1989, 207: 379-392. 10.1016/0022-2836(89)90261-1.CrossRefPubMed
40.
go back to reference Hunziker IP, Cornell CT, Whitton JL: Deletions within the 5′UTR of coxsackievirus B3: consequences for virus translation and replication. Virology. 2007, 360: 120-128. 10.1016/j.virol.2006.09.041.PubMedCentralCrossRefPubMed Hunziker IP, Cornell CT, Whitton JL: Deletions within the 5′UTR of coxsackievirus B3: consequences for virus translation and replication. Virology. 2007, 360: 120-128. 10.1016/j.virol.2006.09.041.PubMedCentralCrossRefPubMed
41.
go back to reference Ben M’hadheb-Gharbi M, Gharbi J, Paulous S, Brocard M, Komaromva A, Aouni M, Kean KM: Effects of the Sabin-like mutations in domain V of the internal ribosome entry segment on translational efficiency of the coxsackievirus B3. Mol Genet Genomics. 2006, 276: 402-412. 10.1007/s00438-006-0155-3.CrossRefPubMed Ben M’hadheb-Gharbi M, Gharbi J, Paulous S, Brocard M, Komaromva A, Aouni M, Kean KM: Effects of the Sabin-like mutations in domain V of the internal ribosome entry segment on translational efficiency of the coxsackievirus B3. Mol Genet Genomics. 2006, 276: 402-412. 10.1007/s00438-006-0155-3.CrossRefPubMed
42.
go back to reference Ben M’hadheb-Gharbi M, Kean KM, Gharbi J: Molecular analysis of the role of IRES stem-loop V in replicative capacities and translation efficiencies of coxsackievirus B3 mutants. Mol Biol Rep. 2009, 36: 255-262. 10.1007/s11033-007-9174-3.CrossRef Ben M’hadheb-Gharbi M, Kean KM, Gharbi J: Molecular analysis of the role of IRES stem-loop V in replicative capacities and translation efficiencies of coxsackievirus B3 mutants. Mol Biol Rep. 2009, 36: 255-262. 10.1007/s11033-007-9174-3.CrossRef
43.
go back to reference Souii A, Ben M’hadheb-Gharbi M, Aouni M, Gharbi J: In vitro molecular characterization of RNA–proteins interactions during initiation of translation of a wild-type and a mutant coxsackievirus B3 RNAs. Mol Biotechnol. 2013a, 54: 515-527. 10.1007/s12033-012-9592-x.CrossRef Souii A, Ben M’hadheb-Gharbi M, Aouni M, Gharbi J: In vitro molecular characterization of RNA–proteins interactions during initiation of translation of a wild-type and a mutant coxsackievirus B3 RNAs. Mol Biotechnol. 2013a, 54: 515-527. 10.1007/s12033-012-9592-x.CrossRef
44.
go back to reference Souii A, Ben M’hadheb-Gharbi M, Sargueil B, Brossard A, Chamond N, Aouni M, Gharbi J: Ribosomal initiation complex assembly within the wild-strain of coxsackievirus B3 and live-attenuated Sabin3-like IRESes during the initiation of translation. Int J Mol Sci. 2013b, 14: 4400-4418. 10.3390/ijms14034400.CrossRef Souii A, Ben M’hadheb-Gharbi M, Sargueil B, Brossard A, Chamond N, Aouni M, Gharbi J: Ribosomal initiation complex assembly within the wild-strain of coxsackievirus B3 and live-attenuated Sabin3-like IRESes during the initiation of translation. Int J Mol Sci. 2013b, 14: 4400-4418. 10.3390/ijms14034400.CrossRef
45.
go back to reference Souii A, Gharbi J, Ben M’hadheb-Gharbi M: Molecular analysis of RNA-RNA interactions between 5′ and 3′ untranslated regions during the initiation of translation of a cardiovirulent and a live-attenuated coxsackievirus B3 strains. Int J Mol Sci. 2013c, 14: 4525-4544. 10.3390/ijms14034525.CrossRef Souii A, Gharbi J, Ben M’hadheb-Gharbi M: Molecular analysis of RNA-RNA interactions between 5′ and 3′ untranslated regions during the initiation of translation of a cardiovirulent and a live-attenuated coxsackievirus B3 strains. Int J Mol Sci. 2013c, 14: 4525-4544. 10.3390/ijms14034525.CrossRef
46.
go back to reference Lòpez de Quinto S, Martìnez-Salas E: Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal initiation of translation in vivo. RNA. 2000, 6: 1380-1392. 10.1017/S1355838200000753.PubMedCentralCrossRefPubMed Lòpez de Quinto S, Martìnez-Salas E: Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal initiation of translation in vivo. RNA. 2000, 6: 1380-1392. 10.1017/S1355838200000753.PubMedCentralCrossRefPubMed
47.
go back to reference Lòpez de Quinto S, Saiz M, de la Morena D, Sobrino F, Martinez-Salas E: IRES-driven translation is stimulated separately by the FMDV 3′-NCR and poly (A) sequences. Nucleic Acids Res. 2002, 30: 4398-4405. 10.1093/nar/gkf569.PubMedCentralCrossRefPubMed Lòpez de Quinto S, Saiz M, de la Morena D, Sobrino F, Martinez-Salas E: IRES-driven translation is stimulated separately by the FMDV 3′-NCR and poly (A) sequences. Nucleic Acids Res. 2002, 30: 4398-4405. 10.1093/nar/gkf569.PubMedCentralCrossRefPubMed
48.
go back to reference Pisarev AV, Unbehaun A, Hellen CU, Pestova TV: Assembly and analysis of eukaryotic translation initiation complexes. Methods Enzymol. 2007, 430: 147-177.CrossRefPubMed Pisarev AV, Unbehaun A, Hellen CU, Pestova TV: Assembly and analysis of eukaryotic translation initiation complexes. Methods Enzymol. 2007, 430: 147-177.CrossRefPubMed
49.
go back to reference Lòpez de Quinto S, Lafuente E, Martìnez-Salas E: IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA. 2001, 7: 1213-1226. 10.1017/S1355838201010433.PubMedCentralCrossRefPubMed Lòpez de Quinto S, Lafuente E, Martìnez-Salas E: IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA. 2001, 7: 1213-1226. 10.1017/S1355838201010433.PubMedCentralCrossRefPubMed
50.
go back to reference Fernández N, Fernandez-Miragall O, Ramajo J, García-Sacristá A, Bellora N, Eyras E, Briones C, Martínez-Salas E: Structural basis for the biological relevance of the invariant apical stem in IRES-mediated translation. Nucleic Acids Res. 2011, 39: 8572-8585. 10.1093/nar/gkr560.PubMedCentralCrossRefPubMed Fernández N, Fernandez-Miragall O, Ramajo J, García-Sacristá A, Bellora N, Eyras E, Briones C, Martínez-Salas E: Structural basis for the biological relevance of the invariant apical stem in IRES-mediated translation. Nucleic Acids Res. 2011, 39: 8572-8585. 10.1093/nar/gkr560.PubMedCentralCrossRefPubMed
51.
go back to reference Ochs K, Zeller A, Saleh L, Bassili G, Song Y, Sonntag A, Niepmann M: Impaired binding of standard initiation factors mediates poliovirus translation attenuation. J Virol. 2003, 77: 115-122. 10.1128/JVI.77.1.115-122.2003.PubMedCentralCrossRefPubMed Ochs K, Zeller A, Saleh L, Bassili G, Song Y, Sonntag A, Niepmann M: Impaired binding of standard initiation factors mediates poliovirus translation attenuation. J Virol. 2003, 77: 115-122. 10.1128/JVI.77.1.115-122.2003.PubMedCentralCrossRefPubMed
52.
go back to reference Fraser CS, Doudna JA: Structural and mechanistic insights into hepatitis C viral translation initiation. Nature Rev Microbiol. 2007, 5: 29-38. 10.1038/nrmicro1558.CrossRef Fraser CS, Doudna JA: Structural and mechanistic insights into hepatitis C viral translation initiation. Nature Rev Microbiol. 2007, 5: 29-38. 10.1038/nrmicro1558.CrossRef
53.
go back to reference Fitzgerald KD, Semler BL: Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochim Biophys Acta. 2009, 1789: 518-528. 10.1016/j.bbagrm.2009.07.004.PubMedCentralCrossRefPubMed Fitzgerald KD, Semler BL: Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochim Biophys Acta. 2009, 1789: 518-528. 10.1016/j.bbagrm.2009.07.004.PubMedCentralCrossRefPubMed
54.
go back to reference Verma B, Bhattacharyya S, Das S: Polypyrimidine tract binding protein interacts with coxsackievirus B3 RNA and influences its translation. J Gen Virol. 2010, 91: 1245-1255. 10.1099/vir.0.018507-0.CrossRefPubMed Verma B, Bhattacharyya S, Das S: Polypyrimidine tract binding protein interacts with coxsackievirus B3 RNA and influences its translation. J Gen Virol. 2010, 91: 1245-1255. 10.1099/vir.0.018507-0.CrossRefPubMed
55.
go back to reference Martínez-Salas E, Regalado MP, Domingo E: Identification of an essential region for internal initiation of translation in the aphthovirus internal ribosome entry site and implications for viral evolution. J Virol. 1996, 70: 992-998.PubMedCentralPubMed Martínez-Salas E, Regalado MP, Domingo E: Identification of an essential region for internal initiation of translation in the aphthovirus internal ribosome entry site and implications for viral evolution. J Virol. 1996, 70: 992-998.PubMedCentralPubMed
56.
go back to reference Martínez-Salas E, Fernandez-Miragall O: Picornavirus IRES: structure-function relationship. Curr Pharm Design. 2004, 10: 3757-3767. 10.2174/1381612043382657.CrossRef Martínez-Salas E, Fernandez-Miragall O: Picornavirus IRES: structure-function relationship. Curr Pharm Design. 2004, 10: 3757-3767. 10.2174/1381612043382657.CrossRef
57.
go back to reference Barria MI, Gonzalez A, Vera-Otarola J: Analysis of natural variants of the hepatitis C virus internal ribosome entry site reveals that primary sequence plays a key role in cap-independent translation. Nucleic Acids Res. 2009, 37: 957-971. 10.1093/nar/gkn1022.PubMedCentralCrossRefPubMed Barria MI, Gonzalez A, Vera-Otarola J: Analysis of natural variants of the hepatitis C virus internal ribosome entry site reveals that primary sequence plays a key role in cap-independent translation. Nucleic Acids Res. 2009, 37: 957-971. 10.1093/nar/gkn1022.PubMedCentralCrossRefPubMed
58.
go back to reference Serrano P, Ramajo J, Martínez-Salas E: Rescue of internal initiation of translation by RNA complementation provides evidence for a distribution of functions between individual IRES domains. Virology. 2009, 388: 221-229. 10.1016/j.virol.2009.03.021.CrossRefPubMed Serrano P, Ramajo J, Martínez-Salas E: Rescue of internal initiation of translation by RNA complementation provides evidence for a distribution of functions between individual IRES domains. Virology. 2009, 388: 221-229. 10.1016/j.virol.2009.03.021.CrossRefPubMed
59.
60.
go back to reference Kawamura NM, Kohara M, Abe S, Komatsu T, Tago K, Arita M, Nomoto A: Determinants in the 5′ non coding region of poliovirus Sabin 1 RNA that influence the attenuation phenotype. J Virol. 1989, 63: 1302-1309.PubMedCentralPubMed Kawamura NM, Kohara M, Abe S, Komatsu T, Tago K, Arita M, Nomoto A: Determinants in the 5′ non coding region of poliovirus Sabin 1 RNA that influence the attenuation phenotype. J Virol. 1989, 63: 1302-1309.PubMedCentralPubMed
61.
go back to reference Macadam AJ, Pollard SR, Ferguson G, Dunn G, Skuce R, Almond J, Minor PD: The 5′ non coding region of the type 2 poliovirus vaccine strain contains determinants of attenuation and temperature sensitivity. Virology. 1991, 181: 451-458. 10.1016/0042-6822(91)90877-E.CrossRefPubMed Macadam AJ, Pollard SR, Ferguson G, Dunn G, Skuce R, Almond J, Minor PD: The 5′ non coding region of the type 2 poliovirus vaccine strain contains determinants of attenuation and temperature sensitivity. Virology. 1991, 181: 451-458. 10.1016/0042-6822(91)90877-E.CrossRefPubMed
62.
go back to reference La Monica N, Racaniello VR: Differences in replication of attenuated and neurovirulent polioviruses in human neuroblastoma cell line SH-SY5Y. J Virol. 1989, 63: 2357-2360.PubMedCentralPubMed La Monica N, Racaniello VR: Differences in replication of attenuated and neurovirulent polioviruses in human neuroblastoma cell line SH-SY5Y. J Virol. 1989, 63: 2357-2360.PubMedCentralPubMed
63.
go back to reference Ren R, Moss EG, Racaniello VR: Identification of two determinants that attenuate vaccine-related type-2 poliovirus. J Virol. 1991, 65: 1377-1382.PubMedCentralPubMed Ren R, Moss EG, Racaniello VR: Identification of two determinants that attenuate vaccine-related type-2 poliovirus. J Virol. 1991, 65: 1377-1382.PubMedCentralPubMed
64.
go back to reference Guest S, Pilipenko E, Sharma K, Chumakov K, Roos RP: Molecular mechanisms of attenuation of the Sabin strain of poliovirus type 3. J Virol. 2004, 78: 11097-11107. 10.1128/JVI.78.20.11097-11107.2004.PubMedCentralCrossRefPubMed Guest S, Pilipenko E, Sharma K, Chumakov K, Roos RP: Molecular mechanisms of attenuation of the Sabin strain of poliovirus type 3. J Virol. 2004, 78: 11097-11107. 10.1128/JVI.78.20.11097-11107.2004.PubMedCentralCrossRefPubMed
65.
go back to reference Ochs K, Saleh L, Bassili G, Sonntag VH, Zeller A, Niepmann M: Interaction of translation initiation factor eIF4B with the poliovirus internal ribosome entry site. J Virol. 2002, 76: 2113-2122. 10.1128/jvi.76.5.2113-2122.2002.PubMedCentralCrossRefPubMed Ochs K, Saleh L, Bassili G, Sonntag VH, Zeller A, Niepmann M: Interaction of translation initiation factor eIF4B with the poliovirus internal ribosome entry site. J Virol. 2002, 76: 2113-2122. 10.1128/jvi.76.5.2113-2122.2002.PubMedCentralCrossRefPubMed
66.
go back to reference Haller AA, Semler BL: Stem-loop structure synergy in binding cellular proteins to the 5′ non coding region of poliovirus RNA. Virology. 1995, 206: 923-934. 10.1006/viro.1995.1015.CrossRefPubMed Haller AA, Semler BL: Stem-loop structure synergy in binding cellular proteins to the 5′ non coding region of poliovirus RNA. Virology. 1995, 206: 923-934. 10.1006/viro.1995.1015.CrossRefPubMed
67.
go back to reference Gromeier M, Bossert B, Arita M, Nomoto A, Wimmer E: Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virology. 1999, 73: 958-964.PubMedCentralPubMed Gromeier M, Bossert B, Arita M, Nomoto A, Wimmer E: Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virology. 1999, 73: 958-964.PubMedCentralPubMed
68.
go back to reference Kolupaeva VG, Lomakin IB, Pestova TV, Hellen CU: Eukaryotic initiation factors 4G and 4A mediate conformational changes downstream of the initiation codon of the encephalomyocarditis virus internal ribosomal entry site. Mol Cell Biol. 2003, 23: 687-698. 10.1128/MCB.23.2.687-698.2003.PubMedCentralCrossRefPubMed Kolupaeva VG, Lomakin IB, Pestova TV, Hellen CU: Eukaryotic initiation factors 4G and 4A mediate conformational changes downstream of the initiation codon of the encephalomyocarditis virus internal ribosomal entry site. Mol Cell Biol. 2003, 23: 687-698. 10.1128/MCB.23.2.687-698.2003.PubMedCentralCrossRefPubMed
69.
go back to reference Kuge S, Nomoto A: Construction of viable deletion and insertion mutants of the Sabin strain type 1 poliovirus: function of the 5′ non coding sequence in viral replication. J Virol. 1987, 61: 1478-1487.PubMedCentralPubMed Kuge S, Nomoto A: Construction of viable deletion and insertion mutants of the Sabin strain type 1 poliovirus: function of the 5′ non coding sequence in viral replication. J Virol. 1987, 61: 1478-1487.PubMedCentralPubMed
70.
go back to reference Meerovitch K, Nicholson R, Sonenberg N: In vitro mutational analysis of cis-acting RNA translational elements within the poliovirus type 2 5′ untranslated region. J Virol. 1991, 65: 5895-5901.PubMedCentralPubMed Meerovitch K, Nicholson R, Sonenberg N: In vitro mutational analysis of cis-acting RNA translational elements within the poliovirus type 2 5′ untranslated region. J Virol. 1991, 65: 5895-5901.PubMedCentralPubMed
71.
go back to reference Haller AA, Semler BL: Linker scanning mutagenesis of the internal ribosome entry site of poliovirus RNA. J Virol. 1992, 66: 5075-5086.PubMedCentralPubMed Haller AA, Semler BL: Linker scanning mutagenesis of the internal ribosome entry site of poliovirus RNA. J Virol. 1992, 66: 5075-5086.PubMedCentralPubMed
72.
go back to reference Niepmann M: Internal translation initiation of picornaviruses and hepatitis C virus. Biochim Biophys Acta. 2009, 1789: 529-541. 10.1016/j.bbagrm.2009.05.002.CrossRefPubMed Niepmann M: Internal translation initiation of picornaviruses and hepatitis C virus. Biochim Biophys Acta. 2009, 1789: 529-541. 10.1016/j.bbagrm.2009.05.002.CrossRefPubMed
73.
go back to reference Martínez-Salas E, Pacheco A, Serrano P, Fernandez N: New insights into internal ribosome entry site elements relevant for viral gene expression. J Gen Virol. 2008, 89: 611-626. 10.1099/vir.0.83426-0.CrossRefPubMed Martínez-Salas E, Pacheco A, Serrano P, Fernandez N: New insights into internal ribosome entry site elements relevant for viral gene expression. J Gen Virol. 2008, 89: 611-626. 10.1099/vir.0.83426-0.CrossRefPubMed
Metadata
Title
Impaired binding of standard initiation factors eIF3b, eIF4G and eIF4B to domain V of the live-attenuated coxsackievirus B3 Sabin3-like IRES - alternatives for 5′UTR-related cardiovirulence mechanisms
Authors
Amira Souii
Jawhar Gharbi
Manel Ben M’hadheb-Gharbi
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2013
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/1746-1596-8-161

Other articles of this Issue 1/2013

Diagnostic Pathology 1/2013 Go to the issue