Skip to main content
Top
Published in: Diagnostic Pathology 1/2011

Open Access 01-12-2011 | Proceedings

Distributed computing in image analysis using open source frameworks and application to image sharpness assessment of histological whole slide images

Authors: Norman Zerbe, Peter Hufnagl, Karsten Schlüns

Published in: Diagnostic Pathology | Special Issue 1/2011

Login to get access

Abstract

Background

Automated image analysis on virtual slides is evolving rapidly and will play an important role in the future of digital pathology. Due to the image size, the computational cost of processing whole slide images (WSIs) in full resolution is immense. Moreover, image analysis requires well focused images in high magnification.

Methods

We present a system that merges virtual microscopy techniques, open source image analysis software, and distributed parallel processing. We have integrated the parallel processing framework JPPF, so batch processing can be performed distributed and in parallel. All resulting meta data and image data are collected and merged. As an example the system is applied to the specific task of image sharpness assessment. ImageJ is an open source image editing and processing framework developed at the NIH having a large user community that contributes image processing algorithms wrapped as plug-ins in a wide field of life science applications. We developed an ImageJ plug-in that supports both basic interactive virtual microscope and batch processing functionality. For the application of sharpness inspection we employ an approach with non-overlapping tiles. Compute nodes retrieve image tiles of moderate size from the streaming server and compute the focus measure. Each tile is divided into small sub images to calculate an edge based sharpness criterion which is used for classification. The results are aggregated in a sharpness map.

Results

Based on the system we calculate a sharpness measure and classify virtual slides into one of the following categories - excellent, okay, review and defective. Generating a scaled sharpness map enables the user to evaluate sharpness of WSIs and shows overall quality at a glance thus reducing tedious assessment work.

Conclusions

Using sharpness assessment as an example, the introduced system can be used to process, analyze and parallelize analysis of whole slide images based on open source software.
Literature
1.
go back to reference Saeger K, Schlüns K, Schrader T, Hufnagl P: The virtual microscope for routine pathology based on a PACS system for 6 Gb images. Proceedings of the 17th International Congress and Exhibition CARS 2003: 25-28 June 2003; London. Edited by: Lemke HU. 2003, Amsterdam: Elsevier, 299-304. Saeger K, Schlüns K, Schrader T, Hufnagl P: The virtual microscope for routine pathology based on a PACS system for 6 Gb images. Proceedings of the 17th International Congress and Exhibition CARS 2003: 25-28 June 2003; London. Edited by: Lemke HU. 2003, Amsterdam: Elsevier, 299-304.
2.
go back to reference Zwönitzer R, Kalinski T, Hofmann H, Roessner A, Bernarding J: Digital pathology: DICOM-conform draft, testbed, and first results. Comput Methods Programs Biomed. 2007, 87: 181-188. 10.1016/j.cmpb.2007.05.010.CrossRefPubMed Zwönitzer R, Kalinski T, Hofmann H, Roessner A, Bernarding J: Digital pathology: DICOM-conform draft, testbed, and first results. Comput Methods Programs Biomed. 2007, 87: 181-188. 10.1016/j.cmpb.2007.05.010.CrossRefPubMed
4.
go back to reference Abramoff MD, Magelhaes PJ, Ram SJ: Image Processing with ImageJ. Biophotonics International. 2004, 11: 36-42. Abramoff MD, Magelhaes PJ, Ram SJ: Image Processing with ImageJ. Biophotonics International. 2004, 11: 36-42.
5.
go back to reference Schindelin J: Fiji is just ImageJ - Batteries included. Proceedings of the ImageJ User and Developer Conference: 6-7 November 2008. 2008, Luxembourg Schindelin J: Fiji is just ImageJ - Batteries included. Proceedings of the ImageJ User and Developer Conference: 6-7 November 2008. 2008, Luxembourg
8.
go back to reference Sun Y, Duthaler S, Nelson BJ: Autofocusing in computer microscopy: selecting the optimal focus algorithm. Microsc Res Tech. 2004, 65: 139-149. 10.1002/jemt.20118.CrossRefPubMed Sun Y, Duthaler S, Nelson BJ: Autofocusing in computer microscopy: selecting the optimal focus algorithm. Microsc Res Tech. 2004, 65: 139-149. 10.1002/jemt.20118.CrossRefPubMed
9.
go back to reference Huang W, Jing Z: Evaluation of focus measures in multi-focus image fusion. Pattern Recognit Lett. 2007, 28: 493-500. 10.1016/j.patrec.2006.09.005.CrossRef Huang W, Jing Z: Evaluation of focus measures in multi-focus image fusion. Pattern Recognit Lett. 2007, 28: 493-500. 10.1016/j.patrec.2006.09.005.CrossRef
10.
go back to reference Kayser K, Görtler J, Metze K, Goldmann T, Vollmer E, Mireskandari M, Kosjerina Z, Kayser G: How to measure image quality in tissue-based diagnosis (diagnostic surgical pathology). Diagn Pathol. 2008, 3 (Suppl 1): 11-10.1186/1746-1596-3-S1-S11.CrossRef Kayser K, Görtler J, Metze K, Goldmann T, Vollmer E, Mireskandari M, Kosjerina Z, Kayser G: How to measure image quality in tissue-based diagnosis (diagnostic surgical pathology). Diagn Pathol. 2008, 3 (Suppl 1): 11-10.1186/1746-1596-3-S1-S11.CrossRef
11.
go back to reference Yeo T, Ong S, Jayasooriah SR: Autofocusing for tissue microscopy. Image Vis Comput. 1993, 11: 629-639. 10.1016/0262-8856(93)90059-P.CrossRef Yeo T, Ong S, Jayasooriah SR: Autofocusing for tissue microscopy. Image Vis Comput. 1993, 11: 629-639. 10.1016/0262-8856(93)90059-P.CrossRef
12.
go back to reference Subbarao M, Choi T, Nikzad A: Focusing Techniques. Machine Vision Applications Architectures, and Systems Integration (Proceedings of SPIE): 17-18 November 1992; Boston. Edited by: Batchelor BG. 1992, SPIE, 163-174.CrossRef Subbarao M, Choi T, Nikzad A: Focusing Techniques. Machine Vision Applications Architectures, and Systems Integration (Proceedings of SPIE): 17-18 November 1992; Boston. Edited by: Batchelor BG. 1992, SPIE, 163-174.CrossRef
Metadata
Title
Distributed computing in image analysis using open source frameworks and application to image sharpness assessment of histological whole slide images
Authors
Norman Zerbe
Peter Hufnagl
Karsten Schlüns
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue Special Issue 1/2011
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/1746-1596-6-S1-S16

Other articles of this Special Issue 1/2011

Diagnostic Pathology 1/2011 Go to the issue