Skip to main content
Top
Published in: Behavioral and Brain Functions 1/2008

Open Access 01-12-2008 | Research

Speech identification and cortical potentials in individuals with auditory neuropathy

Authors: Vijaya kumar Narne, CS Vanaja

Published in: Behavioral and Brain Functions | Issue 1/2008

Login to get access

Abstract

Background

Present study investigated the relationship between speech identification scores in quiet and parameters of cortical potentials (latency of P1, N1, and P2; and amplitude of N1/P2) in individuals with auditory neuropathy.

Methods

Ten individuals with auditory neuropathy (five males and five females) and ten individuals with normal hearing in the age range of 12 to 39 yr participated in the study. Speech identification ability was assessed for bi-syllabic words and cortical potentials were recorded for click stimuli.

Results

Results revealed that in individuals with auditory neuropathy, speech identification scores were significantly poorer than that of individuals with normal hearing. Individuals with auditory neuropathy were further classified into two groups, Good Performers and Poor Performers based on their speech identification scores. It was observed that the mean amplitude of N1/P2 of Poor Performers was significantly lower than that of Good Performers and those with normal hearing. There was no significant effect of group on the latency of the peaks. Speech identification scores showed a good correlation with the amplitude of cortical potentials (N1/P2 complex) but did not show a significant correlation with the latency of cortical potentials.

Conclusion

Results of the present study suggests that measuring the cortical potentials may offer a means for predicting perceptual skills in individuals with auditory neuropathy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Starr A, Michalewski HJ, Zeng FG, FujiKawa-Brooks S, Lithicum F, Kim CS, Winner D, Keats B: Pathology and physiology of AN with novel mutation in the MPZ gene (tyr145->ser). Brain. 2003, 126: 1604-1619. 10.1093/brain/awg156.CrossRefPubMed Starr A, Michalewski HJ, Zeng FG, FujiKawa-Brooks S, Lithicum F, Kim CS, Winner D, Keats B: Pathology and physiology of AN with novel mutation in the MPZ gene (tyr145->ser). Brain. 2003, 126: 1604-1619. 10.1093/brain/awg156.CrossRefPubMed
2.
go back to reference Zeng FG, Kong YY, Michalewski HJ, Starr A: Perceptual consequences of disrupted auditory nerve activity. J Neurohysiol. 2005, 93 (6): 3050-3063. 10.1152/jn.00985.2004.CrossRef Zeng FG, Kong YY, Michalewski HJ, Starr A: Perceptual consequences of disrupted auditory nerve activity. J Neurohysiol. 2005, 93 (6): 3050-3063. 10.1152/jn.00985.2004.CrossRef
3.
go back to reference Sininger Y, Oba S: Patients with AN: who are they and what can they hear?. A new perspective on hearing disorders. Edited by: Sininger Y, Starr A. 2001, Sandigo: Singular-Thomson learning, 15-35. Sininger Y, Oba S: Patients with AN: who are they and what can they hear?. A new perspective on hearing disorders. Edited by: Sininger Y, Starr A. 2001, Sandigo: Singular-Thomson learning, 15-35.
4.
go back to reference Zeng FG, Oba S, Grade S, Sininger Y, Starr A: Temporal and speech processing deficits in AN. Neuroreport. 1999, 10: 3429-3435.CrossRefPubMed Zeng FG, Oba S, Grade S, Sininger Y, Starr A: Temporal and speech processing deficits in AN. Neuroreport. 1999, 10: 3429-3435.CrossRefPubMed
5.
go back to reference Starr A, Picton TW, Sininger S, Hood LJ, Berlin CI: Auditory Neuropathy. Brain. 1996, 119: 741-753. 10.1093/brain/119.3.741.CrossRefPubMed Starr A, Picton TW, Sininger S, Hood LJ, Berlin CI: Auditory Neuropathy. Brain. 1996, 119: 741-753. 10.1093/brain/119.3.741.CrossRefPubMed
6.
go back to reference Kraus N, Bradlow MA, Cunningham CJ, King CD, Koch DB, Nicol TG, Mcgee TJ, Stein LK, Wright BA: Consequences of neural asynchrony: A case of AN. J Assoc Res Otolaryngol. 2000, 01: 33-45. 10.1007/s101620010004.CrossRef Kraus N, Bradlow MA, Cunningham CJ, King CD, Koch DB, Nicol TG, Mcgee TJ, Stein LK, Wright BA: Consequences of neural asynchrony: A case of AN. J Assoc Res Otolaryngol. 2000, 01: 33-45. 10.1007/s101620010004.CrossRef
7.
go back to reference Rance G, Cone-Wession B, Shepherd RK, Dowell RC, King AM, Rickards FW, Clark GM: Speech perception and cortical event related potentials in children with AN. Ear Hear. 2002, 25: 34-46. 10.1097/01.AUD.0000111259.59690.B8.CrossRef Rance G, Cone-Wession B, Shepherd RK, Dowell RC, King AM, Rickards FW, Clark GM: Speech perception and cortical event related potentials in children with AN. Ear Hear. 2002, 25: 34-46. 10.1097/01.AUD.0000111259.59690.B8.CrossRef
8.
go back to reference Vanaja CS, Manjula P: LLR as a measure of benefit derived from hearing devices with auditory dys-synchrony. first conference on Auditory Neuropathy. Edited by: Shivashanker N, Shashikala HR. 2004, Bangalore: Department of Speech pathology and Audiology, National Institute of Mental Health and Neuro sciences, 136-146. Vanaja CS, Manjula P: LLR as a measure of benefit derived from hearing devices with auditory dys-synchrony. first conference on Auditory Neuropathy. Edited by: Shivashanker N, Shashikala HR. 2004, Bangalore: Department of Speech pathology and Audiology, National Institute of Mental Health and Neuro sciences, 136-146.
9.
go back to reference Vandana : Speech identification test in Kannada. 1998, Unpublished independent project, University of Mysore, Mysore, India Vandana : Speech identification test in Kannada. 1998, Unpublished independent project, University of Mysore, Mysore, India
10.
go back to reference American National Standards Institute: Maximum permissible ambient noise for audiometric rooms. ANSI S3.1-1999. New York: American National Standards Institute American National Standards Institute: Maximum permissible ambient noise for audiometric rooms. ANSI S3.1-1999. New York: American National Standards Institute
11.
go back to reference American National Standards Institute: Specification for audiometers. ANSI S3.6-1996. New York: American National Standards Institute American National Standards Institute: Specification for audiometers. ANSI S3.6-1996. New York: American National Standards Institute
12.
go back to reference Vanaja CS, Jayaram M: Sensitivity and specificity of audiological tests. 2003, Unpublished Project Report, All India Institute of Speech and Hearing, Mysore, India Vanaja CS, Jayaram M: Sensitivity and specificity of audiological tests. 2003, Unpublished Project Report, All India Institute of Speech and Hearing, Mysore, India
13.
go back to reference Yellin MW, Jerger J, Fifer RC: Norms for disproportionate loss in speech intelligibility. Ear Hear. 1989, 10: 231-234. 10.1097/00003446-198908000-00003.CrossRefPubMed Yellin MW, Jerger J, Fifer RC: Norms for disproportionate loss in speech intelligibility. Ear Hear. 1989, 10: 231-234. 10.1097/00003446-198908000-00003.CrossRefPubMed
15.
go back to reference Oates P, Kurtzberg D, Stapells DR: Effect of sensoryneural hearing loss on cortical event-related potentials behavioral measures of sound processing. Ear Hear. 2002, 23: 399-415. 10.1097/00003446-200210000-00002.CrossRefPubMed Oates P, Kurtzberg D, Stapells DR: Effect of sensoryneural hearing loss on cortical event-related potentials behavioral measures of sound processing. Ear Hear. 2002, 23: 399-415. 10.1097/00003446-200210000-00002.CrossRefPubMed
16.
go back to reference Hall JW: Effect of nonpathologic subject characteristics. Edited by: Allyn & Bacon. 1992, Handbook of auditory evoked responses, 70-103. Hall JW: Effect of nonpathologic subject characteristics. Edited by: Allyn & Bacon. 1992, Handbook of auditory evoked responses, 70-103.
17.
go back to reference Satya-Murthi S, Wolpaw JR, Cacace AT, Scharffer CA: Late auditory evoked potentials can occur without brain stem potentials. Electroencephalogr Clin Neurophysiol. 1983, 56: 304-307. 10.1016/0013-4694(83)90255-9.CrossRef Satya-Murthi S, Wolpaw JR, Cacace AT, Scharffer CA: Late auditory evoked potentials can occur without brain stem potentials. Electroencephalogr Clin Neurophysiol. 1983, 56: 304-307. 10.1016/0013-4694(83)90255-9.CrossRef
18.
go back to reference Hendler T, Squires NK, Moore JK, Coyle PK: Auditory evoked potentials in multiple sclerosis: correlation with magnetic resonance imaging. J Basic Clin Physiol Pharmacol. 1996, 7: 245-278.CrossRefPubMed Hendler T, Squires NK, Moore JK, Coyle PK: Auditory evoked potentials in multiple sclerosis: correlation with magnetic resonance imaging. J Basic Clin Physiol Pharmacol. 1996, 7: 245-278.CrossRefPubMed
19.
go back to reference Japaridze G, Shakarishvili R, Kevanishvili Z: Auditory brainstem, middle-latency, and slow cortical responses in multiple sclerosis. Acta Neurol Scand. 2002, 106: 47-53. 10.1034/j.1600-0404.2002.01226.x.CrossRefPubMed Japaridze G, Shakarishvili R, Kevanishvili Z: Auditory brainstem, middle-latency, and slow cortical responses in multiple sclerosis. Acta Neurol Scand. 2002, 106: 47-53. 10.1034/j.1600-0404.2002.01226.x.CrossRefPubMed
20.
go back to reference Mc Donald WI, Sears TA: The effect of experimental demyelination on conduction in the central nerves system. Brain. 1970, 91: 583-595. 10.1093/brain/93.3.583.CrossRef Mc Donald WI, Sears TA: The effect of experimental demyelination on conduction in the central nerves system. Brain. 1970, 91: 583-595. 10.1093/brain/93.3.583.CrossRef
21.
go back to reference Rapin I, Gravel J: "Auditory neuropathy": Physiologic and pathologic evidence calls for more diagnostic specificity. Int J Pediatr Otorhinolaryngol. 2003, 67: 707-728. 10.1016/S0165-5876(03)00103-4.CrossRefPubMed Rapin I, Gravel J: "Auditory neuropathy": Physiologic and pathologic evidence calls for more diagnostic specificity. Int J Pediatr Otorhinolaryngol. 2003, 67: 707-728. 10.1016/S0165-5876(03)00103-4.CrossRefPubMed
22.
go back to reference Giraud AL, Lorenzi C, Ashburner J, Wable J, Johnsrude I, Frackowiak R, Kleinschmidt R: Representation of the Temporal Envelope of Sounds in the Human Brain. J Neurophysiol. 2000, 84: 1588-1598.PubMed Giraud AL, Lorenzi C, Ashburner J, Wable J, Johnsrude I, Frackowiak R, Kleinschmidt R: Representation of the Temporal Envelope of Sounds in the Human Brain. J Neurophysiol. 2000, 84: 1588-1598.PubMed
23.
go back to reference Drullman R, Festen JM, Plomp R: Effect of temporal envelope smearing on speech reception. J Acoust Soc Am. 1994, 95: 1053-1064. 10.1121/1.408467.CrossRefPubMed Drullman R, Festen JM, Plomp R: Effect of temporal envelope smearing on speech reception. J Acoust Soc Am. 1994, 95: 1053-1064. 10.1121/1.408467.CrossRefPubMed
Metadata
Title
Speech identification and cortical potentials in individuals with auditory neuropathy
Authors
Vijaya kumar Narne
CS Vanaja
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Behavioral and Brain Functions / Issue 1/2008
Electronic ISSN: 1744-9081
DOI
https://doi.org/10.1186/1744-9081-4-15

Other articles of this Issue 1/2008

Behavioral and Brain Functions 1/2008 Go to the issue