Skip to main content
Top
Published in: Behavioral and Brain Functions 1/2007

Open Access 01-12-2007 | Research

Behavioral variability, elimination of responses, and delay-of-reinforcement gradients in SHR and WKY rats

Authors: Espen B Johansen, Peter R Killeen, Terje Sagvolden

Published in: Behavioral and Brain Functions | Issue 1/2007

Login to get access

Abstract

Background

Attention-deficit/hyperactivity disorder (ADHD) is characterized by a pattern of inattention, hyperactivity, and impulsivity that is cross-situational, persistent, and produces social and academic impairment. Research has shown that reinforcement processes are altered in ADHD. The dynamic developmental theory has suggested that a steepened delay-of-reinforcement gradient and deficient extinction of behavior produce behavioral symptoms of ADHD and increased behavioral variability.

Method

The present study investigated behavioral variability and elimination of non-target responses during acquisition in an animal model of ADHD, the spontaneously hypertensive rat (SHR), using Wistar Kyoto (WKY) rats as controls. The study also aimed at providing a novel approach to measuring delay-of-reinforcement gradients in the SHR and the WKY strains. The animals were tested in a modified operant chamber presenting 20 response alternatives. Nose pokes in a target hole produced water according to fixed interval (FI) schedules of reinforcement, while nose pokes in the remaining 19 holes either had no consequences or produced a sound or a short flickering of the houselight. The stimulus-producing holes were included to test whether light and sound act as sensory reinforcers in SHR.
Data from the first six sessions testing FI 1 s were used for calculation of the initial distribution of responses. Additionally, Euclidean distance (measured from the center of each hole to the center of the target hole) and entropy (a measure of variability) were also calculated.
Delay-of-reinforcement gradients were calculated across sessions by dividing the fixed interval into epochs and determining how much reinforcement of responses in one epoch contributed to responding in the next interval.

Results

Over the initial six sessions, behavior became clustered around the target hole. There was greater initial variability in SHR behavior, and slower elimination of inefficient responses compared to the WKY. There was little or no differential use of the stimulus-producing holes by either strain. For SHR, the reach of reinforcement (the delay-of-reinforcement gradient) was restricted to the preceding one second, whereas for WKY it extended about four times as far.

Conclusion

The present findings support previous studies showing increased behavioral variability in SHR relative to WKY controls. A possibly related phenomenon may be the slowed elimination of non-operant nose pokes in SHR observed in the present study. The findings provide support for a steepened delay-of-reinforcement gradient in SHR as suggested in the dynamic developmental theory of ADHD. Altered reinforcement processes characterized by a steeper and shorter delay-of-reinforcement gradient may define an ADHD endophenotype.
Appendix
Available only for authorised users
Literature
1.
go back to reference Association AP: Diagnostic and statistical manual of mental disorders: DSM-IV. 1994, Washington, D.C., Author, 78-85. 4 Association AP: Diagnostic and statistical manual of mental disorders: DSM-IV. 1994, Washington, D.C., Author, 78-85. 4
2.
go back to reference Swanson JM, Sergeant JA, Taylor E, Sonuga-Barke EJS, Jensen PS, Cantwell DP: Attention-deficit hyperactivity disorder and hyperkinetic disorder. Lancet. 1998, 351: 429-433. 10.1016/S0140-6736(97)11450-7.CrossRefPubMed Swanson JM, Sergeant JA, Taylor E, Sonuga-Barke EJS, Jensen PS, Cantwell DP: Attention-deficit hyperactivity disorder and hyperkinetic disorder. Lancet. 1998, 351: 429-433. 10.1016/S0140-6736(97)11450-7.CrossRefPubMed
3.
go back to reference Taylor E, Sergeant J, Doepfner M, Gunning B, Overmeyer S, Möbius HJ, Eisert HG: Clinical guidelines for hyperkinetic disorder. Eur Child Adolesc Psychiatry. 1998, 7: 184-200. 10.1007/s007870050067.CrossRefPubMed Taylor E, Sergeant J, Doepfner M, Gunning B, Overmeyer S, Möbius HJ, Eisert HG: Clinical guidelines for hyperkinetic disorder. Eur Child Adolesc Psychiatry. 1998, 7: 184-200. 10.1007/s007870050067.CrossRefPubMed
4.
go back to reference Douglas VI, Parry PA: Effects of reward on delayed reaction time task performance of hyperactive children. J Abnorm Child Psychol. 1983, 11: 313-326. 10.1007/BF00912094.CrossRefPubMed Douglas VI, Parry PA: Effects of reward on delayed reaction time task performance of hyperactive children. J Abnorm Child Psychol. 1983, 11: 313-326. 10.1007/BF00912094.CrossRefPubMed
5.
go back to reference Douglas VI, Parry PA: Effects of reward and nonreward on frustration and attention in attention deficit disorder. J Abnorm Child Psychol. 1994, 22: 281-301. 10.1007/BF02168075.CrossRefPubMed Douglas VI, Parry PA: Effects of reward and nonreward on frustration and attention in attention deficit disorder. J Abnorm Child Psychol. 1994, 22: 281-301. 10.1007/BF02168075.CrossRefPubMed
6.
go back to reference Sonuga-Barke EJ, Taylor E, Sembi S, Smith J: Hyperactivity and delay aversion--I. The effect of delay on choice. J Child Psychol Psychiatry. 1992, 33: 387-398. 10.1111/j.1469-7610.1992.tb00874.x.CrossRefPubMed Sonuga-Barke EJ, Taylor E, Sembi S, Smith J: Hyperactivity and delay aversion--I. The effect of delay on choice. J Child Psychol Psychiatry. 1992, 33: 387-398. 10.1111/j.1469-7610.1992.tb00874.x.CrossRefPubMed
7.
go back to reference Wender PH: Minimal brain dysfunction in children. 1971, New York, Wiley Wender PH: Minimal brain dysfunction in children. 1971, New York, Wiley
8.
go back to reference Kollins SH, Lane SD, Shapiro SK: Experimental analysis of childhood psychopathology: A laboratory matching analysis of the behavior of children diagnosed with Attention-Deficit Hyperactivity Disorder (ADHD). Psychol Rec. 1997, 47: 25-44. Kollins SH, Lane SD, Shapiro SK: Experimental analysis of childhood psychopathology: A laboratory matching analysis of the behavior of children diagnosed with Attention-Deficit Hyperactivity Disorder (ADHD). Psychol Rec. 1997, 47: 25-44.
9.
go back to reference Tripp G, Alsop B: Sensitivity to reward frequency in boys with attention deficit hyperactivity disorder. J Clin Child Psychol. 1999, 28: 366-375. 10.1207/S15374424jccp280309.CrossRefPubMed Tripp G, Alsop B: Sensitivity to reward frequency in boys with attention deficit hyperactivity disorder. J Clin Child Psychol. 1999, 28: 366-375. 10.1207/S15374424jccp280309.CrossRefPubMed
10.
go back to reference Sagvolden T, Aase H, Zeiner P, Berger DF: Altered reinforcement mechanisms in Attention-Deficit/Hyperactivity Disorder. Behav Brain Res. 1998, 94: 61-71. 10.1016/S0166-4328(97)00170-8.CrossRefPubMed Sagvolden T, Aase H, Zeiner P, Berger DF: Altered reinforcement mechanisms in Attention-Deficit/Hyperactivity Disorder. Behav Brain Res. 1998, 94: 61-71. 10.1016/S0166-4328(97)00170-8.CrossRefPubMed
11.
go back to reference Luman M, Oosterlaan J, Sergeant JA: The impact of reinforcement contingencies on AD/HD: a review and theoretical appraisal. Clin Psychol Rev. 2005, 25: 183-213. 10.1016/j.cpr.2004.11.001.CrossRefPubMed Luman M, Oosterlaan J, Sergeant JA: The impact of reinforcement contingencies on AD/HD: a review and theoretical appraisal. Clin Psychol Rev. 2005, 25: 183-213. 10.1016/j.cpr.2004.11.001.CrossRefPubMed
12.
go back to reference Sagvolden T, Sergeant JA: Attention deficit/hyperactivity disorder--from brain dysfunctions to behaviour. Behav Brain Res. 1998, 94: 1-10. 10.1016/S0166-4328(97)00170-8.CrossRefPubMed Sagvolden T, Sergeant JA: Attention deficit/hyperactivity disorder--from brain dysfunctions to behaviour. Behav Brain Res. 1998, 94: 1-10. 10.1016/S0166-4328(97)00170-8.CrossRefPubMed
13.
go back to reference Sagvolden T, Johansen EB, Aase H, Russell VA: A dynamic developmental theory of Attention-Deficit/Hyperactivity Disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci. 2005, 28: 397-419. 10.1017/S0140525X05000075.CrossRefPubMed Sagvolden T, Johansen EB, Aase H, Russell VA: A dynamic developmental theory of Attention-Deficit/Hyperactivity Disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci. 2005, 28: 397-419. 10.1017/S0140525X05000075.CrossRefPubMed
14.
go back to reference Johansen EB, Aase H, Meyer A, Sagvolden T: Attention-deficit/hyperactivity disorder (ADHD) behaviour explained by dysfunctioning reinforcement and extinction processes. Behav Brain Res. 2002, 130: 37-45. 10.1016/S0166-4328(01)00434-X.CrossRefPubMed Johansen EB, Aase H, Meyer A, Sagvolden T: Attention-deficit/hyperactivity disorder (ADHD) behaviour explained by dysfunctioning reinforcement and extinction processes. Behav Brain Res. 2002, 130: 37-45. 10.1016/S0166-4328(01)00434-X.CrossRefPubMed
15.
go back to reference Catania AC: Precommentary: Attention-deficit/hyperactivity disorder (ADHD): Delay-of-reinforcement gradients and other behavioral mechanisms. Behav Brain Sci. 2005, 28: 419-424. 10.1017/S0140525X05220071. Catania AC: Precommentary: Attention-deficit/hyperactivity disorder (ADHD): Delay-of-reinforcement gradients and other behavioral mechanisms. Behav Brain Sci. 2005, 28: 419-424. 10.1017/S0140525X05220071.
16.
go back to reference Sagvolden T: Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev. 2000, 24: 31-39. 10.1016/S0149-7634(99)00058-5.CrossRefPubMed Sagvolden T: Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev. 2000, 24: 31-39. 10.1016/S0149-7634(99)00058-5.CrossRefPubMed
17.
go back to reference Russell VA, Sagvolden T, Johansen EB: Animal models of attention-deficit hyperactivity disorder. Behav Brain Func. 2005, 1: 9-10.1186/1744-9081-1-9.CrossRef Russell VA, Sagvolden T, Johansen EB: Animal models of attention-deficit hyperactivity disorder. Behav Brain Func. 2005, 1: 9-10.1186/1744-9081-1-9.CrossRef
18.
go back to reference Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M: Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005, 57: 1239-1247. 10.1016/j.biopsych.2005.02.002.CrossRefPubMed Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M: Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005, 57: 1239-1247. 10.1016/j.biopsych.2005.02.002.CrossRefPubMed
19.
go back to reference Johansen EB, Sagvolden T, Kvande G: Effects of delayed reinforcers on the behavior of an animal model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Res. 2005, 162: 47-61. 10.1016/j.bbr.2005.02.034.CrossRefPubMed Johansen EB, Sagvolden T, Kvande G: Effects of delayed reinforcers on the behavior of an animal model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Res. 2005, 162: 47-61. 10.1016/j.bbr.2005.02.034.CrossRefPubMed
20.
go back to reference Johansen EB, Sagvolden T, Aase H, Russell VA: Authors' response: The dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD): Present status and future perspectives. Behav Brain Sci. 2005, 28: 451-468. 10.1017/S0140525X05430071.CrossRef Johansen EB, Sagvolden T, Aase H, Russell VA: Authors' response: The dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD): Present status and future perspectives. Behav Brain Sci. 2005, 28: 451-468. 10.1017/S0140525X05430071.CrossRef
21.
go back to reference Johansen EB, Sagvolden T: Slower extinction of responses maintained by intra-cranial self-stimulation (ICSS) in an animal model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Res. 2005, 162: 22-31. 10.1016/j.bbr.2005.02.035.CrossRefPubMed Johansen EB, Sagvolden T: Slower extinction of responses maintained by intra-cranial self-stimulation (ICSS) in an animal model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Res. 2005, 162: 22-31. 10.1016/j.bbr.2005.02.035.CrossRefPubMed
22.
go back to reference Johansen EB, Sagvolden T: Behavioral effects of intra-cranial self-stimulation in an animal model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Res. 2005, 162: 32-46. 10.1016/j.bbr.2005.02.033.CrossRefPubMed Johansen EB, Sagvolden T: Behavioral effects of intra-cranial self-stimulation in an animal model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Res. 2005, 162: 32-46. 10.1016/j.bbr.2005.02.033.CrossRefPubMed
23.
go back to reference Sagvolden T, Hendley ED, Knardahl S: Behavior of hypertensive and hyperactive rat strains: Hyperactivity is not unitarily determined. Physiol Behav. 1992, 52: 49-57. 10.1016/0031-9384(92)90432-2.CrossRefPubMed Sagvolden T, Hendley ED, Knardahl S: Behavior of hypertensive and hyperactive rat strains: Hyperactivity is not unitarily determined. Physiol Behav. 1992, 52: 49-57. 10.1016/0031-9384(92)90432-2.CrossRefPubMed
25.
go back to reference Aase H, Sagvolden T: Moment-to-Moment Dynamics of ADHD Behaviour. Behav Brain Func. 2005, 1: 12-10.1186/1744-9081-1-12.CrossRef Aase H, Sagvolden T: Moment-to-Moment Dynamics of ADHD Behaviour. Behav Brain Func. 2005, 1: 12-10.1186/1744-9081-1-12.CrossRef
26.
go back to reference Aase H, Meyer A, Sagvolden T: Moment-to-moment dynamics of ADHD behaviour in South African children. Behav Brain Func. 2006, 2: 11-10.1186/1744-9081-2-11.CrossRef Aase H, Meyer A, Sagvolden T: Moment-to-moment dynamics of ADHD behaviour in South African children. Behav Brain Func. 2006, 2: 11-10.1186/1744-9081-2-11.CrossRef
27.
go back to reference Antonitis JJ: Response variability in the white rat during conditioning, extinction, and reconditioning. J Exp Psychol. 1951, 42: 273-281. 10.1037/h0060407.CrossRefPubMed Antonitis JJ: Response variability in the white rat during conditioning, extinction, and reconditioning. J Exp Psychol. 1951, 42: 273-281. 10.1037/h0060407.CrossRefPubMed
28.
go back to reference Low WC, Whitehorn D, Hendley ED: Genetically related rats with differences in hippocampal uptake of norepinephrine and maze performance. Brain Res Bull. 1984, 12: 703-709. 10.1016/0361-9230(84)90151-5.CrossRefPubMed Low WC, Whitehorn D, Hendley ED: Genetically related rats with differences in hippocampal uptake of norepinephrine and maze performance. Brain Res Bull. 1984, 12: 703-709. 10.1016/0361-9230(84)90151-5.CrossRefPubMed
29.
go back to reference Mook DM, Jeffrey J, Neuringer A: Spontaneously hypertensive rats (SHR) readily learn to vary but not repeat instrumental responses. Behav Neural Biol. 1993, 59: 126-135. 10.1016/0163-1047(93)90847-B.CrossRefPubMed Mook DM, Jeffrey J, Neuringer A: Spontaneously hypertensive rats (SHR) readily learn to vary but not repeat instrumental responses. Behav Neural Biol. 1993, 59: 126-135. 10.1016/0163-1047(93)90847-B.CrossRefPubMed
30.
go back to reference Mook DM, Neuringer A: Different effects of amphetamine on reinforced variations versus repetitions in spontaneously hypertensive rats (SHR). Physiol Behav. 1994, 56: 939-944. 10.1016/0031-9384(94)90327-1.CrossRefPubMed Mook DM, Neuringer A: Different effects of amphetamine on reinforced variations versus repetitions in spontaneously hypertensive rats (SHR). Physiol Behav. 1994, 56: 939-944. 10.1016/0031-9384(94)90327-1.CrossRefPubMed
31.
go back to reference Hunziker MH, Saldana RL, Neuringer A: Behavioral variability in SHR and WKY rats as a function of rearing environment and reinforcement contingency. J Exp Anal Behav. 1996, 65: 129-144. 10.1901/jeab.1996.65-129.PubMedCentralCrossRefPubMed Hunziker MH, Saldana RL, Neuringer A: Behavioral variability in SHR and WKY rats as a function of rearing environment and reinforcement contingency. J Exp Anal Behav. 1996, 65: 129-144. 10.1901/jeab.1996.65-129.PubMedCentralCrossRefPubMed
32.
go back to reference Dews PB: Free-operant behavior under conditions of delayed reinforcement I Crf-type schedules. J Exp Anal Behav. 1960, 3: 221-234. 10.1901/jeab.1960.3-221.PubMedCentralCrossRefPubMed Dews PB: Free-operant behavior under conditions of delayed reinforcement I Crf-type schedules. J Exp Anal Behav. 1960, 3: 221-234. 10.1901/jeab.1960.3-221.PubMedCentralCrossRefPubMed
33.
34.
go back to reference Evenden J, Meyerson B: The behavior of spontaneously hypertensive and Wistar Kyoto rats under a paced fixed consecutive number schedule of reinforcement. Pharmacol Biochem Behav. 1999, 63: 71-82. 10.1016/S0091-3057(98)00222-6.CrossRefPubMed Evenden J, Meyerson B: The behavior of spontaneously hypertensive and Wistar Kyoto rats under a paced fixed consecutive number schedule of reinforcement. Pharmacol Biochem Behav. 1999, 63: 71-82. 10.1016/S0091-3057(98)00222-6.CrossRefPubMed
35.
go back to reference Hand DJ, Fox AT, Reilly MP: Response acquisition with delayed reinforcement in a rodent model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Res. 2006, 175: 337-342. 10.1016/j.bbr.2006.09.001.CrossRefPubMed Hand DJ, Fox AT, Reilly MP: Response acquisition with delayed reinforcement in a rodent model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Res. 2006, 175: 337-342. 10.1016/j.bbr.2006.09.001.CrossRefPubMed
36.
go back to reference Lattal KA, Gleeson S: Response acquisition with delayed reinforcement. J Exp Psychol Anim Behav Process. 1990, 16: 27-39. 10.1037/0097-7403.16.1.27.CrossRefPubMed Lattal KA, Gleeson S: Response acquisition with delayed reinforcement. J Exp Psychol Anim Behav Process. 1990, 16: 27-39. 10.1037/0097-7403.16.1.27.CrossRefPubMed
37.
go back to reference Williams B: Associative competition in operant conditioning: Blocking the response-reinforcer association. Psychon Bull Rev. 1999, 6: 618-623.CrossRefPubMed Williams B: Associative competition in operant conditioning: Blocking the response-reinforcer association. Psychon Bull Rev. 1999, 6: 618-623.CrossRefPubMed
38.
go back to reference Killeen PR, Hanson SJ, Osborne SR: Arousal: its genesis and manifestation as response rate. Psychol Rev. 1978, 85: 571-581. 10.1037/0033-295X.85.6.571.CrossRefPubMed Killeen PR, Hanson SJ, Osborne SR: Arousal: its genesis and manifestation as response rate. Psychol Rev. 1978, 85: 571-581. 10.1037/0033-295X.85.6.571.CrossRefPubMed
39.
go back to reference Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T: Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci. 1994, 14: 4467-4480.PubMed Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T: Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci. 1994, 14: 4467-4480.PubMed
40.
go back to reference de Villiers AS, Russell VA, Sagvolden T, Searson A, Jaffer A, Taljaard JJF: alpha2-Adrenoceptor mediated inhibition of [3H]dopamine release from nucleus accumbens slices and monoamine levels in a rat model for Attention Deficit Hyperactivity Disorder. Neurochem Res. 1995, 20: 357-363. 10.1007/BF00973098.CrossRef de Villiers AS, Russell VA, Sagvolden T, Searson A, Jaffer A, Taljaard JJF: alpha2-Adrenoceptor mediated inhibition of [3H]dopamine release from nucleus accumbens slices and monoamine levels in a rat model for Attention Deficit Hyperactivity Disorder. Neurochem Res. 1995, 20: 357-363. 10.1007/BF00973098.CrossRef
41.
go back to reference Russell VA: Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder --- the spontaneously hypertensive rat. Behav Brain Res. 2002, 130: 191-196. 10.1016/S0166-4328(01)00425-9.CrossRefPubMed Russell VA: Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder --- the spontaneously hypertensive rat. Behav Brain Res. 2002, 130: 191-196. 10.1016/S0166-4328(01)00425-9.CrossRefPubMed
42.
go back to reference Judy WV, Watanabe AM, Henry DP, Besch HR, Murphy WR, Hockel GM: Sympathetic nerve activity: role in regulation of blood pressure in the spontaenously hypertensive rat. Circ Res. 1976, 38: 21-29.CrossRefPubMed Judy WV, Watanabe AM, Henry DP, Besch HR, Murphy WR, Hockel GM: Sympathetic nerve activity: role in regulation of blood pressure in the spontaenously hypertensive rat. Circ Res. 1976, 38: 21-29.CrossRefPubMed
43.
go back to reference Killeen PR: Mathematical Principles of Reinforcement. Behav Brain Sci. 1994, 17: 105-172.CrossRef Killeen PR: Mathematical Principles of Reinforcement. Behav Brain Sci. 1994, 17: 105-172.CrossRef
Metadata
Title
Behavioral variability, elimination of responses, and delay-of-reinforcement gradients in SHR and WKY rats
Authors
Espen B Johansen
Peter R Killeen
Terje Sagvolden
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Behavioral and Brain Functions / Issue 1/2007
Electronic ISSN: 1744-9081
DOI
https://doi.org/10.1186/1744-9081-3-60

Other articles of this Issue 1/2007

Behavioral and Brain Functions 1/2007 Go to the issue