Skip to main content
Top
Published in: Molecular Pain 1/2011

Open Access 01-12-2011 | Research

Galanin-immunoreactivity identifies a distinct population of inhibitory interneurons in laminae I-III of the rat spinal cord

Authors: Sheena YX Tiong, Erika Polgár, Josie C van Kralingen, Masahiko Watanabe, Andrew J Todd

Published in: Molecular Pain | Issue 1/2011

Login to get access

Abstract

Background

Inhibitory interneurons constitute 30-40% of neurons in laminae I-III and have an important anti-nociceptive role. However, because of the difficulty in classifying them we know little about their organisation. Previous studies have identified 3 non-overlapping groups of inhibitory interneuron, which contain neuropeptide Y (NPY), neuronal nitric oxide synthase (nNOS) or parvalbumin, and have shown that these differ in postsynaptic targets. Some inhibitory interneurons contain galanin and the first aim of this study was to determine whether these form a different population from those containing NPY, nNOS or parvalbumin. We also estimated the proportion of neurons and GABAergic axons that contain galanin in laminae I-III.

Results

Galanin cells were concentrated in laminae I-IIo, with few in laminae IIi-III. Galanin showed minimal co-localisation with NPY, nNOS or parvalbumin in laminae I-II, but most galanin-containing cells in lamina III were nNOS-positive. Galanin cells constituted ~7%, 3% and 2% of all neurons in laminae I, II and III, and we estimate that this corresponds to 26%, 10% and 5% of the GABAergic neurons in these laminae. However, galanin was only found in ~6% of GABAergic boutons in laminae I-IIo, and ~1% of those in laminae IIi-III.

Conclusions

These results show that galanin, NPY, nNOS and parvalbumin can be used to define four distinct neurochemical populations of inhibitory interneurons. Together with results of a recent study, they suggest that the galanin and NPY populations account for around half of the inhibitory interneurons in lamina I and a quarter of those in lamina II.
Appendix
Available only for authorised users
Literature
1.
go back to reference Polgár E, Hughes DI, Riddell JS, Maxwell DJ, Puskar Z, Todd AJ: Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain 2003, 104: 229–239. 10.1016/S0304-3959(03)00011-3PubMedCrossRef Polgár E, Hughes DI, Riddell JS, Maxwell DJ, Puskar Z, Todd AJ: Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain 2003, 104: 229–239. 10.1016/S0304-3959(03)00011-3PubMedCrossRef
2.
go back to reference Todd AJ, Sullivan AC: Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol 1990, 296: 496–505. 10.1002/cne.902960312PubMedCrossRef Todd AJ, Sullivan AC: Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol 1990, 296: 496–505. 10.1002/cne.902960312PubMedCrossRef
3.
go back to reference Sivilotti L, Woolf CJ: The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol 1994, 72: 169–179.PubMed Sivilotti L, Woolf CJ: The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol 1994, 72: 169–179.PubMed
4.
go back to reference Yaksh TL: Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989, 37: 111–123. 10.1016/0304-3959(89)90160-7PubMedCrossRef Yaksh TL: Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989, 37: 111–123. 10.1016/0304-3959(89)90160-7PubMedCrossRef
5.
go back to reference Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y: Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 2003, 424: 938–942. 10.1038/nature01868PubMedCrossRef Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y: Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 2003, 424: 938–942. 10.1038/nature01868PubMedCrossRef
6.
go back to reference Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ: Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 2002, 22: 6724–6731.PubMed Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ: Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 2002, 22: 6724–6731.PubMed
7.
go back to reference Sandkuhler J: Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 2009, 89: 707–758. 10.1152/physrev.00025.2008PubMedCrossRef Sandkuhler J: Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 2009, 89: 707–758. 10.1152/physrev.00025.2008PubMedCrossRef
9.
go back to reference Gobel S: Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis). J Comp Neurol 1978, 180: 395–413. 10.1002/cne.901800213PubMedCrossRef Gobel S: Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis). J Comp Neurol 1978, 180: 395–413. 10.1002/cne.901800213PubMedCrossRef
10.
go back to reference Graham BA, Brichta AM, Callister RJ: Moving from an averaged to specific view of spinal cord pain processing circuits. J Neurophysiol 2007, 98: 1057–1063. 10.1152/jn.00581.2007PubMedCrossRef Graham BA, Brichta AM, Callister RJ: Moving from an averaged to specific view of spinal cord pain processing circuits. J Neurophysiol 2007, 98: 1057–1063. 10.1152/jn.00581.2007PubMedCrossRef
11.
go back to reference Heinke B, Ruscheweyh R, Forsthuber L, Wunderbaldinger G, Sandkuhler J: Physiological, neurochemical and morphological properties of a subgroup of GABAergic spinal lamina II neurones identified by expression of green fluorescent protein in mice. J Physiol 2004, 560: 249–266. 10.1113/jphysiol.2004.070540PubMedCentralPubMedCrossRef Heinke B, Ruscheweyh R, Forsthuber L, Wunderbaldinger G, Sandkuhler J: Physiological, neurochemical and morphological properties of a subgroup of GABAergic spinal lamina II neurones identified by expression of green fluorescent protein in mice. J Physiol 2004, 560: 249–266. 10.1113/jphysiol.2004.070540PubMedCentralPubMedCrossRef
12.
go back to reference Schneider SP: Functional properties and axon terminations of interneurons in laminae III-V of the mammalian spinal dorsal horn in vitro. J Neurophysiol 1992, 68: 1746–1759.PubMed Schneider SP: Functional properties and axon terminations of interneurons in laminae III-V of the mammalian spinal dorsal horn in vitro. J Neurophysiol 1992, 68: 1746–1759.PubMed
13.
go back to reference Prescott SA, De Koninck Y: Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat. J Physiol 2002, 539: 817–836. 10.1113/jphysiol.2001.013437PubMedCentralPubMedCrossRef Prescott SA, De Koninck Y: Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat. J Physiol 2002, 539: 817–836. 10.1113/jphysiol.2001.013437PubMedCentralPubMedCrossRef
14.
go back to reference Ruscheweyh R, Sandkuhler J: Lamina-specific membrane and discharge properties of rat spinal dorsal horn neurones in vitro. J Physiol 2002, 541: 231–244. 10.1113/jphysiol.2002.017756PubMedCentralPubMedCrossRef Ruscheweyh R, Sandkuhler J: Lamina-specific membrane and discharge properties of rat spinal dorsal horn neurones in vitro. J Physiol 2002, 541: 231–244. 10.1113/jphysiol.2002.017756PubMedCentralPubMedCrossRef
15.
go back to reference Melnick IV, Santos SF, Safronov BV: Mechanism of spike frequency adaptation in substantia gelatinosa neurones of rat. J Physiol 2004, 559: 383–395. 10.1113/jphysiol.2004.066415PubMedCentralPubMedCrossRef Melnick IV, Santos SF, Safronov BV: Mechanism of spike frequency adaptation in substantia gelatinosa neurones of rat. J Physiol 2004, 559: 383–395. 10.1113/jphysiol.2004.066415PubMedCentralPubMedCrossRef
16.
go back to reference Grudt TJ, Perl ER: Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J Physiol 2002, 540: 189–207. 10.1113/jphysiol.2001.012890PubMedCentralPubMedCrossRef Grudt TJ, Perl ER: Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J Physiol 2002, 540: 189–207. 10.1113/jphysiol.2001.012890PubMedCentralPubMedCrossRef
17.
go back to reference Maxwell DJ, Belle MD, Cheunsuang O, Stewart A, Morris R: Morphology of inhibitory and excitatory interneurons in superficial laminae of the rat dorsal horn. J Physiol 2007, 584: 521–533. 10.1113/jphysiol.2007.140996PubMedCentralPubMedCrossRef Maxwell DJ, Belle MD, Cheunsuang O, Stewart A, Morris R: Morphology of inhibitory and excitatory interneurons in superficial laminae of the rat dorsal horn. J Physiol 2007, 584: 521–533. 10.1113/jphysiol.2007.140996PubMedCentralPubMedCrossRef
18.
go back to reference Yasaka T, Kato G, Furue H, Rashid MH, Sonohata M, Tamae A, Murata Y, Masuko S, Yoshimura M: Cell-type-specific excitatory and inhibitory circuits involving primary afferents in the substantia gelatinosa of the rat spinal dorsal horn in vitro. J Physiol 2007, 581: 603–618. 10.1113/jphysiol.2006.123919PubMedCentralPubMedCrossRef Yasaka T, Kato G, Furue H, Rashid MH, Sonohata M, Tamae A, Murata Y, Masuko S, Yoshimura M: Cell-type-specific excitatory and inhibitory circuits involving primary afferents in the substantia gelatinosa of the rat spinal dorsal horn in vitro. J Physiol 2007, 581: 603–618. 10.1113/jphysiol.2006.123919PubMedCentralPubMedCrossRef
19.
go back to reference Yasaka T, Tiong SYX, Hughes DI, Riddell JS, Todd AJ: Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain 2010, 151: 475–488. 10.1016/j.pain.2010.08.008PubMedCentralPubMedCrossRef Yasaka T, Tiong SYX, Hughes DI, Riddell JS, Todd AJ: Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain 2010, 151: 475–488. 10.1016/j.pain.2010.08.008PubMedCentralPubMedCrossRef
20.
go back to reference Réthelyi M, Light AR, Perl ER: Synaptic ultrastructure of functionally and morphologically characterized neurons of the superficial spinal dorsal horn of cat. J Neurosci 1989, 9: 1846–1863.PubMed Réthelyi M, Light AR, Perl ER: Synaptic ultrastructure of functionally and morphologically characterized neurons of the superficial spinal dorsal horn of cat. J Neurosci 1989, 9: 1846–1863.PubMed
21.
go back to reference Light AR, Trevino DL, Perl ER: Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J Comp Neurol 1979, 186: 151–171. 10.1002/cne.901860204PubMedCrossRef Light AR, Trevino DL, Perl ER: Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J Comp Neurol 1979, 186: 151–171. 10.1002/cne.901860204PubMedCrossRef
22.
go back to reference Woolf CJ, Fitzgerald M: The properties of neurones recorded in the superficial dorsal horn of the rat spinal cord. J Comp Neurol 1983, 221: 313–328. 10.1002/cne.902210307PubMedCrossRef Woolf CJ, Fitzgerald M: The properties of neurones recorded in the superficial dorsal horn of the rat spinal cord. J Comp Neurol 1983, 221: 313–328. 10.1002/cne.902210307PubMedCrossRef
23.
go back to reference Todd AJ, McKenzie J: GABA-immunoreactive neurons in the dorsal horn of the rat spinal cord. Neuroscience 1989, 31: 799–806. 10.1016/0306-4522(89)90442-9PubMedCrossRef Todd AJ, McKenzie J: GABA-immunoreactive neurons in the dorsal horn of the rat spinal cord. Neuroscience 1989, 31: 799–806. 10.1016/0306-4522(89)90442-9PubMedCrossRef
24.
go back to reference Todd AJ, Spike RC: The localization of classical transmitters and neuropeptides within neurons in laminae I-III of the mammalian spinal dorsal horn. Prog Neurobiol 1993, 41: 609–645. 10.1016/0301-0082(93)90045-TPubMedCrossRef Todd AJ, Spike RC: The localization of classical transmitters and neuropeptides within neurons in laminae I-III of the mammalian spinal dorsal horn. Prog Neurobiol 1993, 41: 609–645. 10.1016/0301-0082(93)90045-TPubMedCrossRef
25.
go back to reference Polgár E, Furuta T, Kaneko T, Todd A: Characterization of neurons that express preprotachykinin B in the dorsal horn of the rat spinal cord. Neuroscience 2006, 139: 687–697. 10.1016/j.neuroscience.2005.12.021PubMedCrossRef Polgár E, Furuta T, Kaneko T, Todd A: Characterization of neurons that express preprotachykinin B in the dorsal horn of the rat spinal cord. Neuroscience 2006, 139: 687–697. 10.1016/j.neuroscience.2005.12.021PubMedCrossRef
26.
go back to reference Simmons DR, Spike RC, Todd AJ: Galanin is contained in GABAergic neurons in the rat spinal dorsal horn. Neurosci Lett 1995, 187: 119–122. 10.1016/0304-3940(95)11358-4PubMedCrossRef Simmons DR, Spike RC, Todd AJ: Galanin is contained in GABAergic neurons in the rat spinal dorsal horn. Neurosci Lett 1995, 187: 119–122. 10.1016/0304-3940(95)11358-4PubMedCrossRef
27.
go back to reference Proudlock F, Spike RC, Todd AJ: Immunocytochemical study of somatostatin, neurotensin, GABA, and glycine in rat spinal dorsal horn. J Comp Neurol 1993, 327: 289–297. 10.1002/cne.903270210PubMedCrossRef Proudlock F, Spike RC, Todd AJ: Immunocytochemical study of somatostatin, neurotensin, GABA, and glycine in rat spinal dorsal horn. J Comp Neurol 1993, 327: 289–297. 10.1002/cne.903270210PubMedCrossRef
28.
go back to reference Rowan S, Todd AJ, Spike RC: Evidence that neuropeptide Y is present in GABAergic neurons in the superficial dorsal horn of the rat spinal cord. Neuroscience 1993, 53: 537–545. 10.1016/0306-4522(93)90218-5PubMedCrossRef Rowan S, Todd AJ, Spike RC: Evidence that neuropeptide Y is present in GABAergic neurons in the superficial dorsal horn of the rat spinal cord. Neuroscience 1993, 53: 537–545. 10.1016/0306-4522(93)90218-5PubMedCrossRef
29.
go back to reference Todd AJ, Spike RC, Price RF, Neilson M: Immunocytochemical evidence that neurotensin is present in glutamatergic neurons in the superficial dorsal horn of the rat. J Neurosci 1994, 14: 774–784.PubMed Todd AJ, Spike RC, Price RF, Neilson M: Immunocytochemical evidence that neurotensin is present in glutamatergic neurons in the superficial dorsal horn of the rat. J Neurosci 1994, 14: 774–784.PubMed
30.
go back to reference Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ: The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 2003, 17: 13–27. 10.1046/j.1460-9568.2003.02406.xPubMedCrossRef Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ: The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 2003, 17: 13–27. 10.1046/j.1460-9568.2003.02406.xPubMedCrossRef
31.
go back to reference Antal M, Polgar E, Chalmers J, Minson JB, Llewellyn-Smith I, Heizmann CW, Somogyi P: Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-D-aspartate in the dorsal horn of the rat spinal cord. J Comp Neurol 1991, 314: 114–124. 10.1002/cne.903140111PubMedCrossRef Antal M, Polgar E, Chalmers J, Minson JB, Llewellyn-Smith I, Heizmann CW, Somogyi P: Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-D-aspartate in the dorsal horn of the rat spinal cord. J Comp Neurol 1991, 314: 114–124. 10.1002/cne.903140111PubMedCrossRef
32.
go back to reference Laing I, Todd AJ, Heizmann CW, Schmidt HH: Subpopulations of GABAergic neurons in laminae I-III of rat spinal dorsal horn defined by coexistence with classical transmitters, peptides, nitric oxide synthase or parvalbumin. Neuroscience 1994, 61: 123–132. 10.1016/0306-4522(94)90065-5PubMedCrossRef Laing I, Todd AJ, Heizmann CW, Schmidt HH: Subpopulations of GABAergic neurons in laminae I-III of rat spinal dorsal horn defined by coexistence with classical transmitters, peptides, nitric oxide synthase or parvalbumin. Neuroscience 1994, 61: 123–132. 10.1016/0306-4522(94)90065-5PubMedCrossRef
33.
go back to reference Spike RC, Todd AJ, Johnston HM: Coexistence of NADPH diaphorase with GABA, glycine, and acetylcholine in rat spinal cord. J Comp Neurol 1993, 335: 320–333. 10.1002/cne.903350303PubMedCrossRef Spike RC, Todd AJ, Johnston HM: Coexistence of NADPH diaphorase with GABA, glycine, and acetylcholine in rat spinal cord. J Comp Neurol 1993, 335: 320–333. 10.1002/cne.903350303PubMedCrossRef
34.
go back to reference Valtschanoff JG, Weinberg RJ, Rustioni A, Schmidt HH: Nitric oxide synthase and GABA colocalize in lamina II of rat spinal cord. Neurosci Lett 1992, 148: 6–10. 10.1016/0304-3940(92)90791-5PubMedCrossRef Valtschanoff JG, Weinberg RJ, Rustioni A, Schmidt HH: Nitric oxide synthase and GABA colocalize in lamina II of rat spinal cord. Neurosci Lett 1992, 148: 6–10. 10.1016/0304-3940(92)90791-5PubMedCrossRef
35.
go back to reference Polgár E, Sardella TCP, Watanabe M, Todd AJ: A quantitative study of NPY-expressing GABAergic neurons and axons in rat spinal dorsal horn. J Comp Neurol 2011, 519: 1007–1023. 10.1002/cne.22570PubMedCentralPubMedCrossRef Polgár E, Sardella TCP, Watanabe M, Todd AJ: A quantitative study of NPY-expressing GABAergic neurons and axons in rat spinal dorsal horn. J Comp Neurol 2011, 519: 1007–1023. 10.1002/cne.22570PubMedCentralPubMedCrossRef
36.
go back to reference Polgár E, Shehab SA, Watt C, Todd AJ: GABAergic neurons that contain neuropeptide Y selectively target cells with the neurokinin 1 receptor in laminae III and IV of the rat spinal cord. J Neurosci 1999, 19: 2637–2646.PubMed Polgár E, Shehab SA, Watt C, Todd AJ: GABAergic neurons that contain neuropeptide Y selectively target cells with the neurokinin 1 receptor in laminae III and IV of the rat spinal cord. J Neurosci 1999, 19: 2637–2646.PubMed
37.
go back to reference Puskár Z, Polgár E, Todd AJ: A population of large lamina I projection neurons with selective inhibitory input in rat spinal cord. Neuroscience 2001, 102: 167–176. 10.1016/S0306-4522(00)00445-0PubMedCrossRef Puskár Z, Polgár E, Todd AJ: A population of large lamina I projection neurons with selective inhibitory input in rat spinal cord. Neuroscience 2001, 102: 167–176. 10.1016/S0306-4522(00)00445-0PubMedCrossRef
38.
go back to reference Tuchscherer MM, Seybold VS: A quantitative study of the coexistence of peptides in varicosities within the superficial laminae of the dorsal horn of the rat spinal cord. J Neurosci 1989, 9: 195–205.PubMed Tuchscherer MM, Seybold VS: A quantitative study of the coexistence of peptides in varicosities within the superficial laminae of the dorsal horn of the rat spinal cord. J Neurosci 1989, 9: 195–205.PubMed
39.
go back to reference Zhang X, Nicholas AP, Hokfelt T: Ultrastructural studies on peptides in the dorsal horn of the spinal cord--I. Co-existence of galanin with other peptides in primary afferents in normal rats. Neuroscience 1993, 57: 365–384. 10.1016/0306-4522(93)90069-RPubMedCrossRef Zhang X, Nicholas AP, Hokfelt T: Ultrastructural studies on peptides in the dorsal horn of the spinal cord--I. Co-existence of galanin with other peptides in primary afferents in normal rats. Neuroscience 1993, 57: 365–384. 10.1016/0306-4522(93)90069-RPubMedCrossRef
40.
go back to reference Nakamura M, Sato K, Fukaya M, Araishi K, Aiba A, Kano M, Watanabe M: Signaling complex formation of phospholipase Cbeta4 with metabotropic glutamate receptor type 1alpha and 1,4,5-trisphosphate receptor at the perisynapse and endoplasmic reticulum in the mouse brain. Eur J Neurosci 2004, 20: 2929–2944. 10.1111/j.1460-9568.2004.03768.xPubMedCrossRef Nakamura M, Sato K, Fukaya M, Araishi K, Aiba A, Kano M, Watanabe M: Signaling complex formation of phospholipase Cbeta4 with metabotropic glutamate receptor type 1alpha and 1,4,5-trisphosphate receptor at the perisynapse and endoplasmic reticulum in the mouse brain. Eur J Neurosci 2004, 20: 2929–2944. 10.1111/j.1460-9568.2004.03768.xPubMedCrossRef
41.
go back to reference Herbison AE, Simonian SX, Norris PJ, Emson PC: Relationship of neuronal nitric oxide synthase immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. J Neuroendocrinol 1996, 8: 73–82. 10.1111/j.1365-2826.1996.tb00688.xPubMedCrossRef Herbison AE, Simonian SX, Norris PJ, Emson PC: Relationship of neuronal nitric oxide synthase immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. J Neuroendocrinol 1996, 8: 73–82. 10.1111/j.1365-2826.1996.tb00688.xPubMedCrossRef
42.
go back to reference Polgár E, Hughes DI, Arham AZ, Todd AJ: Loss of neurons from laminas I-III of the spinal dorsal horn is not required for development of tactile allodynia in the spared nerve injury model of neuropathic pain. J Neurosci 2005, 25: 6658–6666. 10.1523/JNEUROSCI.1490-05.2005PubMedCrossRef Polgár E, Hughes DI, Arham AZ, Todd AJ: Loss of neurons from laminas I-III of the spinal dorsal horn is not required for development of tactile allodynia in the spared nerve injury model of neuropathic pain. J Neurosci 2005, 25: 6658–6666. 10.1523/JNEUROSCI.1490-05.2005PubMedCrossRef
43.
go back to reference Bjugn R, Gundersen HJ: Estimate of the total number of neurons and glial and endothelial cells in the rat spinal cord by means of the optical disector. J Comp Neurol 1993, 328: 406–414. 10.1002/cne.903280307PubMedCrossRef Bjugn R, Gundersen HJ: Estimate of the total number of neurons and glial and endothelial cells in the rat spinal cord by means of the optical disector. J Comp Neurol 1993, 328: 406–414. 10.1002/cne.903280307PubMedCrossRef
44.
go back to reference Coggeshall RE: A consideration of neural counting methods. Trends Neurosci 1992, 15: 9–13. 10.1016/0166-2236(92)90339-APubMedCrossRef Coggeshall RE: A consideration of neural counting methods. Trends Neurosci 1992, 15: 9–13. 10.1016/0166-2236(92)90339-APubMedCrossRef
45.
46.
go back to reference Williams RW, Rakic P: Three-dimensional counting: an accurate and direct method to estimate numbers of cells in sectioned material. J Comp Neurol 1988, 278: 344–352. 10.1002/cne.902780305PubMedCrossRef Williams RW, Rakic P: Three-dimensional counting: an accurate and direct method to estimate numbers of cells in sectioned material. J Comp Neurol 1988, 278: 344–352. 10.1002/cne.902780305PubMedCrossRef
47.
go back to reference Todd AJ, Spike RC, Polgar E: A quantitative study of neurons which express neurokinin-1 or somatostatin sst2a receptor in rat spinal dorsal horn. Neuroscience 1998, 85: 459–473. 10.1016/S0306-4522(97)00669-6PubMedCrossRef Todd AJ, Spike RC, Polgar E: A quantitative study of neurons which express neurokinin-1 or somatostatin sst2a receptor in rat spinal dorsal horn. Neuroscience 1998, 85: 459–473. 10.1016/S0306-4522(97)00669-6PubMedCrossRef
48.
go back to reference Molander C, Xu Q, Grant G: The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord. J Comp Neurol 1984, 230: 133–141. 10.1002/cne.902300112PubMedCrossRef Molander C, Xu Q, Grant G: The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord. J Comp Neurol 1984, 230: 133–141. 10.1002/cne.902300112PubMedCrossRef
49.
go back to reference Chaudhry FA, Reimer RJ, Bellocchio EE, Danbolt NC, Osen KK, Edwards RH, Storm-Mathisen J: The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 1998, 18: 9733–9750.PubMed Chaudhry FA, Reimer RJ, Bellocchio EE, Danbolt NC, Osen KK, Edwards RH, Storm-Mathisen J: The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 1998, 18: 9733–9750.PubMed
50.
go back to reference McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM: Identification and characterization of the vesicular GABA transporter. Nature 1997, 389: 870–876. 10.1038/39908PubMedCrossRef McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM: Identification and characterization of the vesicular GABA transporter. Nature 1997, 389: 870–876. 10.1038/39908PubMedCrossRef
51.
go back to reference Polgár E, Todd AJ: Tactile allodynia can occur in the spared nerve injury model in the rat without selective loss of GABA or GABA(A) receptors from synapses in laminae I-II of the ipsilateral spinal dorsal horn. Neuroscience 2008, 156: 193–202. 10.1016/j.neuroscience.2008.07.009PubMedCentralPubMedCrossRef Polgár E, Todd AJ: Tactile allodynia can occur in the spared nerve injury model in the rat without selective loss of GABA or GABA(A) receptors from synapses in laminae I-II of the ipsilateral spinal dorsal horn. Neuroscience 2008, 156: 193–202. 10.1016/j.neuroscience.2008.07.009PubMedCentralPubMedCrossRef
52.
go back to reference Makwana M, Werner A, Acosta-Saltos A, Gonitel R, Pararajasingham A, Ruff C, Rumajogee P, Cuthill D, Galiano M, Bohatschek M, Wallace AS, Anderson PN, Mayer U, Behrens A, Raivich G: Peripheral facial nerve axotomy in mice causes sprouting of motor axons into perineuronal central white matter: time course and molecular characterization. J Comp Neurol 2010, 518: 699–721. 10.1002/cne.22240PubMedCentralPubMedCrossRef Makwana M, Werner A, Acosta-Saltos A, Gonitel R, Pararajasingham A, Ruff C, Rumajogee P, Cuthill D, Galiano M, Bohatschek M, Wallace AS, Anderson PN, Mayer U, Behrens A, Raivich G: Peripheral facial nerve axotomy in mice causes sprouting of motor axons into perineuronal central white matter: time course and molecular characterization. J Comp Neurol 2010, 518: 699–721. 10.1002/cne.22240PubMedCentralPubMedCrossRef
53.
go back to reference Mullen RJ, Buck CR, Smith AM: NeuN, a neuronal specific nuclear protein in vertebrates. Development 1992, 116: 201–211.PubMed Mullen RJ, Buck CR, Smith AM: NeuN, a neuronal specific nuclear protein in vertebrates. Development 1992, 116: 201–211.PubMed
54.
go back to reference Guo C, Stella SL Jr, Hirano AA, Brecha NC: Plasmalemmal and vesicular gamma-aminobutyric acid transporter expression in the developing mouse retina. J Comp Neurol 2009, 512: 6–26. 10.1002/cne.21846PubMedCentralPubMedCrossRef Guo C, Stella SL Jr, Hirano AA, Brecha NC: Plasmalemmal and vesicular gamma-aminobutyric acid transporter expression in the developing mouse retina. J Comp Neurol 2009, 512: 6–26. 10.1002/cne.21846PubMedCentralPubMedCrossRef
55.
go back to reference Martens H, Weston MC, Boulland JL, Gronborg M, Grosche J, Kacza J, Hoffmann A, Matteoli M, Takamori S, Harkany T, Chaudhry FA, Rosenmund C, Erck C, Jahn R, Hartig W: Unique luminal localization of VGAT-C terminus allows for selective labelling of active cortical GABAergic synapses. J Neurosci 28: 13125–13131. Martens H, Weston MC, Boulland JL, Gronborg M, Grosche J, Kacza J, Hoffmann A, Matteoli M, Takamori S, Harkany T, Chaudhry FA, Rosenmund C, Erck C, Jahn R, Hartig W: Unique luminal localization of VGAT-C terminus allows for selective labelling of active cortical GABAergic synapses. J Neurosci 28: 13125–13131.
56.
go back to reference Ch'ng JL, Christofides ND, Anand P, Gibson SJ, Allen YS, Su HC, Tatemoto K, Morrison JF, Polak JM, Bloom SR: Distribution of galanin immunoreactivity in the central nervous system and the responses of galanin-containing neuronal pathways to injury. Neuroscience 1985, 16: 343–354. 10.1016/0306-4522(85)90007-7PubMedCrossRef Ch'ng JL, Christofides ND, Anand P, Gibson SJ, Allen YS, Su HC, Tatemoto K, Morrison JF, Polak JM, Bloom SR: Distribution of galanin immunoreactivity in the central nervous system and the responses of galanin-containing neuronal pathways to injury. Neuroscience 1985, 16: 343–354. 10.1016/0306-4522(85)90007-7PubMedCrossRef
57.
go back to reference Hirakawa M, Kawata M: Changes of chemoarchitectural organization of the rat spinal cord following ventral and dorsal root transection. J Comp Neurol 1992, 320: 339–352. 10.1002/cne.903200306PubMedCrossRef Hirakawa M, Kawata M: Changes of chemoarchitectural organization of the rat spinal cord following ventral and dorsal root transection. J Comp Neurol 1992, 320: 339–352. 10.1002/cne.903200306PubMedCrossRef
58.
go back to reference Melander T, Hokfelt T, Rokaeus A: Distribution of galaninlike immunoreactivity in the rat central nervous system. J Comp Neurol 1986, 248: 475–517. 10.1002/cne.902480404PubMedCrossRef Melander T, Hokfelt T, Rokaeus A: Distribution of galaninlike immunoreactivity in the rat central nervous system. J Comp Neurol 1986, 248: 475–517. 10.1002/cne.902480404PubMedCrossRef
59.
go back to reference Munglani R, Harrison SM, Smith GD, Bountra C, Birch PJ, Elliot PJ, Hunt SP: Neuropeptide changes persist in spinal cord despite resolving hyperalgesia in a rat model of mononeuropathy. Brain Res 1996, 743: 102–108. 10.1016/S0006-8993(96)01026-8PubMedCrossRef Munglani R, Harrison SM, Smith GD, Bountra C, Birch PJ, Elliot PJ, Hunt SP: Neuropeptide changes persist in spinal cord despite resolving hyperalgesia in a rat model of mononeuropathy. Brain Res 1996, 743: 102–108. 10.1016/S0006-8993(96)01026-8PubMedCrossRef
60.
go back to reference Skofitsch G, Jacobowitz DM: Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 1985, 6: 509–546. 10.1016/0196-9781(85)90118-4PubMedCrossRef Skofitsch G, Jacobowitz DM: Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 1985, 6: 509–546. 10.1016/0196-9781(85)90118-4PubMedCrossRef
61.
go back to reference Zhang X, Nicholas AP, Hokfelt T: Ultrastructural studies on peptides in the dorsal horn of the rat spinal cord--II. Co-existence of galanin with other peptides in local neurons. Neuroscience 1995, 64: 875–891. 10.1016/0306-4522(94)00451-APubMedCrossRef Zhang X, Nicholas AP, Hokfelt T: Ultrastructural studies on peptides in the dorsal horn of the rat spinal cord--II. Co-existence of galanin with other peptides in local neurons. Neuroscience 1995, 64: 875–891. 10.1016/0306-4522(94)00451-APubMedCrossRef
62.
go back to reference Antal M, Freund TF, Polgar E: Calcium-binding proteins, parvalbumin- and calbindin-D 28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study. J Comp Neurol 1990, 295: 467–484. 10.1002/cne.902950310PubMedCrossRef Antal M, Freund TF, Polgar E: Calcium-binding proteins, parvalbumin- and calbindin-D 28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study. J Comp Neurol 1990, 295: 467–484. 10.1002/cne.902950310PubMedCrossRef
63.
go back to reference Valtschanoff JG, Weinberg RJ, Rustioni A: NADPH diaphorase in the spinal cord of rats. J Comp Neurol 1992, 321: 209–222. 10.1002/cne.903210204PubMedCrossRef Valtschanoff JG, Weinberg RJ, Rustioni A: NADPH diaphorase in the spinal cord of rats. J Comp Neurol 1992, 321: 209–222. 10.1002/cne.903210204PubMedCrossRef
64.
go back to reference Gibson SJ, Polak JM, Allen JM, Adrian TE, Kelly JS, Bloom SR: The Distribution and Origin of a Novel Brain Peptide, Neuropeptide-Y, in the Spinal-Cord of Several Mammals. Journal of Comparative Neurology 1984, 227: 78–91. 10.1002/cne.902270109PubMedCrossRef Gibson SJ, Polak JM, Allen JM, Adrian TE, Kelly JS, Bloom SR: The Distribution and Origin of a Novel Brain Peptide, Neuropeptide-Y, in the Spinal-Cord of Several Mammals. Journal of Comparative Neurology 1984, 227: 78–91. 10.1002/cne.902270109PubMedCrossRef
65.
go back to reference Sasek CA, Elde RP: Distribution of Neuropeptide-Y-Like Immunoreactivity and Its Relationship to Fmrf-Amide-Like Immunoreactivity in the 6th Lumbar and 1st Sacral Spinal-Cord Segments of the Rat. Journal of Neuroscience 1985, 5: 1729–1739.PubMed Sasek CA, Elde RP: Distribution of Neuropeptide-Y-Like Immunoreactivity and Its Relationship to Fmrf-Amide-Like Immunoreactivity in the 6th Lumbar and 1st Sacral Spinal-Cord Segments of the Rat. Journal of Neuroscience 1985, 5: 1729–1739.PubMed
66.
go back to reference Cortes R, Ceccatelli S, Schalling M, Hokfelt T: Differential effects of intracerebroventricular colchicine administration on the expression of mRNAs for neuropeptides and neurotransmitter enzymes, with special emphasis on galanin: an in situ hybridization study. Synapse 1990, 6: 369–391. 10.1002/syn.890060410PubMedCrossRef Cortes R, Ceccatelli S, Schalling M, Hokfelt T: Differential effects of intracerebroventricular colchicine administration on the expression of mRNAs for neuropeptides and neurotransmitter enzymes, with special emphasis on galanin: an in situ hybridization study. Synapse 1990, 6: 369–391. 10.1002/syn.890060410PubMedCrossRef
67.
go back to reference Ju G, Hokfelt T, Brodin E, Fahrenkrug J, Fischer JA, Frey P, Elde RP, Brown JC: Primary sensory neurons of the rat showing calcitonin gene-related peptide immunoreactivity and their relation to substance P-, somatostatin-, galanin-, vasoactive intestinal polypeptide- and cholecystokinin-immunoreactive ganglion cells. Cell Tissue Res 1987, 247: 417–431.PubMedCrossRef Ju G, Hokfelt T, Brodin E, Fahrenkrug J, Fischer JA, Frey P, Elde RP, Brown JC: Primary sensory neurons of the rat showing calcitonin gene-related peptide immunoreactivity and their relation to substance P-, somatostatin-, galanin-, vasoactive intestinal polypeptide- and cholecystokinin-immunoreactive ganglion cells. Cell Tissue Res 1987, 247: 417–431.PubMedCrossRef
68.
go back to reference Antal M, Petko M, Polgar E, Heizmann CW, Storm-Mathisen J: Direct evidence of an extensive GABAergic innervation of the spinal dorsal horn by fibres descending from the rostral ventromedial medulla. Neuroscience 1996, 73: 509–518. 10.1016/0306-4522(96)00063-2PubMedCrossRef Antal M, Petko M, Polgar E, Heizmann CW, Storm-Mathisen J: Direct evidence of an extensive GABAergic innervation of the spinal dorsal horn by fibres descending from the rostral ventromedial medulla. Neuroscience 1996, 73: 509–518. 10.1016/0306-4522(96)00063-2PubMedCrossRef
69.
go back to reference Brumovsky P, Mennicken F, O'Donnell D, Hokfelt T: Differential distribution and regulation of galanin receptors- 1 and -2 in the rat lumbar spinal cord. Brain Res 2006, 1085: 111–120. 10.1016/j.brainres.2006.02.088PubMedCrossRef Brumovsky P, Mennicken F, O'Donnell D, Hokfelt T: Differential distribution and regulation of galanin receptors- 1 and -2 in the rat lumbar spinal cord. Brain Res 2006, 1085: 111–120. 10.1016/j.brainres.2006.02.088PubMedCrossRef
70.
go back to reference O'Donnell D, Ahmad S, Wahlestedt C, Walker P: Expression of the novel galanin receptor subtype GALR2 in the adult rat CNS: distinct distribution from GALR1. J Comp Neurol 1999, 409: 469–481. 10.1002/(SICI)1096-9861(19990705)409:3<469::AID-CNE10>3.0.CO;2-QPubMedCrossRef O'Donnell D, Ahmad S, Wahlestedt C, Walker P: Expression of the novel galanin receptor subtype GALR2 in the adult rat CNS: distinct distribution from GALR1. J Comp Neurol 1999, 409: 469–481. 10.1002/(SICI)1096-9861(19990705)409:3<469::AID-CNE10>3.0.CO;2-QPubMedCrossRef
71.
go back to reference Parker EM, Izzarelli DG, Nowak HP, Mahle CD, Iben LG, Wang J, Goldstein ME: Cloning and characterization of the rat GALR1 galanin receptor from Rin14B insulinoma cells. Brain Res Mol Brain Res 1995, 34: 179–189.PubMedCrossRef Parker EM, Izzarelli DG, Nowak HP, Mahle CD, Iben LG, Wang J, Goldstein ME: Cloning and characterization of the rat GALR1 galanin receptor from Rin14B insulinoma cells. Brain Res Mol Brain Res 1995, 34: 179–189.PubMedCrossRef
72.
go back to reference Waters SM, Krause JE: Distribution of galanin-1, -2 and -3 receptor messenger RNAs in central and peripheral rat tissues. Neuroscience 2000, 95: 265–271.PubMedCrossRef Waters SM, Krause JE: Distribution of galanin-1, -2 and -3 receptor messenger RNAs in central and peripheral rat tissues. Neuroscience 2000, 95: 265–271.PubMedCrossRef
73.
go back to reference Malkmus S, Lu X, Bartfai T, Yaksh TL, Hua XY: Increased hyperalgesia after tissue injury and faster recovery of allodynia after nerve injury in the GalR1 knockout mice. Neuropeptides 2005, 39: 217–221. 10.1016/j.npep.2004.12.002PubMedCrossRef Malkmus S, Lu X, Bartfai T, Yaksh TL, Hua XY: Increased hyperalgesia after tissue injury and faster recovery of allodynia after nerve injury in the GalR1 knockout mice. Neuropeptides 2005, 39: 217–221. 10.1016/j.npep.2004.12.002PubMedCrossRef
74.
go back to reference Xu XJ, Hokfelt T, Wiesenfeld-Hallin Z: Galanin and spinal pain mechanisms: where do we stand in 2008? Cell Mol Life Sci 2008, 65: 1813–1819. 10.1007/s00018-008-8155-6PubMedCrossRef Xu XJ, Hokfelt T, Wiesenfeld-Hallin Z: Galanin and spinal pain mechanisms: where do we stand in 2008? Cell Mol Life Sci 2008, 65: 1813–1819. 10.1007/s00018-008-8155-6PubMedCrossRef
75.
go back to reference Shi TJ, Hua XY, Lu X, Malkmus S, Kinney J, Holmberg K, Wirz S, Ceccatelli S, Yaksh T, Bartfai T, Hokfelt T: Sensory neuronal phenotype in galanin receptor 2 knockout mice: focus on dorsal root ganglion neurone development and pain behaviour. Eur J Neurosci 2006, 23: 627–636. 10.1111/j.1460-9568.2006.04593.xPubMedCrossRef Shi TJ, Hua XY, Lu X, Malkmus S, Kinney J, Holmberg K, Wirz S, Ceccatelli S, Yaksh T, Bartfai T, Hokfelt T: Sensory neuronal phenotype in galanin receptor 2 knockout mice: focus on dorsal root ganglion neurone development and pain behaviour. Eur J Neurosci 2006, 23: 627–636. 10.1111/j.1460-9568.2006.04593.xPubMedCrossRef
76.
go back to reference Villar MJ, Wiesenfeld-Hallin Z, Xu XJ, Theodorsson E, Emson PC, Hokfelt T: Further studies on galanin-, substance P-, and CGRP-like immunoreactivities in primary sensory neurons and spinal cord: effects of dorsal rhizotomies and sciatic nerve lesions. Exp Neurol 1991, 112: 29–39. 10.1016/0014-4886(91)90111-OPubMedCrossRef Villar MJ, Wiesenfeld-Hallin Z, Xu XJ, Theodorsson E, Emson PC, Hokfelt T: Further studies on galanin-, substance P-, and CGRP-like immunoreactivities in primary sensory neurons and spinal cord: effects of dorsal rhizotomies and sciatic nerve lesions. Exp Neurol 1991, 112: 29–39. 10.1016/0014-4886(91)90111-OPubMedCrossRef
77.
go back to reference Ji RR, Baba H, Brenner GJ, Woolf CJ: Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci 1999, 2: 1114–1119. 10.1038/16040PubMedCrossRef Ji RR, Baba H, Brenner GJ, Woolf CJ: Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci 1999, 2: 1114–1119. 10.1038/16040PubMedCrossRef
Metadata
Title
Galanin-immunoreactivity identifies a distinct population of inhibitory interneurons in laminae I-III of the rat spinal cord
Authors
Sheena YX Tiong
Erika Polgár
Josie C van Kralingen
Masahiko Watanabe
Andrew J Todd
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2011
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-7-36

Other articles of this Issue 1/2011

Molecular Pain 1/2011 Go to the issue