Skip to main content
Top
Published in: Molecular Pain 1/2011

Open Access 01-12-2011 | Research

Local activation of cannabinoid CB1 receptors in the urinary bladder reduces the inflammation-induced sensitization of bladder afferents

Authors: Jean-Sébastien Walczak, Fernando Cervero

Published in: Molecular Pain | Issue 1/2011

Login to get access

Abstract

Background

Systemic administration of cannabinoid agonists is known to reduce pain induced by bladder inflammation and to modulate cystometric parameters in vivo. We have previously reported that intravesical administration of a cannabinoid agonist reduces the electrical activity of bladder afferents under normal conditions. However, the effects of local activation of bladder cannabinoid receptors on afferent activity during inflammation are unknown. This study was aimed to assess the effects of intravesical administration of a cannabinoid agonist on the discharges of afferent fibers in inflamed bladders ex vivo. We also characterized the expression of CB1 receptors in the bladder and their localization and co-expression with TRPV1, a marker of nociceptive afferents.

Results

Compared to untreated animals, afferent fiber activity in inflamed bladders was increased for intravesical pressures between 10 and 40 mmHg. Local treatment with a non selective cannabinoid agonist (AZ12646915) significantly reduced the afferent activity at intravesical pressures above 20 mmHg. This effect was blocked by AM251 but not by AM630 (selective for CB1 and CB2 respectively). Finally, CB1 was co-expressed with TRPV1 in control and inflamed bladders.

Conclusion

These results demonstrate that sensitization of bladder afferents induced by inflammation is partly suppressed by intravesical activation of cannabinoid receptors, an effect that appears to be mediated by CB1 receptors. Also, TRPV1 positive fibers were found to co-express CB1, supporting the hypothesis of a direct action of the cannabinoid agonist on nociceptive afferents. Taken together, these results indicate a peripheral modulation by the cannabinoid system of bladder hypersensitivity during inflammation.
Appendix
Available only for authorised users
Literature
2.
go back to reference Merriam FV, Wang ZY, Guerios SD, Bjorling DE: Cannabinoid receptor 2 is increased in acutely and chronically inflamed bladder of rats. Neurosci Lett 2008, 445: 130–134.PubMedCentralPubMedCrossRef Merriam FV, Wang ZY, Guerios SD, Bjorling DE: Cannabinoid receptor 2 is increased in acutely and chronically inflamed bladder of rats. Neurosci Lett 2008, 445: 130–134.PubMedCentralPubMedCrossRef
3.
go back to reference Walczak JS, Price TJ, Cervero F: Cannabinoid CB1 receptors are expressed in the mouse urinary bladder and their activation modulates afferent bladder activity. Neuroscience 2009, 159: 1154–1163.PubMedCrossRef Walczak JS, Price TJ, Cervero F: Cannabinoid CB1 receptors are expressed in the mouse urinary bladder and their activation modulates afferent bladder activity. Neuroscience 2009, 159: 1154–1163.PubMedCrossRef
4.
go back to reference Gratzke C, Streng T, Park A, Christ G, Stief CG, Hedlund P, Andersson KE: Distribution and function of cannabinoid receptors 1 and 2 in the rat, monkey and human bladder. J Urol 2009, 181: 1939–1948.PubMedCrossRef Gratzke C, Streng T, Park A, Christ G, Stief CG, Hedlund P, Andersson KE: Distribution and function of cannabinoid receptors 1 and 2 in the rat, monkey and human bladder. J Urol 2009, 181: 1939–1948.PubMedCrossRef
5.
go back to reference Tyagi V, Philips BJ, Su R, Smaldone MC, Erickson VL, Chancellor MB, Yoshimura N, Tyagi P: Differential expression of functional cannabinoid receptors in human bladder detrusor and urothelium. J Urol 2009, 181: 1932–1938.PubMedCrossRef Tyagi V, Philips BJ, Su R, Smaldone MC, Erickson VL, Chancellor MB, Yoshimura N, Tyagi P: Differential expression of functional cannabinoid receptors in human bladder detrusor and urothelium. J Urol 2009, 181: 1932–1938.PubMedCrossRef
6.
go back to reference Hayn MH, Ballesteros I, de Miguel F, Coyle CH, Tyagi S, Yoshimura N, Chancellor MB, Tyagi P: Functional and immunohistochemical characterization of CB1 and CB2 receptors in rat bladder. Urology 2008, 72: 1174–1178.PubMedCrossRef Hayn MH, Ballesteros I, de Miguel F, Coyle CH, Tyagi S, Yoshimura N, Chancellor MB, Tyagi P: Functional and immunohistochemical characterization of CB1 and CB2 receptors in rat bladder. Urology 2008, 72: 1174–1178.PubMedCrossRef
7.
go back to reference Mukerji G, Yiangou Y, Agarwal SK, Anand P: Increased cannabinoid receptor 1-immunoreactive nerve fibers in overactive and painful bladder disorders and their correlation with symptoms. Urology 2010, 75: 1514. e1515–1520PubMedCrossRef Mukerji G, Yiangou Y, Agarwal SK, Anand P: Increased cannabinoid receptor 1-immunoreactive nerve fibers in overactive and painful bladder disorders and their correlation with symptoms. Urology 2010, 75: 1514. e1515–1520PubMedCrossRef
8.
go back to reference Martin RS, Luong LA, Welsh NJ, Eglen RM, Martin GR, MacLennan SJ: Effects of cannabinoid receptor agonists on neuronally-evoked contractions of urinary bladder tissues isolated from rat, mouse, pig, dog, monkey and human. Br J Pharmacol 2000, 129: 1707–1715.PubMedCentralPubMedCrossRef Martin RS, Luong LA, Welsh NJ, Eglen RM, Martin GR, MacLennan SJ: Effects of cannabinoid receptor agonists on neuronally-evoked contractions of urinary bladder tissues isolated from rat, mouse, pig, dog, monkey and human. Br J Pharmacol 2000, 129: 1707–1715.PubMedCentralPubMedCrossRef
9.
10.
go back to reference Dmitrieva N, Berkley KJ: Contrasting effects of WIN 55212–2 on motility of the rat bladder and uterus. J Neurosci 2002, 22: 7147–7153.PubMed Dmitrieva N, Berkley KJ: Contrasting effects of WIN 55212–2 on motility of the rat bladder and uterus. J Neurosci 2002, 22: 7147–7153.PubMed
11.
go back to reference Hiragata S, Ogawa T, Hayashi Y, Tyagi P, Seki S, Nishizawa O, de Miguel F, Chancellor MB, Yoshimura N: Effects of IP-751, ajulemic acid, on bladder overactivity induced by bladder irritation in rats. Urology 2007, 70: 202–208.PubMedCrossRef Hiragata S, Ogawa T, Hayashi Y, Tyagi P, Seki S, Nishizawa O, de Miguel F, Chancellor MB, Yoshimura N: Effects of IP-751, ajulemic acid, on bladder overactivity induced by bladder irritation in rats. Urology 2007, 70: 202–208.PubMedCrossRef
12.
go back to reference Gratzke C, Streng T, Stief CG, Downs TR, Alroy I, Rosenbaum JS, Andersson KE, Hedlund P: Effects of Cannabinor, a Novel Selective Cannabinoid 2 Receptor Agonist, on Bladder Function in Normal Rats. Eur Urol 2010. Gratzke C, Streng T, Stief CG, Downs TR, Alroy I, Rosenbaum JS, Andersson KE, Hedlund P: Effects of Cannabinor, a Novel Selective Cannabinoid 2 Receptor Agonist, on Bladder Function in Normal Rats. Eur Urol 2010.
13.
go back to reference Sanchez Freire V, Burkhard FC, Kessler TM, Kuhn A, Draeger A, Monastyrskaya K: MicroRNAs may mediate the down-regulation of neurokinin-1 receptor in chronic bladder pain syndrome. Am J Pathol 2010, 176: 288–303.PubMedCentralPubMedCrossRef Sanchez Freire V, Burkhard FC, Kessler TM, Kuhn A, Draeger A, Monastyrskaya K: MicroRNAs may mediate the down-regulation of neurokinin-1 receptor in chronic bladder pain syndrome. Am J Pathol 2010, 176: 288–303.PubMedCentralPubMedCrossRef
14.
go back to reference Jaggar SI, Hasnie FS, Sellaturay S, Rice AS: The anti-hyperalgesic actions of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain. Pain 1998, 76: 189–199.PubMedCrossRef Jaggar SI, Hasnie FS, Sellaturay S, Rice AS: The anti-hyperalgesic actions of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain. Pain 1998, 76: 189–199.PubMedCrossRef
15.
go back to reference Farquhar-Smith WP, Rice AS: Administration of endocannabinoids prevents a referred hyperalgesia associated with inflammation of the urinary bladder. Anesthesiology 2001, 94: 507–513. discussion 506APubMedCrossRef Farquhar-Smith WP, Rice AS: Administration of endocannabinoids prevents a referred hyperalgesia associated with inflammation of the urinary bladder. Anesthesiology 2001, 94: 507–513. discussion 506APubMedCrossRef
16.
go back to reference Cui JH, Kim WM, Lee HG, Kim YO, Kim CM, Yoon MH: Antinociceptive effect of intrathecal cannabinoid receptor agonist WIN 55,212–2 in a rat bone tumor pain model. Neurosci Lett 2011. Cui JH, Kim WM, Lee HG, Kim YO, Kim CM, Yoon MH: Antinociceptive effect of intrathecal cannabinoid receptor agonist WIN 55,212–2 in a rat bone tumor pain model. Neurosci Lett 2011.
17.
go back to reference Zhu CZ, Mikusa JP, Fan Y, Hollingsworth PR, Pai M, Chandran P, Daza AV, Yao BB, Dart MJ, Meyer MD, et al.: Peripheral and central sites of action for the non-selective cannabinoid agonist WIN 55,212–2 in a rat model of post-operative pain. Br J Pharmacol 2009, 157: 645–655.PubMedCentralPubMedCrossRef Zhu CZ, Mikusa JP, Fan Y, Hollingsworth PR, Pai M, Chandran P, Daza AV, Yao BB, Dart MJ, Meyer MD, et al.: Peripheral and central sites of action for the non-selective cannabinoid agonist WIN 55,212–2 in a rat model of post-operative pain. Br J Pharmacol 2009, 157: 645–655.PubMedCentralPubMedCrossRef
18.
go back to reference Welch SP, Thomas C, Patrick GS: Modulation of cannabinoid-induced antinociception after intracerebroventricular versus intrathecal administration to mice: possible mechanisms for interaction with morphine. J Pharmacol Exp Ther 1995, 272: 310–321.PubMed Welch SP, Thomas C, Patrick GS: Modulation of cannabinoid-induced antinociception after intracerebroventricular versus intrathecal administration to mice: possible mechanisms for interaction with morphine. J Pharmacol Exp Ther 1995, 272: 310–321.PubMed
19.
go back to reference Fox A, Kesingland A, Gentry C, McNair K, Patel S, Urban L, James I: The role of central and peripheral Cannabinoid1 receptors in the antihyperalgesic activity of cannabinoids in a model of neuropathic pain. Pain 2001, 92: 91–100.PubMedCrossRef Fox A, Kesingland A, Gentry C, McNair K, Patel S, Urban L, James I: The role of central and peripheral Cannabinoid1 receptors in the antihyperalgesic activity of cannabinoids in a model of neuropathic pain. Pain 2001, 92: 91–100.PubMedCrossRef
20.
go back to reference Yu XH, Cao CQ, Martino G, Puma C, Morinville A, St-Onge S, Lessard E, Perkins MN, Laird JM: A peripherally restricted cannabinoid receptor agonist produces robust anti-nociceptive effects in rodent models of inflammatory and neuropathic pain. Pain 2010, 151: 337–344.PubMedCrossRef Yu XH, Cao CQ, Martino G, Puma C, Morinville A, St-Onge S, Lessard E, Perkins MN, Laird JM: A peripherally restricted cannabinoid receptor agonist produces robust anti-nociceptive effects in rodent models of inflammatory and neuropathic pain. Pain 2010, 151: 337–344.PubMedCrossRef
21.
go back to reference Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, Brenner GJ, Rubino T, Michalski CW, Marsicano G, Monory K, et al.: Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 2007, 10: 870–879.PubMedCentralPubMedCrossRef Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, Brenner GJ, Rubino T, Michalski CW, Marsicano G, Monory K, et al.: Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 2007, 10: 870–879.PubMedCentralPubMedCrossRef
22.
go back to reference Hillsley K, McCaul C, Aerssens J, Peeters PJ, Gijsen H, Moechars D, Coulie B, Grundy D, Stead RH: Activation of the cannabinoid 2 (CB2) receptor inhibits murine mesenteric afferent nerve activity. Neurogastroenterol Motil 2007, 19: 769–777.PubMedCrossRef Hillsley K, McCaul C, Aerssens J, Peeters PJ, Gijsen H, Moechars D, Coulie B, Grundy D, Stead RH: Activation of the cannabinoid 2 (CB2) receptor inhibits murine mesenteric afferent nerve activity. Neurogastroenterol Motil 2007, 19: 769–777.PubMedCrossRef
23.
go back to reference Yuce B, Kemmer M, Qian G, Muller M, Sibaev A, Li Y, Kreis ME, Storr M: Cannabinoid 1 receptors modulate intestinal sensory and motor function in rat. Neurogastroenterol Motil 2010, 22: 672-e205.PubMedCrossRef Yuce B, Kemmer M, Qian G, Muller M, Sibaev A, Li Y, Kreis ME, Storr M: Cannabinoid 1 receptors modulate intestinal sensory and motor function in rat. Neurogastroenterol Motil 2010, 22: 672-e205.PubMedCrossRef
24.
go back to reference Farquhar-Smith WP, Jaggar SI, Rice AS: Attenuation of nerve growth factor-induced visceral hyperalgesia via cannabinoid CB(1) and CB(2)-like receptors. Pain 2002, 97: 11–21.PubMedCrossRef Farquhar-Smith WP, Jaggar SI, Rice AS: Attenuation of nerve growth factor-induced visceral hyperalgesia via cannabinoid CB(1) and CB(2)-like receptors. Pain 2002, 97: 11–21.PubMedCrossRef
25.
go back to reference Olivar T, Laird JM: Cyclophosphamide cystitis in mice: behavioural characterisation and correlation with bladder inflammation. Eur J Pain 1999, 3: 141–149.PubMedCrossRef Olivar T, Laird JM: Cyclophosphamide cystitis in mice: behavioural characterisation and correlation with bladder inflammation. Eur J Pain 1999, 3: 141–149.PubMedCrossRef
26.
go back to reference Wantuch C, Piesla M, Leventhal L: Pharmacological validation of a model of cystitis pain in the mouse. Neurosci Lett 2007, 421: 250–252.PubMedCrossRef Wantuch C, Piesla M, Leventhal L: Pharmacological validation of a model of cystitis pain in the mouse. Neurosci Lett 2007, 421: 250–252.PubMedCrossRef
27.
go back to reference Wood R, Eichel L, Messing EM, Schwarz E: Automated noninvasive measurement of cyclophosphamide-induced changes in murine voiding frequency and volume. J Urol 2001, 165: 653–659.PubMedCrossRef Wood R, Eichel L, Messing EM, Schwarz E: Automated noninvasive measurement of cyclophosphamide-induced changes in murine voiding frequency and volume. J Urol 2001, 165: 653–659.PubMedCrossRef
28.
go back to reference Vizzard MA, Erdman SL, de Groat WC: Increased expression of neuronal nitric oxide synthase in bladder afferent pathways following chronic bladder irritation. J Comp Neurol 1996, 370: 191–202.PubMedCrossRef Vizzard MA, Erdman SL, de Groat WC: Increased expression of neuronal nitric oxide synthase in bladder afferent pathways following chronic bladder irritation. J Comp Neurol 1996, 370: 191–202.PubMedCrossRef
29.
go back to reference Dang K, Lamb K, Cohen M, Bielefeldt K, Gebhart GF: Cyclophosphamide-induced bladder inflammation sensitizes and enhances P2X receptor function in rat bladder sensory neurons. J Neurophysiol 2008, 99: 49–59.PubMedCentralPubMedCrossRef Dang K, Lamb K, Cohen M, Bielefeldt K, Gebhart GF: Cyclophosphamide-induced bladder inflammation sensitizes and enhances P2X receptor function in rat bladder sensory neurons. J Neurophysiol 2008, 99: 49–59.PubMedCentralPubMedCrossRef
30.
go back to reference Yoshimura N, de Groat WC: Increased excitability of afferent neurons innervating rat urinary bladder after chronic bladder inflammation. J Neurosci 1999, 19: 4644–4653.PubMed Yoshimura N, de Groat WC: Increased excitability of afferent neurons innervating rat urinary bladder after chronic bladder inflammation. J Neurosci 1999, 19: 4644–4653.PubMed
31.
go back to reference Yu Y, de Groat WC: Sensitization of pelvic afferent nerves in the in vitro rat urinary bladder-pelvic nerve preparation by purinergic agonists and cyclophosphamide pretreatment. Am J Physiol Renal Physiol 2008, 294: F1146–1156.PubMedCentralPubMedCrossRef Yu Y, de Groat WC: Sensitization of pelvic afferent nerves in the in vitro rat urinary bladder-pelvic nerve preparation by purinergic agonists and cyclophosphamide pretreatment. Am J Physiol Renal Physiol 2008, 294: F1146–1156.PubMedCentralPubMedCrossRef
32.
go back to reference Sengupta JN, Gebhart GF: Mechanosensitive properties of pelvic nerve afferent fibers innervating the urinary bladder of the rat. J Neurophysiol 1994, 72: 2420–2430.PubMed Sengupta JN, Gebhart GF: Mechanosensitive properties of pelvic nerve afferent fibers innervating the urinary bladder of the rat. J Neurophysiol 1994, 72: 2420–2430.PubMed
33.
go back to reference Shea VK, Cai R, Crepps B, Mason JL, Perl ER: Sensory fibers of the pelvic nerve innervating the Rat's urinary bladder. J Neurophysiol 2000, 84: 1924–1933.PubMed Shea VK, Cai R, Crepps B, Mason JL, Perl ER: Sensory fibers of the pelvic nerve innervating the Rat's urinary bladder. J Neurophysiol 2000, 84: 1924–1933.PubMed
34.
go back to reference Juszczak K, Ziomber A, Wyczolkowski M, Thor PJ: Urodynamic effects of the bladder C-fiber afferent activity modulation in chronic model of overactive bladder in rats. J Physiol Pharmacol 2009, 60: 85–91.PubMed Juszczak K, Ziomber A, Wyczolkowski M, Thor PJ: Urodynamic effects of the bladder C-fiber afferent activity modulation in chronic model of overactive bladder in rats. J Physiol Pharmacol 2009, 60: 85–91.PubMed
35.
go back to reference Giglio D, Aronsson P, Eriksson L, Tobin G: In vitro characterization of parasympathetic and sympathetic responses in cyclophosphamide-induced cystitis in the rat. Basic Clin Pharmacol Toxicol 2007, 100: 96–108.PubMedCrossRef Giglio D, Aronsson P, Eriksson L, Tobin G: In vitro characterization of parasympathetic and sympathetic responses in cyclophosphamide-induced cystitis in the rat. Basic Clin Pharmacol Toxicol 2007, 100: 96–108.PubMedCrossRef
36.
go back to reference Mok MH, Knight GE, Andrews PL, Hoyle CH, Burnstock G: The effects of cyclophosphamide on neurotransmission in the urinary bladder of Suncus murinus, the house musk shrew. J Auton Nerv Syst 2000, 80: 130–136.PubMedCrossRef Mok MH, Knight GE, Andrews PL, Hoyle CH, Burnstock G: The effects of cyclophosphamide on neurotransmission in the urinary bladder of Suncus murinus, the house musk shrew. J Auton Nerv Syst 2000, 80: 130–136.PubMedCrossRef
37.
go back to reference Seybold VS: The role of peptides in central sensitization. Handb Exp Pharmacol 2009, 451–491. Seybold VS: The role of peptides in central sensitization. Handb Exp Pharmacol 2009, 451–491.
39.
go back to reference Bracci-Laudiero L, Aloe L, Caroleo MC, Buanne P, Costa N, Starace G, Lundeberg T: Endogenous NGF regulates CGRP expression in human monocytes, and affects HLA-DR and CD86 expression and IL-10 production. Blood 2005, 106: 3507–3514.PubMedCrossRef Bracci-Laudiero L, Aloe L, Caroleo MC, Buanne P, Costa N, Starace G, Lundeberg T: Endogenous NGF regulates CGRP expression in human monocytes, and affects HLA-DR and CD86 expression and IL-10 production. Blood 2005, 106: 3507–3514.PubMedCrossRef
40.
go back to reference Ma W, Dumont Y, Vercauteren F, Quirion R: Lipopolysaccharide induces calcitonin gene-related peptide in the RAW264.7 macrophage cell line. Immunology 2010, 130: 399–409.PubMedCentralPubMedCrossRef Ma W, Dumont Y, Vercauteren F, Quirion R: Lipopolysaccharide induces calcitonin gene-related peptide in the RAW264.7 macrophage cell line. Immunology 2010, 130: 399–409.PubMedCentralPubMedCrossRef
41.
go back to reference Wang H, Xing L, Li W, Hou L, Guo J, Wang X: Production and secretion of calcitonin gene-related peptide from human lymphocytes. J Neuroimmunol 2002, 130: 155–162.PubMedCrossRef Wang H, Xing L, Li W, Hou L, Guo J, Wang X: Production and secretion of calcitonin gene-related peptide from human lymphocytes. J Neuroimmunol 2002, 130: 155–162.PubMedCrossRef
42.
go back to reference Graham ES, Angel CE, Schwarcz LE, Dunbar PR, Glass M: Detailed characterisation of CB2 receptor protein expression in peripheral blood immune cells from healthy human volunteers using flow cytometry. Int J Immunopathol Pharmacol 2010, 23: 25–34.PubMed Graham ES, Angel CE, Schwarcz LE, Dunbar PR, Glass M: Detailed characterisation of CB2 receptor protein expression in peripheral blood immune cells from healthy human volunteers using flow cytometry. Int J Immunopathol Pharmacol 2010, 23: 25–34.PubMed
43.
go back to reference Munro S, Thomas KL, Abu-Shaar M: Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993, 365: 61–65.PubMedCrossRef Munro S, Thomas KL, Abu-Shaar M: Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993, 365: 61–65.PubMedCrossRef
44.
go back to reference Price TJ, Flores CM: Critical evaluation of the colocalization between calcitonin gene-related peptide, substance P, transient receptor potential vanilloid subfamily type 1 immunoreactivities, and isolectin B4 binding in primary afferent neurons of the rat and mouse. J Pain 2007, 8: 263–272.PubMedCentralPubMedCrossRef Price TJ, Flores CM: Critical evaluation of the colocalization between calcitonin gene-related peptide, substance P, transient receptor potential vanilloid subfamily type 1 immunoreactivities, and isolectin B4 binding in primary afferent neurons of the rat and mouse. J Pain 2007, 8: 263–272.PubMedCentralPubMedCrossRef
45.
go back to reference Yoshimura N: Lower urinary tract symptoms (LUTS) and bladder afferent activity. Neurourol Urodyn 2007, 26: 908–913.PubMedCrossRef Yoshimura N: Lower urinary tract symptoms (LUTS) and bladder afferent activity. Neurourol Urodyn 2007, 26: 908–913.PubMedCrossRef
46.
go back to reference Avelino A, Cruz C, Nagy I, Cruz F: Vanilloid receptor 1 expression in the rat urinary tract. Neuroscience 2002, 109: 787–798.PubMedCrossRef Avelino A, Cruz C, Nagy I, Cruz F: Vanilloid receptor 1 expression in the rat urinary tract. Neuroscience 2002, 109: 787–798.PubMedCrossRef
47.
go back to reference Dickson A, Avelino A, Cruz F, Ribeiro-da-Silva A: Peptidergic sensory and parasympathetic fiber sprouting in the mucosa of the rat urinary bladder in a chronic model of cyclophosphamide-induced cystitis. Neuroscience 2006, 139: 671–685.PubMedCrossRef Dickson A, Avelino A, Cruz F, Ribeiro-da-Silva A: Peptidergic sensory and parasympathetic fiber sprouting in the mucosa of the rat urinary bladder in a chronic model of cyclophosphamide-induced cystitis. Neuroscience 2006, 139: 671–685.PubMedCrossRef
48.
go back to reference Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, Wang E, Ruiz G, De Groat WC, Apodaca G, et al.: Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 2002, 5: 856–860.PubMedCrossRef Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, Wang E, Ruiz G, De Groat WC, Apodaca G, et al.: Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 2002, 5: 856–860.PubMedCrossRef
49.
go back to reference Daly D, Rong W, Chess-Williams R, Chapple C, Grundy D: Bladder afferent sensitivity in wild-type and TRPV1 knockout mice. J Physiol 2007, 583: 663–674.PubMedCentralPubMedCrossRef Daly D, Rong W, Chess-Williams R, Chapple C, Grundy D: Bladder afferent sensitivity in wild-type and TRPV1 knockout mice. J Physiol 2007, 583: 663–674.PubMedCentralPubMedCrossRef
50.
go back to reference Hermann H, De Petrocellis L, Bisogno T, Schiano Moriello A, Lutz B, Di Marzo V: Dual effect of cannabinoid CB1 receptor stimulation on a vanilloid VR1 receptor-mediated response. Cell Mol Life Sci 2003, 60: 607–616.PubMedCrossRef Hermann H, De Petrocellis L, Bisogno T, Schiano Moriello A, Lutz B, Di Marzo V: Dual effect of cannabinoid CB1 receptor stimulation on a vanilloid VR1 receptor-mediated response. Cell Mol Life Sci 2003, 60: 607–616.PubMedCrossRef
51.
go back to reference Patwardhan AM, Jeske NA, Price TJ, Gamper N, Akopian AN, Hargreaves KM: The cannabinoid WIN 55,212–2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. Proc Natl Acad Sci USA 2006, 103: 11393–11398.PubMedCentralPubMedCrossRef Patwardhan AM, Jeske NA, Price TJ, Gamper N, Akopian AN, Hargreaves KM: The cannabinoid WIN 55,212–2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. Proc Natl Acad Sci USA 2006, 103: 11393–11398.PubMedCentralPubMedCrossRef
53.
go back to reference Zimmermann M: Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16: 109–110.PubMedCrossRef Zimmermann M: Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16: 109–110.PubMedCrossRef
Metadata
Title
Local activation of cannabinoid CB1 receptors in the urinary bladder reduces the inflammation-induced sensitization of bladder afferents
Authors
Jean-Sébastien Walczak
Fernando Cervero
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2011
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-7-31

Other articles of this Issue 1/2011

Molecular Pain 1/2011 Go to the issue