Skip to main content
Top
Published in: Molecular Pain 1/2010

Open Access 01-12-2010 | Research

Pain-related increase of excitatory transmission and decrease of inhibitory transmission in the central nucleus of the amygdala are mediated by mGluR1

Authors: Wenjie Ren, Volker Neugebauer

Published in: Molecular Pain | Issue 1/2010

Login to get access

Abstract

Neuroplasticity in the central nucleus of the amygdala (CeA), particularly its latero-capsular division (CeLC), is an important contributor to the emotional-affective aspects of pain. Previous studies showed synaptic plasticity of excitatory transmission to the CeLC in different pain models, but pain-related changes of inhibitory transmission remain to be determined. The CeLC receives convergent excitatory inputs from the parabrachial nucleus in the brainstem and from the basolateral amygdala (BLA). In addition, feedforward inhibition of CeA neurons is driven by glutamatergic projections from the BLA area to a cluster of GABAergic neurons in the intercalated cell masses (ITC). Using patch-clamp in rat brain slices we measured monosynaptic excitatory postsynaptic currents (EPSCs) and polysynaptic inhibitory currents (IPSCs) that were evoked by electrical stimulation in the BLA. In brain slices from arthritic rats, input-output functions of excitatory synaptic transmission were enhanced whereas inhibitory synaptic transmission was decreased compared to control slices from normal untreated rats. A non-NMDA receptor antagonist (NBQX) blocked the EPSCs and reduced the IPSCs, suggesting that non-NMDA receptors mediate excitatory transmission and also contribute to glutamate-driven feed-forward inhibition of CeLC neurons. IPSCs were blocked by a GABAA receptor antagonist (bicuculline). Bicuculline increased EPSCs under normal conditions but not in slices from arthritic rats, which indicates a loss of GABAergic control of excitatory transmission. A metabotropic glutamate receptor subtype 1 (mGluR1) antagonist (LY367385) reversed both the increase of excitatory transmission and the decrease of inhibitory transmission in the arthritis pain model but had no effect on basal synaptic transmission in control slices from normal rats. The inhibitory effect of LY367385 on excitatory transmission was blocked by bicuculline suggesting the involvement of a GABAergic mechanism. An mGluR5 antagonist (MTEP) inhibited both excitatory and inhibitory transmission in slices from normal and from arthritic rats. The analysis of spontaneous and miniature EPSCs and IPSCs showed that mGluR1 acted presynaptically whereas mGluR5 had postsynaptic effects. In conclusion, mGluR1 rather than mGluR5 can account for the pain-related changes of excitatory and inhibitory synaptic transmission in the CeLC through a mechanism that involves inhibition of inhibitory transmission (disinhibition).
Appendix
Available only for authorised users
Literature
1.
go back to reference Seymour B, Dolan R: Emotion, decision making, and the amygdala. Neuron 2008, 58: 662–671. 10.1016/j.neuron.2008.05.020PubMedCrossRef Seymour B, Dolan R: Emotion, decision making, and the amygdala. Neuron 2008, 58: 662–671. 10.1016/j.neuron.2008.05.020PubMedCrossRef
2.
go back to reference Pape HC, Pare D: Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 2010, 90: 419–463. 10.1152/physrev.00037.2009PubMedCentralPubMedCrossRef Pape HC, Pare D: Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 2010, 90: 419–463. 10.1152/physrev.00037.2009PubMedCentralPubMedCrossRef
3.
go back to reference Maren S: Synaptic Mechanisms of Associative Memory in the Amygdala. Neuron 2005, 47: 783–786. 10.1016/j.neuron.2005.08.009PubMedCrossRef Maren S: Synaptic Mechanisms of Associative Memory in the Amygdala. Neuron 2005, 47: 783–786. 10.1016/j.neuron.2005.08.009PubMedCrossRef
4.
go back to reference Phelps EA, Ledoux JE: Contributions of the Amygdala to Emotion Processing: From Animal Models to Human Behavior. Neuron 2005, 48: 175–187. 10.1016/j.neuron.2005.09.025PubMedCrossRef Phelps EA, Ledoux JE: Contributions of the Amygdala to Emotion Processing: From Animal Models to Human Behavior. Neuron 2005, 48: 175–187. 10.1016/j.neuron.2005.09.025PubMedCrossRef
5.
6.
go back to reference Gauriau C, Bernard J-F: Pain pathways and parabrachial circuits in the rat. Exp Physiol 2002, 87: 251–258. 10.1113/eph8702357PubMedCrossRef Gauriau C, Bernard J-F: Pain pathways and parabrachial circuits in the rat. Exp Physiol 2002, 87: 251–258. 10.1113/eph8702357PubMedCrossRef
7.
go back to reference Minami M: Neuronal mechanisms for pain-induced aversion behavioral studies using a conditioned place aversion test. Int Rev Neurobiol 2009, 85: 135–144. full_textPubMedCrossRef Minami M: Neuronal mechanisms for pain-induced aversion behavioral studies using a conditioned place aversion test. Int Rev Neurobiol 2009, 85: 135–144. full_textPubMedCrossRef
8.
go back to reference Neugebauer V, Li W, Bird GC, Han JS: The amygdala and persistent pain. Neuroscientist 2004, 10: 221–234. 10.1177/1073858403261077PubMedCrossRef Neugebauer V, Li W, Bird GC, Han JS: The amygdala and persistent pain. Neuroscientist 2004, 10: 221–234. 10.1177/1073858403261077PubMedCrossRef
9.
go back to reference Ansah OB, Bourbia N, Goncalves L, Almeida A, Pertovaara A: Influence of amygdaloid glutamatergic receptors on sensory and emotional pain-related behavior in the neuropathic rat. Behav Brain Res 2010, 209: 174–178. 10.1016/j.bbr.2010.01.021PubMedCrossRef Ansah OB, Bourbia N, Goncalves L, Almeida A, Pertovaara A: Influence of amygdaloid glutamatergic receptors on sensory and emotional pain-related behavior in the neuropathic rat. Behav Brain Res 2010, 209: 174–178. 10.1016/j.bbr.2010.01.021PubMedCrossRef
10.
go back to reference Ji G, Sun H, Fu Y, Li Z, Pais-Vieira M, Galhardo V, Neugebauer V: Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J Neurosci 2010, 30: 5451–5464. 10.1523/JNEUROSCI.0225-10.2010PubMedCentralPubMedCrossRef Ji G, Sun H, Fu Y, Li Z, Pais-Vieira M, Galhardo V, Neugebauer V: Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J Neurosci 2010, 30: 5451–5464. 10.1523/JNEUROSCI.0225-10.2010PubMedCentralPubMedCrossRef
11.
go back to reference Myers B, Greenwood-Van Meerveld B: Divergent effects of amygdala glucocorticoid and mineralocorticoid receptors in the regulation of visceral and somatic pain. Am J Physiol Gastrointest Liver Physiol 2010, 298: G295-G303. 10.1152/ajpgi.00298.2009PubMedCrossRef Myers B, Greenwood-Van Meerveld B: Divergent effects of amygdala glucocorticoid and mineralocorticoid receptors in the regulation of visceral and somatic pain. Am J Physiol Gastrointest Liver Physiol 2010, 298: G295-G303. 10.1152/ajpgi.00298.2009PubMedCrossRef
12.
go back to reference Pedersen LH, Scheel-Kruger J, Blackburn-Munro G: Amygdala GABA-A receptor involvement in mediating sensory-discriminative and affective-motivational pain responses in a rat model of peripheral nerve injury. Pain 2007, 127: 17–26. 10.1016/j.pain.2006.06.036PubMedCrossRef Pedersen LH, Scheel-Kruger J, Blackburn-Munro G: Amygdala GABA-A receptor involvement in mediating sensory-discriminative and affective-motivational pain responses in a rat model of peripheral nerve injury. Pain 2007, 127: 17–26. 10.1016/j.pain.2006.06.036PubMedCrossRef
13.
go back to reference Carrasquillo Y, Gereau RW: Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception. J Neurosci 2007, 27: 1543–1551. 10.1523/JNEUROSCI.3536-06.2007PubMedCrossRef Carrasquillo Y, Gereau RW: Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception. J Neurosci 2007, 27: 1543–1551. 10.1523/JNEUROSCI.3536-06.2007PubMedCrossRef
14.
go back to reference Han JS, Adwanikar H, Li Z, Ji G, Neugebauer V: Facilitation of synaptic transmission and pain responses by CGRP in the amygdala of normal rats. Mol Pain 2010, 6: 10–23. 10.1186/1744-8069-6-10PubMedCentralPubMedCrossRef Han JS, Adwanikar H, Li Z, Ji G, Neugebauer V: Facilitation of synaptic transmission and pain responses by CGRP in the amygdala of normal rats. Mol Pain 2010, 6: 10–23. 10.1186/1744-8069-6-10PubMedCentralPubMedCrossRef
15.
go back to reference Kolber BJ, Montana MC, Carrasquillo Y, Xu J, Heinemann SF, Muglia LJ, Gereau RW: Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior. J Neurosci 2010, 30: 8203–8213. 10.1523/JNEUROSCI.1216-10.2010PubMedCentralPubMedCrossRef Kolber BJ, Montana MC, Carrasquillo Y, Xu J, Heinemann SF, Muglia LJ, Gereau RW: Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior. J Neurosci 2010, 30: 8203–8213. 10.1523/JNEUROSCI.1216-10.2010PubMedCentralPubMedCrossRef
16.
go back to reference Myers B, Dittmeyer K, Greenwood-Van Meerveld B: Involvement of amygdaloid corticosterone in altered visceral and somatic sensation. Behav Brain Res 2007, 181: 163–167. 10.1016/j.bbr.2007.03.031PubMedCrossRef Myers B, Dittmeyer K, Greenwood-Van Meerveld B: Involvement of amygdaloid corticosterone in altered visceral and somatic sensation. Behav Brain Res 2007, 181: 163–167. 10.1016/j.bbr.2007.03.031PubMedCrossRef
17.
go back to reference Ansah OB, Goncalves L, Almeida A, Pertovaara A: Enhanced pronociception by amygdaloid group I metabotropic glutamate receptors in nerve-injured animals. Exp Neurol 2009, 216: 66–74. 10.1016/j.expneurol.2008.11.005PubMedCrossRef Ansah OB, Goncalves L, Almeida A, Pertovaara A: Enhanced pronociception by amygdaloid group I metabotropic glutamate receptors in nerve-injured animals. Exp Neurol 2009, 216: 66–74. 10.1016/j.expneurol.2008.11.005PubMedCrossRef
18.
go back to reference Sah P, Faber ES, Lopez de AM, Power J: The amygdaloid complex: anatomy and physiology. Physiol Rev 2003, 83: 803–834.PubMedCrossRef Sah P, Faber ES, Lopez de AM, Power J: The amygdaloid complex: anatomy and physiology. Physiol Rev 2003, 83: 803–834.PubMedCrossRef
19.
go back to reference Gauriau C, Bernard J-F: A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J Comp Neurol 2004, 468: 24–56. 10.1002/cne.10873PubMedCrossRef Gauriau C, Bernard J-F: A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J Comp Neurol 2004, 468: 24–56. 10.1002/cne.10873PubMedCrossRef
20.
go back to reference Neugebauer V, Li W, Bird GC, Bhave G, Gereau RW: Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5. J Neurosci 2003, 23: 52–63.PubMed Neugebauer V, Li W, Bird GC, Bhave G, Gereau RW: Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5. J Neurosci 2003, 23: 52–63.PubMed
21.
go back to reference Han JS, Li W, Neugebauer V: Critical role of calcitonin gene-related peptide 1 receptors in the amygdala in synaptic plasticity and pain behavior. J Neurosci 2005, 25: 10717–10728. 10.1523/JNEUROSCI.4112-05.2005PubMedCrossRef Han JS, Li W, Neugebauer V: Critical role of calcitonin gene-related peptide 1 receptors in the amygdala in synaptic plasticity and pain behavior. J Neurosci 2005, 25: 10717–10728. 10.1523/JNEUROSCI.4112-05.2005PubMedCrossRef
22.
go back to reference Bird GC, Lash LL, Han JS, Zou X, Willis WD, Neugebauer V: Protein kinase A-dependent enhanced NMDA receptor function in pain-related synaptic plasticity in rat amygdala neurones. J Physiol 2005, 564: 907–921. 10.1113/jphysiol.2005.084780PubMedCentralPubMedCrossRef Bird GC, Lash LL, Han JS, Zou X, Willis WD, Neugebauer V: Protein kinase A-dependent enhanced NMDA receptor function in pain-related synaptic plasticity in rat amygdala neurones. J Physiol 2005, 564: 907–921. 10.1113/jphysiol.2005.084780PubMedCentralPubMedCrossRef
23.
go back to reference Fu Y, Neugebauer V: Differential mechanisms of CRF1 and CRF2 receptor functions in the amygdala in pain-related synaptic facilitation and behavior. J Neurosci 2008, 28: 3861–3876. 10.1523/JNEUROSCI.0227-08.2008PubMedCentralPubMedCrossRef Fu Y, Neugebauer V: Differential mechanisms of CRF1 and CRF2 receptor functions in the amygdala in pain-related synaptic facilitation and behavior. J Neurosci 2008, 28: 3861–3876. 10.1523/JNEUROSCI.0227-08.2008PubMedCentralPubMedCrossRef
24.
go back to reference Han JS, Neugebauer V: Synaptic plasticity in the amygdala in a visceral pain model in rats. Neuroscience Letters 2004, 361: 254–257. 10.1016/j.neulet.2003.12.027PubMedCrossRef Han JS, Neugebauer V: Synaptic plasticity in the amygdala in a visceral pain model in rats. Neuroscience Letters 2004, 361: 254–257. 10.1016/j.neulet.2003.12.027PubMedCrossRef
25.
go back to reference Ikeda R, Takahashi Y, Inoue K, Kato F: NMDA receptor-independent synaptic plasticity in the central amygdala in the rat model of neuropathic pain. Pain 2007, 127: 161–172. 10.1016/j.pain.2006.09.003PubMedCrossRef Ikeda R, Takahashi Y, Inoue K, Kato F: NMDA receptor-independent synaptic plasticity in the central amygdala in the rat model of neuropathic pain. Pain 2007, 127: 161–172. 10.1016/j.pain.2006.09.003PubMedCrossRef
26.
go back to reference Neugebauer V, Li W: Differential sensitization of amygdala neurons to afferent inputs in a model of arthritic pain. J Neurophysiol 2003, 89: 716–727. 10.1152/jn.00799.2002PubMedCrossRef Neugebauer V, Li W: Differential sensitization of amygdala neurons to afferent inputs in a model of arthritic pain. J Neurophysiol 2003, 89: 716–727. 10.1152/jn.00799.2002PubMedCrossRef
27.
go back to reference Li W, Neugebauer V: Differential roles of mGluR1 and mGluR5 in brief and prolonged nociceptive processing in central amygdala neurons. J Neurophysiol 2004, 91: 13–24. 10.1152/jn.00485.2003PubMedCrossRef Li W, Neugebauer V: Differential roles of mGluR1 and mGluR5 in brief and prolonged nociceptive processing in central amygdala neurons. J Neurophysiol 2004, 91: 13–24. 10.1152/jn.00485.2003PubMedCrossRef
28.
go back to reference Li W, Neugebauer V: Block of NMDA and non-NMDA receptor activation results in reduced background and evoked activity of central amygdala neurons in a model of arthritic pain. Pain 2004, 110: 112–122. 10.1016/j.pain.2004.03.015PubMedCrossRef Li W, Neugebauer V: Block of NMDA and non-NMDA receptor activation results in reduced background and evoked activity of central amygdala neurons in a model of arthritic pain. Pain 2004, 110: 112–122. 10.1016/j.pain.2004.03.015PubMedCrossRef
29.
go back to reference Li W, Neugebauer V: Differential changes of group II and group III mGluR function in central amygdala neurons in a model of arthritic pain. J Neurophysiol 2006, 96: 1803–1815. 10.1152/jn.00495.2006PubMedCrossRef Li W, Neugebauer V: Differential changes of group II and group III mGluR function in central amygdala neurons in a model of arthritic pain. J Neurophysiol 2006, 96: 1803–1815. 10.1152/jn.00495.2006PubMedCrossRef
30.
go back to reference Ji G, Neugebauer V: Differential effects of CRF1 and CRF2 receptor antagonists on pain-related sensitization of neurons in the central nucleus of the amygdala. J Neurophysiol 2007, 97: 3893–3904. 10.1152/jn.00135.2007PubMedCrossRef Ji G, Neugebauer V: Differential effects of CRF1 and CRF2 receptor antagonists on pain-related sensitization of neurons in the central nucleus of the amygdala. J Neurophysiol 2007, 97: 3893–3904. 10.1152/jn.00135.2007PubMedCrossRef
31.
32.
go back to reference Pare D, Quirk GJ, Ledoux JE: New Vistas on Amygdala Networks in Conditioned Fear. J Neurophysiol 2004, 92: 1–9. 10.1152/jn.00153.2004PubMedCrossRef Pare D, Quirk GJ, Ledoux JE: New Vistas on Amygdala Networks in Conditioned Fear. J Neurophysiol 2004, 92: 1–9. 10.1152/jn.00153.2004PubMedCrossRef
33.
go back to reference Schafe GE, Doyere V, Ledoux JE: Tracking the Fear Engram: The Lateral Amygdala Is an Essential Locus of Fear Memory Storage. J Neurosci 2005, 25: 10010–10014. 10.1523/JNEUROSCI.3307-05.2005PubMedCrossRef Schafe GE, Doyere V, Ledoux JE: Tracking the Fear Engram: The Lateral Amygdala Is an Essential Locus of Fear Memory Storage. J Neurosci 2005, 25: 10010–10014. 10.1523/JNEUROSCI.3307-05.2005PubMedCrossRef
34.
go back to reference Pitkanen A, Savander V, LeDoux JE: Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 1997, 20: 517–523. 10.1016/S0166-2236(97)01125-9PubMedCrossRef Pitkanen A, Savander V, LeDoux JE: Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 1997, 20: 517–523. 10.1016/S0166-2236(97)01125-9PubMedCrossRef
36.
go back to reference Lesage A, Steckler T: Metabotropic glutamate mGlu1 receptor stimulation and blockade: therapeutic opportunities in psychiatric illness. Eur J Pharmacol 2010, 639: 2–16. 10.1016/j.ejphar.2009.12.043PubMedCrossRef Lesage A, Steckler T: Metabotropic glutamate mGlu1 receptor stimulation and blockade: therapeutic opportunities in psychiatric illness. Eur J Pharmacol 2010, 639: 2–16. 10.1016/j.ejphar.2009.12.043PubMedCrossRef
37.
go back to reference Pinheiro PS, Mulle C: Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 2008, 9: 423–436. 10.1038/nrn2379PubMedCrossRef Pinheiro PS, Mulle C: Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 2008, 9: 423–436. 10.1038/nrn2379PubMedCrossRef
38.
go back to reference Olive MF: Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. Eur J Pharmacol 2010, 639: 47–58. 10.1016/j.ejphar.2010.01.029PubMedCentralPubMedCrossRef Olive MF: Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. Eur J Pharmacol 2010, 639: 47–58. 10.1016/j.ejphar.2010.01.029PubMedCentralPubMedCrossRef
39.
go back to reference Niswender CM, Conn PJ: Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010, 50: 295–322. 10.1146/annurev.pharmtox.011008.145533PubMedCentralPubMedCrossRef Niswender CM, Conn PJ: Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010, 50: 295–322. 10.1146/annurev.pharmtox.011008.145533PubMedCentralPubMedCrossRef
40.
go back to reference Lesage ASJ: Role of group I metabotropic glutamate receptors mGlu1 and mGlu5 in nociceptive signalling. Current Neuropharm 2004, 2: 363–393. 10.2174/1570159043359549CrossRef Lesage ASJ: Role of group I metabotropic glutamate receptors mGlu1 and mGlu5 in nociceptive signalling. Current Neuropharm 2004, 2: 363–393. 10.2174/1570159043359549CrossRef
41.
go back to reference Varney MA, Gereau RW: Metabotropic glutamate receptor involvement in models of acute and persistent pain: prospects for the development of novel analgesics. Current Drug Targets 2002, 1: 215–225. 10.2174/1568010023344625CrossRef Varney MA, Gereau RW: Metabotropic glutamate receptor involvement in models of acute and persistent pain: prospects for the development of novel analgesics. Current Drug Targets 2002, 1: 215–225. 10.2174/1568010023344625CrossRef
42.
43.
go back to reference Han JS, Neugebauer V: mGluR1 and mGluR5 antagonists in the amygdala inhibit different components of audible and ultrasonic vocalizations in a model of arthritic pain. Pain 2005, 113: 211–222. 10.1016/j.pain.2004.10.022PubMedCrossRef Han JS, Neugebauer V: mGluR1 and mGluR5 antagonists in the amygdala inhibit different components of audible and ultrasonic vocalizations in a model of arthritic pain. Pain 2005, 113: 211–222. 10.1016/j.pain.2004.10.022PubMedCrossRef
44.
go back to reference Wyllie DJ, Manabe T, Nicoll RA: A rise in postsynaptic Ca2+ potentiates miniature excitatory postsynaptic currents and AMPA responses in hippocampal neurons. Neuron 1994, 12: 127–138. 10.1016/0896-6273(94)90158-9PubMedCrossRef Wyllie DJ, Manabe T, Nicoll RA: A rise in postsynaptic Ca2+ potentiates miniature excitatory postsynaptic currents and AMPA responses in hippocampal neurons. Neuron 1994, 12: 127–138. 10.1016/0896-6273(94)90158-9PubMedCrossRef
45.
go back to reference Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A: Amygdala inhibitory circuits and the control of fear memory. Neuron 2009, 62: 757–771. 10.1016/j.neuron.2009.05.026PubMedCrossRef Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A: Amygdala inhibitory circuits and the control of fear memory. Neuron 2009, 62: 757–771. 10.1016/j.neuron.2009.05.026PubMedCrossRef
46.
go back to reference Millhouse OE: The intercalated cells of the amygdala. J Comp Neurol 1986, 247: 246–271. 10.1002/cne.902470209PubMedCrossRef Millhouse OE: The intercalated cells of the amygdala. J Comp Neurol 1986, 247: 246–271. 10.1002/cne.902470209PubMedCrossRef
47.
go back to reference Maren S, Quirk GJ: Neuronal signalling of fear memory. Nat Rev Neurosci 2004, 5: 844–852. 10.1038/nrn1535PubMedCrossRef Maren S, Quirk GJ: Neuronal signalling of fear memory. Nat Rev Neurosci 2004, 5: 844–852. 10.1038/nrn1535PubMedCrossRef
48.
go back to reference Royer S, Pare D: Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience 2002, 115: 455–462. 10.1016/S0306-4522(02)00455-4PubMedCrossRef Royer S, Pare D: Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience 2002, 115: 455–462. 10.1016/S0306-4522(02)00455-4PubMedCrossRef
49.
go back to reference Jungling K, Seidenbecher T, Sosulina L, Lesting J, Sangha S, Clark SD, Okamura N, Duangdao DM, Xu YL, Reinscheid RK, et al.: Neuropeptide S-mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala. Neuron 2008, 59: 298–310. 10.1016/j.neuron.2008.07.002PubMedCentralPubMedCrossRef Jungling K, Seidenbecher T, Sosulina L, Lesting J, Sangha S, Clark SD, Okamura N, Duangdao DM, Xu YL, Reinscheid RK, et al.: Neuropeptide S-mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala. Neuron 2008, 59: 298–310. 10.1016/j.neuron.2008.07.002PubMedCentralPubMedCrossRef
50.
51.
go back to reference Likhtik E, Popa D, pergis-Schoute J, Fidacaro GA, Pare D: Amygdala intercalated neurons are required for expression of fear extinction. Nature 2008, 454: 642–645. 10.1038/nature07167PubMedCentralPubMedCrossRef Likhtik E, Popa D, pergis-Schoute J, Fidacaro GA, Pare D: Amygdala intercalated neurons are required for expression of fear extinction. Nature 2008, 454: 642–645. 10.1038/nature07167PubMedCentralPubMedCrossRef
52.
go back to reference Lea PM, Faden AI: Metabotropic glutamate receptor subtype 5 antagonists MPEP and MTEP. CNS Drug Rev 2006, 12: 149–166. 10.1111/j.1527-3458.2006.00149.xPubMedCrossRef Lea PM, Faden AI: Metabotropic glutamate receptor subtype 5 antagonists MPEP and MTEP. CNS Drug Rev 2006, 12: 149–166. 10.1111/j.1527-3458.2006.00149.xPubMedCrossRef
53.
go back to reference Pernia-Andrade AJ, Kato A, Witschi R, Nyilas R, Katona I, Freund TF, Watanabe M, Filitz J, Koppert W, Schuttler J, et al.: Spinal endocannabinoids and CB1 receptors mediate C-fiber-induced heterosynaptic pain sensitization. Science 2009, 325: 760–764. 10.1126/science.1171870PubMedCentralPubMedCrossRef Pernia-Andrade AJ, Kato A, Witschi R, Nyilas R, Katona I, Freund TF, Watanabe M, Filitz J, Koppert W, Schuttler J, et al.: Spinal endocannabinoids and CB1 receptors mediate C-fiber-induced heterosynaptic pain sensitization. Science 2009, 325: 760–764. 10.1126/science.1171870PubMedCentralPubMedCrossRef
54.
go back to reference Li W, Neugebauer V: Differential roles of mGluR1 and mGluR5 in brief and prolonged nociceptive processing in central amygdala neurons. J Neurophysiol 2004, 91: 13–24. 10.1152/jn.00485.2003PubMedCrossRef Li W, Neugebauer V: Differential roles of mGluR1 and mGluR5 in brief and prolonged nociceptive processing in central amygdala neurons. J Neurophysiol 2004, 91: 13–24. 10.1152/jn.00485.2003PubMedCrossRef
55.
go back to reference Ji G, Neugebauer V: Reactive oxygen species are involved in group I mGluR-mediated facilitation of nociceptive processing in amygdala neurons. J Neurophysiol 2010,104(1):218–229. 10.1152/jn.00223.2010PubMedCentralPubMedCrossRef Ji G, Neugebauer V: Reactive oxygen species are involved in group I mGluR-mediated facilitation of nociceptive processing in amygdala neurons. J Neurophysiol 2010,104(1):218–229. 10.1152/jn.00223.2010PubMedCentralPubMedCrossRef
56.
go back to reference Cozzi A, Meli E, Carla V, Pellicciari R, Moroni F, Pellegrini-Giampietro DE: Metabotropic glutamate 1 (mGlu1) receptor antagonists enhance GABAergic neurotransmission: a mechanism for the attenuation of post-ischemic injury and epileptiform activity? Neuropharmacology 2002, 43: 119–130. 10.1016/S0028-3908(02)00080-1PubMedCrossRef Cozzi A, Meli E, Carla V, Pellicciari R, Moroni F, Pellegrini-Giampietro DE: Metabotropic glutamate 1 (mGlu1) receptor antagonists enhance GABAergic neurotransmission: a mechanism for the attenuation of post-ischemic injury and epileptiform activity? Neuropharmacology 2002, 43: 119–130. 10.1016/S0028-3908(02)00080-1PubMedCrossRef
57.
go back to reference Gereau RW IV, Conn PJ: Multiple presynaptic metabotropic glutamate receptors modulate excitatory and inhibitory synaptic transmission in hippocampal area Ca1. J Neurosci 1995, 15: 6879–6889.PubMed Gereau RW IV, Conn PJ: Multiple presynaptic metabotropic glutamate receptors modulate excitatory and inhibitory synaptic transmission in hippocampal area Ca1. J Neurosci 1995, 15: 6879–6889.PubMed
58.
go back to reference Battaglia G, Bruno V, Pisani A, Centonze D, Catania MV, Calabresi P, Nicoletti F: Selective blockade of type-1 metabotropic glutamate receptors induces neuroprotection by enhancing gabaergic transmission. Mol Cell Neurosci 2001, 17: 1071–1083. 10.1006/mcne.2001.0992PubMedCrossRef Battaglia G, Bruno V, Pisani A, Centonze D, Catania MV, Calabresi P, Nicoletti F: Selective blockade of type-1 metabotropic glutamate receptors induces neuroprotection by enhancing gabaergic transmission. Mol Cell Neurosci 2001, 17: 1071–1083. 10.1006/mcne.2001.0992PubMedCrossRef
59.
go back to reference Galante M, Diana MA: Group I metabotropic glutamate receptors inhibit GABA release at interneuron-Purkinje cell synapses through endocannabinoid production. J Neurosci 2004, 24: 4865–4874. 10.1523/JNEUROSCI.0403-04.2004PubMedCrossRef Galante M, Diana MA: Group I metabotropic glutamate receptors inhibit GABA release at interneuron-Purkinje cell synapses through endocannabinoid production. J Neurosci 2004, 24: 4865–4874. 10.1523/JNEUROSCI.0403-04.2004PubMedCrossRef
60.
go back to reference Bonci A, Grillner P, Siniscalchi A, Mercuri NB, Bernardi G: Glutamate metabotropic receptor agonists depress excitatory and inhibitory transmission on rat mesencephalic principal neurons. Eur J Neurosci 1997, 9: 2359–2369. 10.1111/j.1460-9568.1997.tb01653.xPubMedCrossRef Bonci A, Grillner P, Siniscalchi A, Mercuri NB, Bernardi G: Glutamate metabotropic receptor agonists depress excitatory and inhibitory transmission on rat mesencephalic principal neurons. Eur J Neurosci 1997, 9: 2359–2369. 10.1111/j.1460-9568.1997.tb01653.xPubMedCrossRef
61.
go back to reference Zheng F, Johnson SW: Dual modulation of gabaergic transmission by metabotropic glutamate receptors in rat ventral tegmental area. Neuroscience 2003, 119: 453–460. 10.1016/S0306-4522(03)00190-8PubMedCrossRef Zheng F, Johnson SW: Dual modulation of gabaergic transmission by metabotropic glutamate receptors in rat ventral tegmental area. Neuroscience 2003, 119: 453–460. 10.1016/S0306-4522(03)00190-8PubMedCrossRef
62.
go back to reference Drew GM, Mitchell VA, Vaughan CW: Glutamate Spillover Modulates GABAergic Synaptic Transmission in the Rat Midbrain Periaqueductal Grey via Metabotropic Glutamate Receptors and Endocannabinoid Signaling. J Neurosci 2008, 28: 808–815. 10.1523/JNEUROSCI.4876-07.2008PubMedCrossRef Drew GM, Mitchell VA, Vaughan CW: Glutamate Spillover Modulates GABAergic Synaptic Transmission in the Rat Midbrain Periaqueductal Grey via Metabotropic Glutamate Receptors and Endocannabinoid Signaling. J Neurosci 2008, 28: 808–815. 10.1523/JNEUROSCI.4876-07.2008PubMedCrossRef
63.
go back to reference Galante M, Diana MA: Group I metabotropic glutamate receptors inhibit GABA release at interneuron-Purkinje cell synapses through endocannabinoid production. J Neurosci 2004, 24: 4865–4874. 10.1523/JNEUROSCI.0403-04.2004PubMedCrossRef Galante M, Diana MA: Group I metabotropic glutamate receptors inhibit GABA release at interneuron-Purkinje cell synapses through endocannabinoid production. J Neurosci 2004, 24: 4865–4874. 10.1523/JNEUROSCI.0403-04.2004PubMedCrossRef
64.
go back to reference Varma N, Carlson GC, Ledent C, Alger BE: Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J Neurosci 2001, 21: RC188.PubMed Varma N, Carlson GC, Ledent C, Alger BE: Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J Neurosci 2001, 21: RC188.PubMed
65.
66.
go back to reference Paxinos G, Watson C: The rat brain in stereotaxic coordinates. New York: Academic Press; 1998. Paxinos G, Watson C: The rat brain in stereotaxic coordinates. New York: Academic Press; 1998.
Metadata
Title
Pain-related increase of excitatory transmission and decrease of inhibitory transmission in the central nucleus of the amygdala are mediated by mGluR1
Authors
Wenjie Ren
Volker Neugebauer
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2010
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-6-93

Other articles of this Issue 1/2010

Molecular Pain 1/2010 Go to the issue