Skip to main content
Top
Published in: Molecular Pain 1/2008

Open Access 01-12-2008 | Research

Effect of excitatory and inhibitory agents and a glial inhibitor on optically-recorded primary-afferent excitation

Authors: Hiroshi Ikeda, Takaki Kiritoshi, Kazuyuki Murase

Published in: Molecular Pain | Issue 1/2008

Login to get access

Abstract

The effects of GABA, excitatory amino-acid receptors antagonists and a glial metabolism inhibitor on primary-afferent excitation in the spinal dorsal horn were studied by imaging the presynaptic excitation of high-threshold afferents in cord slices from young rats with a voltage-sensitive dye. Primary afferent fibers and terminals were anterogradely labeled with a voltage-sensitive dye from the dorsal root attached to the spinal cord slice. Single-pulse stimulation of C fiber-activating strength to the dorsal root elicited compound action potential-like optical responses in the superficial dorsal horn. The evoked presynaptic excitation was increased by the GABAA receptor antagonists picrotoxin and bicuculline, by glutamate receptor antagonists D-AP5 and CNQX, and by the glial metabolism inhibitor mono-fluoroacetic acid (MFA). The increase in presynaptic excitation by picrotoxin was inhibited in the presence of D-AP5, CNQX and MFA. Presynaptic modulation in the central terminal of fine primary afferents by excitatory and inhibitory amino acids may represent a mechanism that regulates the transmission of pain.
Appendix
Available only for authorised users
Literature
1.
go back to reference Willis WD, Coggeshall RE: Sensory Mechanisms of the Spinal Cord. Third edition. New York: Plenum; 2004. Willis WD, Coggeshall RE: Sensory Mechanisms of the Spinal Cord. Third edition. New York: Plenum; 2004.
2.
go back to reference Willis WD: Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res 1999, 124: 395–421. 10.1007/s002210050637CrossRefPubMed Willis WD: Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res 1999, 124: 395–421. 10.1007/s002210050637CrossRefPubMed
3.
go back to reference Levy RA, Anderson EG: The effect of the GABA antagonists bicuculline and picrotoxin on primary afferent terminal excitability. Brain Res 1972, 43: 171–180. 10.1016/0006-8993(72)90282-XCrossRefPubMed Levy RA, Anderson EG: The effect of the GABA antagonists bicuculline and picrotoxin on primary afferent terminal excitability. Brain Res 1972, 43: 171–180. 10.1016/0006-8993(72)90282-XCrossRefPubMed
4.
go back to reference Quevedo J, Eguibar JR, Jimenez I, Rudomin P: Differential action of (-)-baclofen on the primary afferent depolarization produced by segmental and descending inputs. Exp Brain Res 1992, 91: 29–45. 10.1007/BF00230011CrossRefPubMed Quevedo J, Eguibar JR, Jimenez I, Rudomin P: Differential action of (-)-baclofen on the primary afferent depolarization produced by segmental and descending inputs. Exp Brain Res 1992, 91: 29–45. 10.1007/BF00230011CrossRefPubMed
5.
go back to reference Calvillo O, Madrid J, Rudomin P: Presynaptic depolarization of unmyelinated primary afferent fibers in the spinal cord of the cat. Neuroscience 1982, 7: 1389–1409. 10.1016/0306-4522(82)90252-4CrossRefPubMed Calvillo O, Madrid J, Rudomin P: Presynaptic depolarization of unmyelinated primary afferent fibers in the spinal cord of the cat. Neuroscience 1982, 7: 1389–1409. 10.1016/0306-4522(82)90252-4CrossRefPubMed
6.
go back to reference Fitzgerald M, Woolf CJ: Effects of cutaneous nerve and intraspinal conditioning of C-fibre afferent terminal excitability in decerebrate spinal rats. J Physiol 1981, 318: 25–39.PubMedCentralPubMed Fitzgerald M, Woolf CJ: Effects of cutaneous nerve and intraspinal conditioning of C-fibre afferent terminal excitability in decerebrate spinal rats. J Physiol 1981, 318: 25–39.PubMedCentralPubMed
7.
go back to reference Lin Q, Zou X, Willis WD: Aδ and C primary afferents convey dorsal root reflexes after intradermal injection of capsaicin in rats. J Neurophysiol 2000, 84: 2695–2698.PubMed Lin Q, Zou X, Willis WD: Aδ and C primary afferents convey dorsal root reflexes after intradermal injection of capsaicin in rats. J Neurophysiol 2000, 84: 2695–2698.PubMed
8.
go back to reference Desarmenien M, Santangelo F, Loeffler JP, Feltz P: Comparative study of GABA-mediated depolarizations of lumbar Aδ and C primary afferent neurones of the rat. Exp Brain Res 1984, 54: 521–528. 10.1007/BF00235477CrossRefPubMed Desarmenien M, Santangelo F, Loeffler JP, Feltz P: Comparative study of GABA-mediated depolarizations of lumbar Aδ and C primary afferent neurones of the rat. Exp Brain Res 1984, 54: 521–528. 10.1007/BF00235477CrossRefPubMed
9.
go back to reference Kerchner GA, Wilding TJ, Li P, Zhuo M, Huettner JE: Presynaptic kainate receptors regulate spinal sensory transmission. J Neurosci 2001, 21: 59–66.PubMed Kerchner GA, Wilding TJ, Li P, Zhuo M, Huettner JE: Presynaptic kainate receptors regulate spinal sensory transmission. J Neurosci 2001, 21: 59–66.PubMed
10.
go back to reference Lee CJ, Bardoni R, Tong CK, Engelman HS, Joseph DJ, Magherini PC, MacDermott AB: Functional expression of AMPA receptors on central terminals of rat dorsal root ganglion neurons and presynaptic inhibition of glutamate release. Neuron 2002, 35: 135–146. 10.1016/S0896-6273(02)00729-8CrossRefPubMed Lee CJ, Bardoni R, Tong CK, Engelman HS, Joseph DJ, Magherini PC, MacDermott AB: Functional expression of AMPA receptors on central terminals of rat dorsal root ganglion neurons and presynaptic inhibition of glutamate release. Neuron 2002, 35: 135–146. 10.1016/S0896-6273(02)00729-8CrossRefPubMed
11.
go back to reference Bardoni R, Torsney C, Tong CK, Prandini M, MacDermott AB: Presynaptic NMDA receptors modulate glutamate release from primary sensory neurons in rat spinal cord dorsal horn. J Neurosci 2004, 24: 2774–2781. 10.1523/JNEUROSCI.4637-03.2004CrossRefPubMed Bardoni R, Torsney C, Tong CK, Prandini M, MacDermott AB: Presynaptic NMDA receptors modulate glutamate release from primary sensory neurons in rat spinal cord dorsal horn. J Neurosci 2004, 24: 2774–2781. 10.1523/JNEUROSCI.4637-03.2004CrossRefPubMed
12.
go back to reference Araque A, Perea G: Glial modulation of synaptic transmission in culture. Glia 2004, 47: 241–248. 10.1002/glia.20026CrossRefPubMed Araque A, Perea G: Glial modulation of synaptic transmission in culture. Glia 2004, 47: 241–248. 10.1002/glia.20026CrossRefPubMed
13.
go back to reference Newman EA: New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 2003, 26: 536–542. 10.1016/S0166-2236(03)00237-6CrossRefPubMed Newman EA: New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 2003, 26: 536–542. 10.1016/S0166-2236(03)00237-6CrossRefPubMed
14.
go back to reference Volterra A, Meldolesi J: Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 2005, 6: 626–640. 10.1038/nrn1722CrossRefPubMed Volterra A, Meldolesi J: Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 2005, 6: 626–640. 10.1038/nrn1722CrossRefPubMed
15.
go back to reference Bowser DN, Khakh BS: ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 2004, 24: 8606–8620. 10.1523/JNEUROSCI.2660-04.2004CrossRefPubMed Bowser DN, Khakh BS: ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 2004, 24: 8606–8620. 10.1523/JNEUROSCI.2660-04.2004CrossRefPubMed
16.
go back to reference Ikeda H, Murase K: Glial nitric oxide-mediated long-term presynaptic facilitation revealed by optical imaging in rat spinal dorsal horn. J Neurosci 2004, 24: 9888–9896. 10.1523/JNEUROSCI.2608-04.2004CrossRefPubMed Ikeda H, Murase K: Glial nitric oxide-mediated long-term presynaptic facilitation revealed by optical imaging in rat spinal dorsal horn. J Neurosci 2004, 24: 9888–9896. 10.1523/JNEUROSCI.2608-04.2004CrossRefPubMed
17.
go back to reference Kusudo K, Ikeda H, Murase K: Optical analyses of GABAergic presynaptic inhibition in spinal dorsal horn. Japanese J Physiol 2006, 238. Kusudo K, Ikeda H, Murase K: Optical analyses of GABAergic presynaptic inhibition in spinal dorsal horn. Japanese J Physiol 2006, 238.
18.
go back to reference Ikeda H, Ryu PD, Park JB, Tanifuji M, Asai T, Murase K: Optical responses evoked by single-pulse stimulation to the dorsal root in the rat spinal dorsal horn in slice. Brain Res 1998, 812: 81–90. 10.1016/S0006-8993(98)00928-7CrossRefPubMed Ikeda H, Ryu PD, Park JB, Tanifuji M, Asai T, Murase K: Optical responses evoked by single-pulse stimulation to the dorsal root in the rat spinal dorsal horn in slice. Brain Res 1998, 812: 81–90. 10.1016/S0006-8993(98)00928-7CrossRefPubMed
19.
go back to reference Yang K, Furue H, Fujita T, Kumamoto E, Yoshimura M: Alterations in primary afferent input to substantia gelatinosa of adult rat spinal cord after neonatal capsaicin treatment. J Neurosci Res 2003, 74: 928–933. 10.1002/jnr.10818CrossRefPubMed Yang K, Furue H, Fujita T, Kumamoto E, Yoshimura M: Alterations in primary afferent input to substantia gelatinosa of adult rat spinal cord after neonatal capsaicin treatment. J Neurosci Res 2003, 74: 928–933. 10.1002/jnr.10818CrossRefPubMed
20.
go back to reference Kusudo K, Ikeda H, Murase K: Depression of presynaptic excitation by the activation of vanilloid receptor 1 in the rat spinal dorsal horn revealed by optical imaging. Mol Pain 2006, 2: 8. 10.1186/1744-8069-2-8PubMedCentralCrossRefPubMed Kusudo K, Ikeda H, Murase K: Depression of presynaptic excitation by the activation of vanilloid receptor 1 in the rat spinal dorsal horn revealed by optical imaging. Mol Pain 2006, 2: 8. 10.1186/1744-8069-2-8PubMedCentralCrossRefPubMed
21.
go back to reference Hülsmann S, Oku Y, Zhang W, Richter DW: Metabolic coupling between glia and neurons is necessary for maintaining respiratory activity in transverse medullary slices of neonatal mouse. Eur J Neurosci 2000, 12: 856–862. 10.1046/j.1460-9568.2000.00973.xCrossRefPubMed Hülsmann S, Oku Y, Zhang W, Richter DW: Metabolic coupling between glia and neurons is necessary for maintaining respiratory activity in transverse medullary slices of neonatal mouse. Eur J Neurosci 2000, 12: 856–862. 10.1046/j.1460-9568.2000.00973.xCrossRefPubMed
22.
go back to reference Alvarez FJ, Kavookjian AM, Light AR: Synaptic interactions between GABA-immunoreactive profiles and the terminals of functionally defined myelinated nociceptors in the monkey and cat spinal cord. J Neurosci 1992, 12: 2901–2917.PubMed Alvarez FJ, Kavookjian AM, Light AR: Synaptic interactions between GABA-immunoreactive profiles and the terminals of functionally defined myelinated nociceptors in the monkey and cat spinal cord. J Neurosci 1992, 12: 2901–2917.PubMed
23.
go back to reference Bernardi PS, Valtschanoff JG, Weinberg RJ, Schmidt HH, Rustioni A: Synaptic interactions between primary afferent terminals and GABA and nitric oxide-synthesizing neurons in superficial laminae of the rat spinal cord. J Neurosci 1995, 15: 1363–1371.PubMed Bernardi PS, Valtschanoff JG, Weinberg RJ, Schmidt HH, Rustioni A: Synaptic interactions between primary afferent terminals and GABA and nitric oxide-synthesizing neurons in superficial laminae of the rat spinal cord. J Neurosci 1995, 15: 1363–1371.PubMed
24.
go back to reference Todd AJ, Lochhead V: GABA-like immunoreactivity in type I glomeruli of rat substantia gelatinosa. Brain Res 1990, 23: 171–174. 10.1016/0006-8993(90)90454-JCrossRef Todd AJ, Lochhead V: GABA-like immunoreactivity in type I glomeruli of rat substantia gelatinosa. Brain Res 1990, 23: 171–174. 10.1016/0006-8993(90)90454-JCrossRef
25.
go back to reference Jow F, Chiu D, Lim HK, Novak T, Lin S: Production of GABA by cultured hippocampal glial cells. Neurochem Int 2004, 45: 273–283. 10.1016/j.neuint.2003.11.021CrossRefPubMed Jow F, Chiu D, Lim HK, Novak T, Lin S: Production of GABA by cultured hippocampal glial cells. Neurochem Int 2004, 45: 273–283. 10.1016/j.neuint.2003.11.021CrossRefPubMed
26.
go back to reference Liu QY, Schaffner AE, Chang YH, Maric D, Barker JL: Persistent activation of GABA(A) receptor/Cl(-) channels by astrocyte-derived GABA in cultured embryonic rat hippocampal neurons. J Neurophysiol 2000, 84: 1392–1403.PubMed Liu QY, Schaffner AE, Chang YH, Maric D, Barker JL: Persistent activation of GABA(A) receptor/Cl(-) channels by astrocyte-derived GABA in cultured embryonic rat hippocampal neurons. J Neurophysiol 2000, 84: 1392–1403.PubMed
27.
go back to reference Kozlov AS, Angulo MC, Audinat E, Charpak S: Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci USA 2006, 103: 10058–10063. 10.1073/pnas.0603741103PubMedCentralCrossRefPubMed Kozlov AS, Angulo MC, Audinat E, Charpak S: Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci USA 2006, 103: 10058–10063. 10.1073/pnas.0603741103PubMedCentralCrossRefPubMed
28.
go back to reference Ataka T, Gu JG: Relationship between tonic inhibitory currents and phasic inhibitory activity in the spinal cord lamina II region of adult mice. Mol Pain 2006, 2: 36. 10.1186/1744-8069-2-36PubMedCentralCrossRefPubMed Ataka T, Gu JG: Relationship between tonic inhibitory currents and phasic inhibitory activity in the spinal cord lamina II region of adult mice. Mol Pain 2006, 2: 36. 10.1186/1744-8069-2-36PubMedCentralCrossRefPubMed
29.
go back to reference Cronin JN, Bradbury EJ, Lidierth M: Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity. Pain 2004, 112: 156–163. 10.1016/j.pain.2004.08.010CrossRefPubMed Cronin JN, Bradbury EJ, Lidierth M: Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity. Pain 2004, 112: 156–163. 10.1016/j.pain.2004.08.010CrossRefPubMed
31.
go back to reference Melzack R, Wall PD: Pain mechanisms: a new theory. Science 1965, 150: 971–979. 10.1126/science.150.3699.971CrossRefPubMed Melzack R, Wall PD: Pain mechanisms: a new theory. Science 1965, 150: 971–979. 10.1126/science.150.3699.971CrossRefPubMed
32.
go back to reference Cervero F, Laird JM: Mechanisms of touch-evoked pain (allodynia): a new model. Pain 1996, 68: 13–23. 10.1016/S0304-3959(96)03165-XCrossRefPubMed Cervero F, Laird JM: Mechanisms of touch-evoked pain (allodynia): a new model. Pain 1996, 68: 13–23. 10.1016/S0304-3959(96)03165-XCrossRefPubMed
33.
go back to reference Murase K, Saka T, Terao S, Ikeda H, Asai T: Slow intrinsic optical signals in the rat spinal dorsal horn in slice. Neuroreport 1998, 9: 3663–3667. 10.1097/00001756-199811160-00018CrossRefPubMed Murase K, Saka T, Terao S, Ikeda H, Asai T: Slow intrinsic optical signals in the rat spinal dorsal horn in slice. Neuroreport 1998, 9: 3663–3667. 10.1097/00001756-199811160-00018CrossRefPubMed
34.
go back to reference Asai T, Kusudo K, Ikeda H, Takenoshita M, Murase K: Intrinsic optical signals in the dorsal horn of rat spinal cord slices elicited by brief repetitive stimulation. Eur J Neurosci 2002, 15: 1737–1746. 10.1046/j.1460-9568.2002.02006.xCrossRefPubMed Asai T, Kusudo K, Ikeda H, Takenoshita M, Murase K: Intrinsic optical signals in the dorsal horn of rat spinal cord slices elicited by brief repetitive stimulation. Eur J Neurosci 2002, 15: 1737–1746. 10.1046/j.1460-9568.2002.02006.xCrossRefPubMed
Metadata
Title
Effect of excitatory and inhibitory agents and a glial inhibitor on optically-recorded primary-afferent excitation
Authors
Hiroshi Ikeda
Takaki Kiritoshi
Kazuyuki Murase
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2008
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-4-39

Other articles of this Issue 1/2008

Molecular Pain 1/2008 Go to the issue