Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2006

Open Access 01-12-2006 | Research

In vitro hydrodynamic properties of the Miethke proGAV hydrocephalus shunt

Authors: David M Allin, Zofia H Czosnyka, Marek Czosnyka, Hugh K Richards, John D Pickard

Published in: Fluids and Barriers of the CNS | Issue 1/2006

Login to get access

Abstract

Background

Adjustable shunts are very popular in the management of hydrocephalus and are believed to help in minimizing the number of surgical revisions. The drawback with almost all constructions is that they may be accidentally readjusted in relatively weak magnetic fields (around 30–40 mTesla)

Materials and methods

The ProGav Miethke shunt is composed of an adjustable ballon-spring valve unit and an integrated over-drainage compensating gravitational device (known as the shunt assistant). A mechanical 'brake' is intended to prevent changes to the valve's performance level in a strong magnetic field. We evaluated the performance and hydrodynamic properties of a sample of three valves in the UK Shunt Evaluation Laboratory.

Results

All the shunts showed good mechanical durability over the three-month period of testing, and good stability of hydrodynamic performance over a one-month period
The pressure-flow performance curves, operating, opening and closing pressures fell within the limits specified by the manufacturer, and changed according to the programmed performance levels. The operating pressure increased when the shunt assistant was in the vertical position, as specified. The valve has a low hydrodynamic resistance (0.53 mm mmHg ml-1 min-1). External programming proved to be easy and reliable. Strong magnetic fields from a 3 Tesla MR scanner were not able to change the programming of the valve.

Conclusion

The ProGAV shunt is an adjustable, low resistance valve that is able to limit posture-related over-drainage. Unlike other adjustable valves, the ProGAV cannot be accidentally re-adjusted by external magnetic field such as a 3T MR scanner.
Appendix
Available only for authorised users
Literature
1.
go back to reference Albeck MJ, Borgesen SE, Gjerris F, Schmidt JF, Sorensen PS: Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects. J Neurosurg. 1991, 74 (4): 597-600.CrossRefPubMed Albeck MJ, Borgesen SE, Gjerris F, Schmidt JF, Sorensen PS: Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects. J Neurosurg. 1991, 74 (4): 597-600.CrossRefPubMed
2.
go back to reference Inoue T, Kuzu Y, Ogasawara K, Ogawa A: Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves. J Neurosurg. 2005, 163-165. Suppl 2 Inoue T, Kuzu Y, Ogasawara K, Ogawa A: Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves. J Neurosurg. 2005, 163-165. Suppl 2
3.
go back to reference Nomura S, Fujisawa H, Suzuki M: Effect of cell phone magnetic fields on adjustable cerebrospinal fluid shunt valves. Surg Neurol. 2005, 63: 467-8. 10.1016/j.surneu.2004.06.022.CrossRefPubMed Nomura S, Fujisawa H, Suzuki M: Effect of cell phone magnetic fields on adjustable cerebrospinal fluid shunt valves. Surg Neurol. 2005, 63: 467-8. 10.1016/j.surneu.2004.06.022.CrossRefPubMed
4.
go back to reference Anderson RC, Walker ML, Viner JM, Kestle JR: Adjustment and malfunction of a programmable valve after exposure to toy magnets. Case report. J Neurosurg. 2004, 222-5. Suppl 2 Anderson RC, Walker ML, Viner JM, Kestle JR: Adjustment and malfunction of a programmable valve after exposure to toy magnets. Case report. J Neurosurg. 2004, 222-5. Suppl 2
5.
go back to reference Schneider T, Knauff U, Nitsch J, Firsching R: Electromagnetic field hazards involving adjustable shunt valves in hydrocephalus. J Neurosurg. 2002, 96: 331-4.CrossRefPubMed Schneider T, Knauff U, Nitsch J, Firsching R: Electromagnetic field hazards involving adjustable shunt valves in hydrocephalus. J Neurosurg. 2002, 96: 331-4.CrossRefPubMed
6.
go back to reference Sprung C, Miethke C, Schlosser HG, Brock M: The enigma of underdrainage in shunting with hydrostatic valves and possible solutions. Acta Neurochir Suppl. 2005, 95: 229-35.CrossRefPubMed Sprung C, Miethke C, Schlosser HG, Brock M: The enigma of underdrainage in shunting with hydrostatic valves and possible solutions. Acta Neurochir Suppl. 2005, 95: 229-35.CrossRefPubMed
7.
go back to reference Lindner D, Preul C, Trantakis C, Moeller H, Meixensberger J: Effect of 3T MRI on the function of shunt valves – evaluation of Paedi GAV, Dual Switch and proGAV. Eur J Radiol. 2005, 56: 56-9. 10.1016/j.ejrad.2005.03.029.CrossRefPubMed Lindner D, Preul C, Trantakis C, Moeller H, Meixensberger J: Effect of 3T MRI on the function of shunt valves – evaluation of Paedi GAV, Dual Switch and proGAV. Eur J Radiol. 2005, 56: 56-9. 10.1016/j.ejrad.2005.03.029.CrossRefPubMed
8.
go back to reference Czosnyka Z, Czosnyka M, Richards HK, Pickard JD: Laboratory Testing of Hydrocephalus Shunts – Conclusion of the U.K. Shunt Evaluation Programme. Acta Neurochir. 2002, 144: 525-538. 10.1007/s00701-002-0922-9.CrossRefPubMed Czosnyka Z, Czosnyka M, Richards HK, Pickard JD: Laboratory Testing of Hydrocephalus Shunts – Conclusion of the U.K. Shunt Evaluation Programme. Acta Neurochir. 2002, 144: 525-538. 10.1007/s00701-002-0922-9.CrossRefPubMed
9.
go back to reference Czosnyka Z, Cieslicki K, Czosnyka M, Pickard JD: Hydrocephalus shunts and waves of intracranial pressure. Med Biol Eng Comput. 2005, 43: 71-77. 10.1007/BF02345125.CrossRefPubMed Czosnyka Z, Cieslicki K, Czosnyka M, Pickard JD: Hydrocephalus shunts and waves of intracranial pressure. Med Biol Eng Comput. 2005, 43: 71-77. 10.1007/BF02345125.CrossRefPubMed
10.
go back to reference Bech-Azeddine R, Gjerris F, Waldemar G, Czosnyka M, Juhler M: Intraventricular or lumbar infusion test in adult communicating hydrocephalus? Practical consequences and clinical outcome of shunt operation. Acta Neurochir (Wien). 2005, 147: 1027-36. 10.1007/s00701-005-0589-0.CrossRef Bech-Azeddine R, Gjerris F, Waldemar G, Czosnyka M, Juhler M: Intraventricular or lumbar infusion test in adult communicating hydrocephalus? Practical consequences and clinical outcome of shunt operation. Acta Neurochir (Wien). 2005, 147: 1027-36. 10.1007/s00701-005-0589-0.CrossRef
11.
go back to reference O'Kane MC, Richards H, Winfield P, Pickard JD: The United Kingdom Shunt Registry. Eur J Pediatr Surg. 1997, 1 (Suppl 7): 56. O'Kane MC, Richards H, Winfield P, Pickard JD: The United Kingdom Shunt Registry. Eur J Pediatr Surg. 1997, 1 (Suppl 7): 56.
Metadata
Title
In vitro hydrodynamic properties of the Miethke proGAV hydrocephalus shunt
Authors
David M Allin
Zofia H Czosnyka
Marek Czosnyka
Hugh K Richards
John D Pickard
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2006
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/1743-8454-3-9

Other articles of this Issue 1/2006

Fluids and Barriers of the CNS 1/2006 Go to the issue