Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2012

Open Access 01-12-2012 | Research

Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial

Authors: Alex Schück, Rob Labruyère, Heike Vallery, Robert Riener, Alexander Duschau-Wicke

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2012

Login to get access

Abstract

Background

Functional training is becoming the state-of-the-art therapy approach for rehabilitation of individuals after stroke and spinal cord injury. Robot-aided treadmill training reduces personnel effort, especially when treating severely affected patients. Improving rehabilitation robots towards more patient-cooperative behavior may further increase the effects of robot-aided training. This pilot study aims at investigating the feasibility of applying patient-cooperative robot-aided gait rehabilitation to stroke and incomplete spinal cord injury during a therapy period of four weeks. Short-term effects within one training session as well as the effects of the training on walking function are evaluated.

Methods

Two individuals with chronic incomplete spinal cord injury and two with chronic stroke trained with the Lokomat gait rehabilitation robot which was operated in a new, patient-cooperative mode for a period of four weeks with four training sessions of 45 min per week. At baseline, after two and after four weeks, walking function was assessed with the ten meter walking test. Additionally, muscle activity of the major leg muscles, heart rate and the Borg scale were measured under different walking conditions including a non-cooperative position control mode to investigate the short-term effects of patient-cooperative versus non-cooperative robot-aided gait training.

Results

Patient-cooperative robot-aided gait training was tolerated well by all subjects and performed without difficulties. The subjects trained more actively and with more physiological muscle activity than in a non-cooperative position-control mode. One subject showed a significant and relevant increase of gait speed after the therapy, the three remaining subjects did not show significant changes.

Conclusions

Patient-cooperative robot-aided gait training is feasible in clinical practice and overcomes the main points of criticism against robot-aided gait training: It enables patients to train in an active, variable and more natural way. The limited number of subjects in this pilot trial does not permit valid conclusions on the effect of patient-cooperative robot-aided gait training on walking function. A large, possibly multi-center randomized controlled clinical trial is required to shed more light on this question.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lennon S: The Bobath concept: a critical review of the theoretical assumptions that guide physiotherapy practice in stroke rehabilitation. Phys Therapy Rev. 1996, 35-45. Lennon S: The Bobath concept: a critical review of the theoretical assumptions that guide physiotherapy practice in stroke rehabilitation. Phys Therapy Rev. 1996, 35-45.
2.
go back to reference Seligman MEP: Helplessness: On Depression, Development, and Death. 1975, San Francisco: WH Freeman Seligman MEP: Helplessness: On Depression, Development, and Death. 1975, San Francisco: WH Freeman
3.
go back to reference Taub E, Miller NE, Novack TA, Cook EW, Fleming WC, Nepomuceno CS, Connell JS, Crago JE: Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabilitation. 1993, 74 (4): 347-354. Taub E, Miller NE, Novack TA, Cook EW, Fleming WC, Nepomuceno CS, Connell JS, Crago JE: Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabilitation. 1993, 74 (4): 347-354.
4.
go back to reference Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D, for the EXCITE Investigators: Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006, 296 (17): 2095-2104. 10.1001/jama.296.17.2095.CrossRefPubMed Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D, for the EXCITE Investigators: Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006, 296 (17): 2095-2104. 10.1001/jama.296.17.2095.CrossRefPubMed
5.
go back to reference Wolf SL, Winstein CJ, Miller JP, Thompson PA, Taub E, Uswatte G, Morris D, Blanton S, Nichols-Larsen D, Clark PC: Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial. Lancet Neurol. 2008, 7 (1): 33-40. 10.1016/S1474-4422(07)70294-6.PubMedCentralCrossRefPubMed Wolf SL, Winstein CJ, Miller JP, Thompson PA, Taub E, Uswatte G, Morris D, Blanton S, Nichols-Larsen D, Clark PC: Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial. Lancet Neurol. 2008, 7 (1): 33-40. 10.1016/S1474-4422(07)70294-6.PubMedCentralCrossRefPubMed
6.
go back to reference Lin K-C, Wu C-Y, Liu J-S, Chen Y-T, Hsu C-J: Constraint-induced therapy versus dose-matched control intervention to improve motor ability, basic/extended daily functions, and quality of life in stroke. Neurorehabil Neural Repair. 2009, 23 (2): 160-165.CrossRefPubMed Lin K-C, Wu C-Y, Liu J-S, Chen Y-T, Hsu C-J: Constraint-induced therapy versus dose-matched control intervention to improve motor ability, basic/extended daily functions, and quality of life in stroke. Neurorehabil Neural Repair. 2009, 23 (2): 160-165.CrossRefPubMed
7.
go back to reference Maier IC, Baumann K, Thallmair M, Weinmann O, Scholl J, Schwab ME: Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J Neurosci. 2008, 28 (38): 9386-9403. 10.1523/JNEUROSCI.1697-08.2008.CrossRefPubMed Maier IC, Baumann K, Thallmair M, Weinmann O, Scholl J, Schwab ME: Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J Neurosci. 2008, 28 (38): 9386-9403. 10.1523/JNEUROSCI.1697-08.2008.CrossRefPubMed
8.
go back to reference Barbeau H, Wainberg M, Finch L: Description and application of a system for locomotor rehabilitation. Med Biol Eng Comput. 1987, 25 (3): 341-344. 10.1007/BF02447435.CrossRefPubMed Barbeau H, Wainberg M, Finch L: Description and application of a system for locomotor rehabilitation. Med Biol Eng Comput. 1987, 25 (3): 341-344. 10.1007/BF02447435.CrossRefPubMed
9.
go back to reference Barbeau H, Visintin M: Optimal outcomes obtained with body-Weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabilitation. 2003, 84 (10): 1458-1465. 10.1016/S0003-9993(03)00361-7.CrossRef Barbeau H, Visintin M: Optimal outcomes obtained with body-Weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabilitation. 2003, 84 (10): 1458-1465. 10.1016/S0003-9993(03)00361-7.CrossRef
10.
go back to reference Barbeau H, Nadeau S, Garneau C: Physical determinants, emerging concepts, and training approaches in gait of individuals with spinal cord injury. J Neurotrauma. 2006, 23 (3-4): 571-585. 10.1089/neu.2006.23.571.CrossRefPubMed Barbeau H, Nadeau S, Garneau C: Physical determinants, emerging concepts, and training approaches in gait of individuals with spinal cord injury. J Neurotrauma. 2006, 23 (3-4): 571-585. 10.1089/neu.2006.23.571.CrossRefPubMed
11.
go back to reference Cai LL, Fong AJ, Otoshi CK, Liang Y, Burdick JW, Roy RR, Edgerton VR: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci. 2006, 26 (41): 10564-10568. 10.1523/JNEUROSCI.2266-06.2006.CrossRefPubMed Cai LL, Fong AJ, Otoshi CK, Liang Y, Burdick JW, Roy RR, Edgerton VR: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci. 2006, 26 (41): 10564-10568. 10.1523/JNEUROSCI.2266-06.2006.CrossRefPubMed
13.
go back to reference Norman K, Pepin A, Ladouceur M, Barbeau H: A treadmill apparatus and harness support for evaluation and rehabilitation of gait. Arch Phys Med Rehabilitation. 1995, 76 (8): 772-778. 10.1016/S0003-9993(95)80533-8.CrossRef Norman K, Pepin A, Ladouceur M, Barbeau H: A treadmill apparatus and harness support for evaluation and rehabilitation of gait. Arch Phys Med Rehabilitation. 1995, 76 (8): 772-778. 10.1016/S0003-9993(95)80533-8.CrossRef
14.
go back to reference Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE: A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke; J Cerebral Circulation. 1998, 29 (6): 1122-1128. 10.1161/01.STR.29.6.1122.CrossRef Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE: A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke; J Cerebral Circulation. 1998, 29 (6): 1122-1128. 10.1161/01.STR.29.6.1122.CrossRef
15.
go back to reference Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M, Scott M: Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006, 66 (4): 484-493. 10.1212/01.wnl.0000202600.72018.39.PubMedCentralCrossRefPubMed Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M, Scott M: Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006, 66 (4): 484-493. 10.1212/01.wnl.0000202600.72018.39.PubMedCentralCrossRefPubMed
16.
go back to reference van Hedel Hubertus JA: Weight-supported treadmill versus over-ground training after spinal cord injury: from a physical therapist’s point of view. PHYS THER. 2006, 86 (10): 1444-1447. 10.2522/ptj.2006.86.10.1444.CrossRefPubMed van Hedel Hubertus JA: Weight-supported treadmill versus over-ground training after spinal cord injury: from a physical therapist’s point of view. PHYS THER. 2006, 86 (10): 1444-1447. 10.2522/ptj.2006.86.10.1444.CrossRefPubMed
17.
go back to reference Sullivan KJ, Brown DA, Klassen T, Mulroy S, Ge T, Azen SP, Winstein CJ: Effects of task-specific locomotor and strength training in adults who were ambulatory after stroke: results of the STEPS randomized clinical trial. Phys Therapy. 2007, 87 (12): 1580-1602. 10.2522/ptj.20060310.CrossRef Sullivan KJ, Brown DA, Klassen T, Mulroy S, Ge T, Azen SP, Winstein CJ: Effects of task-specific locomotor and strength training in adults who were ambulatory after stroke: results of the STEPS randomized clinical trial. Phys Therapy. 2007, 87 (12): 1580-1602. 10.2522/ptj.20060310.CrossRef
18.
go back to reference Colombo G, Joerg M, Schreier R, Dietz V: Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000, 37 (6): 693-700.PubMed Colombo G, Joerg M, Schreier R, Dietz V: Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000, 37 (6): 693-700.PubMed
19.
go back to reference Riener R, Lünenburger L, Maier I, Colombo G, Dietz V: Locomotor training in subjects with sensori-motor deficits: an overview of the robotic gait orthosis Lokomat. J Healthcare Eng. 2010, 1 (2): l216-CrossRef Riener R, Lünenburger L, Maier I, Colombo G, Dietz V: Locomotor training in subjects with sensori-motor deficits: an overview of the robotic gait orthosis Lokomat. J Healthcare Eng. 2010, 1 (2): l216-CrossRef
20.
go back to reference Hesse S, Uhlenbrock D: A mechanized gait trainer for restoration of gait. J Rehabilitation Res Dev. 2000, 37 (6): 701-708. Hesse S, Uhlenbrock D: A mechanized gait trainer for restoration of gait. J Rehabilitation Res Dev. 2000, 37 (6): 701-708.
21.
go back to reference Sayers SP, Krug J: Robotic gait-assisted therapy in patients with neurological injury. Missouri Med. 2008, 105 (2): 153-158.PubMed Sayers SP, Krug J: Robotic gait-assisted therapy in patients with neurological injury. Missouri Med. 2008, 105 (2): 153-158.PubMed
22.
go back to reference Schmidt H, Werner C, Bernhardt R, Hesse S, Krüger Jörg: Gait rehabilitation machines based on programmable footplates. J Neuroengineering Rehabilitation. 2007, 4: 2+-10.1186/1743-0003-4-2.CrossRef Schmidt H, Werner C, Bernhardt R, Hesse S, Krüger Jörg: Gait rehabilitation machines based on programmable footplates. J Neuroengineering Rehabilitation. 2007, 4: 2+-10.1186/1743-0003-4-2.CrossRef
23.
go back to reference Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, van der Kooij H: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 379-386.CrossRefPubMed Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, van der Kooij H: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 379-386.CrossRefPubMed
24.
go back to reference Banala SK, Agrawal SK, Scholz JP: Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. Proc IEEE 10th Int Conf Rehabil Robot. 2007, Noordwijk, 401-407. Banala SK, Agrawal SK, Scholz JP: Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. Proc IEEE 10th Int Conf Rehabil Robot. 2007, Noordwijk, 401-407.
25.
go back to reference Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 387-400.CrossRefPubMed Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 387-400.CrossRefPubMed
26.
go back to reference Dollar AM, Herr H: Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. Robotics IEEE Trans on. 2008, 24 (1): 144-158.CrossRef Dollar AM, Herr H: Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. Robotics IEEE Trans on. 2008, 24 (1): 144-158.CrossRef
27.
go back to reference Mehrholz J, Werner C, Kugler J, Pohl M: Electromechanical-assisted training for walking after stroke. Cochrane Database of Systematic Rev (Online). 2007, 4 Mehrholz J, Werner C, Kugler J, Pohl M: Electromechanical-assisted training for walking after stroke. Cochrane Database of Systematic Rev (Online). 2007, 4
28.
go back to reference Mehrholz J, Kugler J, Pohl M: Locomotor training for walking after spinal cord injury. Cochrane Database of Systematic Rev (Online). 2008, 2 Mehrholz J, Kugler J, Pohl M: Locomotor training for walking after spinal cord injury. Cochrane Database of Systematic Rev (Online). 2008, 2
29.
go back to reference Husemann B, Müller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke; J Cerebral Circulation. 2007, 38 (2): 349-354. 10.1161/01.STR.0000254607.48765.cb.CrossRef Husemann B, Müller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke; J Cerebral Circulation. 2007, 38 (2): 349-354. 10.1161/01.STR.0000254607.48765.cb.CrossRef
30.
go back to reference Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. Neurorehabil Neural Repair. 2007, 21 (4): 307-314. 10.1177/1545968307300697.CrossRefPubMed Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. Neurorehabil Neural Repair. 2007, 21 (4): 307-314. 10.1177/1545968307300697.CrossRefPubMed
31.
go back to reference Schwartz I, Sajin A, Fisher I, Neeb M, Shochina M, Katz-Leurer M, Meiner Z: The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PM R : J Injury, Funct, Rehabilitation. 2009, 1 (6): 516-523. 10.1016/j.pmrj.2009.03.009.CrossRef Schwartz I, Sajin A, Fisher I, Neeb M, Shochina M, Katz-Leurer M, Meiner Z: The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PM R : J Injury, Funct, Rehabilitation. 2009, 1 (6): 516-523. 10.1016/j.pmrj.2009.03.009.CrossRef
32.
go back to reference Westlake Kelly, Patten C: Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J NeuroEngineering Rehabilitation. 2009, 6 (1): 18+-10.1186/1743-0003-6-18.CrossRef Westlake Kelly, Patten C: Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J NeuroEngineering Rehabilitation. 2009, 6 (1): 18+-10.1186/1743-0003-6-18.CrossRef
33.
go back to reference Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby GT: Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009, 23 (1): 5-13.CrossRefPubMed Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby GT: Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009, 23 (1): 5-13.CrossRefPubMed
34.
go back to reference Hornby GT, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008, 39 (6): 1786-1792. 10.1161/STROKEAHA.107.504779.CrossRefPubMed Hornby GT, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008, 39 (6): 1786-1792. 10.1161/STROKEAHA.107.504779.CrossRefPubMed
35.
go back to reference Murray AF, Edwards PJ: Synaptic weight noise during MLP learning enhances fault-tolerance, generalisation and learning trajectory. IEEE Trans on Neural Networks. 1993, 5 (5): 792-802.CrossRef Murray AF, Edwards PJ: Synaptic weight noise during MLP learning enhances fault-tolerance, generalisation and learning trajectory. IEEE Trans on Neural Networks. 1993, 5 (5): 792-802.CrossRef
36.
go back to reference Bernstein NA: The Co-ordination and regulation of movements. 1967, First English edition. Pergamon Press Ltd. Bernstein NA: The Co-ordination and regulation of movements. 1967, First English edition. Pergamon Press Ltd.
37.
go back to reference Hogan N: Impedance control - an approach to manipulation. I - Theory. II - Implementation. III - Applications. ASME Trans J Dynamic Syst Meas Control B. 1985, 107: 1-24. 10.1115/1.3140702.CrossRef Hogan N: Impedance control - an approach to manipulation. I - Theory. II - Implementation. III - Applications. ASME Trans J Dynamic Syst Meas Control B. 1985, 107: 1-24. 10.1115/1.3140702.CrossRef
38.
go back to reference Riener R, Lünenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005, 13 (3): 380-394. 10.1109/TNSRE.2005.848628.CrossRefPubMed Riener R, Lünenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005, 13 (3): 380-394. 10.1109/TNSRE.2005.848628.CrossRefPubMed
39.
go back to reference Emken JL, Bobrow JE, Reinkensmeyer DJ: Robotic movement training as an optimization problem: designing a controller that assists only as needed. IEEE Int. Conf. on Rehabilitation Robotics (ICORR). 2005, Chicago, 307-312. Emken JL, Bobrow JE, Reinkensmeyer DJ: Robotic movement training as an optimization problem: designing a controller that assists only as needed. IEEE Int. Conf. on Rehabilitation Robotics (ICORR). 2005, Chicago, 307-312.
40.
go back to reference Reinkensmeyer DJ, Emken JL, Cramer SC: Robotics, motor learning, and neurologic recovery. Ann Rev Biomed Eng. 2004, 6: 497-525. 10.1146/annurev.bioeng.6.040803.140223.CrossRef Reinkensmeyer DJ, Emken JL, Cramer SC: Robotics, motor learning, and neurologic recovery. Ann Rev Biomed Eng. 2004, 6: 497-525. 10.1146/annurev.bioeng.6.040803.140223.CrossRef
41.
go back to reference Riener R, Fuhr T: Patient-driven control of FES-supported standing up: a simulation study. Rehabilitation Eng, IEEE Trans on. 1998, 6 (2): 113-124. 10.1109/86.681177.CrossRef Riener R, Fuhr T: Patient-driven control of FES-supported standing up: a simulation study. Rehabilitation Eng, IEEE Trans on. 1998, 6 (2): 113-124. 10.1109/86.681177.CrossRef
42.
go back to reference Jezernik S, Colombo G, Morari M: Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis. IEEE Trans Robot Autom. 2004, 20 (3): 574-582. 10.1109/TRA.2004.825515.CrossRef Jezernik S, Colombo G, Morari M: Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis. IEEE Trans Robot Autom. 2004, 20 (3): 574-582. 10.1109/TRA.2004.825515.CrossRef
43.
go back to reference Riener R, Frey M, Bernhardt M, Nef T, Colombo G: Human-centered rehabilitation robotics. Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference on. 2005, 319-322.CrossRef Riener R, Frey M, Bernhardt M, Nef T, Colombo G: Human-centered rehabilitation robotics. Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference on. 2005, 319-322.CrossRef
44.
go back to reference Reinkensmeyer DJ, Aoyagi D, Emken JL, Galvez JA, Ichinose W, Kerdanyan G, Maneekobkunwong S, Minakata K, Nessler JA, Weber R, Roy RR, de Leon R, Bobrow JE, Harkema SJ, Edgerton VR: Tools for understanding and optimizing robotic gait training. J Rehabil Res Dev. 2006, 43 (5): 657-670. 10.1682/JRRD.2005.04.0073.CrossRefPubMed Reinkensmeyer DJ, Aoyagi D, Emken JL, Galvez JA, Ichinose W, Kerdanyan G, Maneekobkunwong S, Minakata K, Nessler JA, Weber R, Roy RR, de Leon R, Bobrow JE, Harkema SJ, Edgerton VR: Tools for understanding and optimizing robotic gait training. J Rehabil Res Dev. 2006, 43 (5): 657-670. 10.1682/JRRD.2005.04.0073.CrossRefPubMed
45.
go back to reference van Asseldonk EHF, Veneman JF, Ekkelenkamp R, Buurke JH, van der Helm FCT, van der Kooij H: The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control. IEEE Trans Neural Syst Rehabil Eng. 2008, 16 (4): 360-370.CrossRefPubMed van Asseldonk EHF, Veneman JF, Ekkelenkamp R, Buurke JH, van der Helm FCT, van der Kooij H: The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control. IEEE Trans Neural Syst Rehabil Eng. 2008, 16 (4): 360-370.CrossRefPubMed
46.
go back to reference Vallery H, Guidali M, Duschau-Wicke A, Riener R: Patient-cooperative control: providing safe support without restricting movement. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany. Edited by: Dössel Olaf, Schlegel WolfgangC. 2009, Berlin, Heidelberg: Springer Berlin Heidelberg, 166-169.CrossRef Vallery H, Guidali M, Duschau-Wicke A, Riener R: Patient-cooperative control: providing safe support without restricting movement. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany. Edited by: Dössel Olaf, Schlegel WolfgangC. 2009, Berlin, Heidelberg: Springer Berlin Heidelberg, 166-169.CrossRef
47.
go back to reference Emken JL, Harkema SJ, Beres-Jones JA, Ferreira CK, Reinkensmeyer DJ: Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans Biomed Eng. 2008, 55 (1): 322-334.CrossRefPubMed Emken JL, Harkema SJ, Beres-Jones JA, Ferreira CK, Reinkensmeyer DJ: Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans Biomed Eng. 2008, 55 (1): 322-334.CrossRefPubMed
48.
go back to reference Marchal Crespo L, Reinkensmeyer D: Review of control strategies for robotic movement training after neurologic injury. J Neuroengineering rehabilitation. 2009, 6 (1): 20+-10.1186/1743-0003-6-20.CrossRef Marchal Crespo L, Reinkensmeyer D: Review of control strategies for robotic movement training after neurologic injury. J Neuroengineering rehabilitation. 2009, 6 (1): 20+-10.1186/1743-0003-6-20.CrossRef
49.
go back to reference Cai LL, Fong AJ, Otoshi CK, Liang YQ, Cham JG, Zhong H, Roy RR, Edgerton VR, Burdick JW: Effects of consistency vs. variability in robotically controlled training of stepping in adult spinal mice. 2005, ChicagoCrossRef Cai LL, Fong AJ, Otoshi CK, Liang YQ, Cham JG, Zhong H, Roy RR, Edgerton VR, Burdick JW: Effects of consistency vs. variability in robotically controlled training of stepping in adult spinal mice. 2005, ChicagoCrossRef
50.
go back to reference Duschau-Wicke A, von Zitzewitz J, Caprez A, Lünenburger L, Riener R: Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabilitation Eng. 2010, 18 (1): 38-48.CrossRef Duschau-Wicke A, von Zitzewitz J, Caprez A, Lünenburger L, Riener R: Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabilitation Eng. 2010, 18 (1): 38-48.CrossRef
51.
go back to reference Duschau-Wicke A, Caprez A, Riener R: Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J NeuroEngineering Rehabilitation. 2010, 7 (1): 43+-10.1186/1743-0003-7-43.CrossRef Duschau-Wicke A, Caprez A, Riener R: Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J NeuroEngineering Rehabilitation. 2010, 7 (1): 43+-10.1186/1743-0003-7-43.CrossRef
52.
go back to reference Frey M, Colombo G, Vaglio M, Bucher R, Jörg M, Riener R: A novel mechatronic body weight support system. IEEE Trans Neural Syst Rehabil Eng. 2006, 14 (3): 311-321. 10.1109/TNSRE.2006.881556.CrossRefPubMed Frey M, Colombo G, Vaglio M, Bucher R, Jörg M, Riener R: A novel mechatronic body weight support system. IEEE Trans Neural Syst Rehabil Eng. 2006, 14 (3): 311-321. 10.1109/TNSRE.2006.881556.CrossRefPubMed
53.
go back to reference Vallery H, Duschau-Wicke A, Riener R: Generalized elasticities improve patient-cooperative control of rehabilitation robots. IEEE Int Conf on Rehabilitation Robotics (ICORR). 2009, 535-541. Vallery H, Duschau-Wicke A, Riener R: Generalized elasticities improve patient-cooperative control of rehabilitation robots. IEEE Int Conf on Rehabilitation Robotics (ICORR). 2009, 535-541.
54.
go back to reference Vallery H, Duschau-Wicke A, Riener R: Optimized passive dynamics improve transparency of haptic devices. IEEE Int Conf Robot Aut (ICRA). 2009, 301-306. Vallery H, Duschau-Wicke A, Riener R: Optimized passive dynamics improve transparency of haptic devices. IEEE Int Conf Robot Aut (ICRA). 2009, 301-306.
55.
go back to reference von Zitzewitz J, Bernhardt M, Riener R: A Novel method for automatic treadmill speed adaptation. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 401-409.CrossRefPubMed von Zitzewitz J, Bernhardt M, Riener R: A Novel method for automatic treadmill speed adaptation. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 401-409.CrossRefPubMed
56.
go back to reference Maynard FM, Bracken MB, Creasey G, Ditunno JF, Donovan WH, Ducker TB, Garber SL, Marino RJ, Stover SL, Tator CH, Others: International standards for neurological and functional classification of spinal cord injury. Spinal Cord. 1997, 35: 266-274. 10.1038/sj.sc.3100432.CrossRefPubMed Maynard FM, Bracken MB, Creasey G, Ditunno JF, Donovan WH, Ducker TB, Garber SL, Marino RJ, Stover SL, Tator CH, Others: International standards for neurological and functional classification of spinal cord injury. Spinal Cord. 1997, 35: 266-274. 10.1038/sj.sc.3100432.CrossRefPubMed
57.
go back to reference Itzkovich M, Gelernter I, Biering-Sorensen F, Weeks C, Laramee MT, Craven BC, Tonack M, Hitzig SL, Glaser E, Zeilig G, Aito S, Scivoletto G, Mecci M, Chadwick RJ, Masry WS, Osman A, Glass CA, Silva P, Soni BM, Gardner BP, Savic G, Bergström EM, Bluvshtein V, Ronen J, Catz A: The Spinal Cord Independence Measure (SCIM) version III: reliability and validity in a multi-center international study. Disabil Rehabil. 2007, 29 (24): 1926-1933. 10.1080/09638280601046302.CrossRefPubMed Itzkovich M, Gelernter I, Biering-Sorensen F, Weeks C, Laramee MT, Craven BC, Tonack M, Hitzig SL, Glaser E, Zeilig G, Aito S, Scivoletto G, Mecci M, Chadwick RJ, Masry WS, Osman A, Glass CA, Silva P, Soni BM, Gardner BP, Savic G, Bergström EM, Bluvshtein V, Ronen J, Catz A: The Spinal Cord Independence Measure (SCIM) version III: reliability and validity in a multi-center international study. Disabil Rehabil. 2007, 29 (24): 1926-1933. 10.1080/09638280601046302.CrossRefPubMed
58.
go back to reference Cuthbert SC, Goodheart GJ: On the reliability and validity of manual muscle testing: a literature review. Chiropractic Osteopathy. 2007, 15: 4+-10.1186/1746-1340-15-4.PubMedCentralCrossRefPubMed Cuthbert SC, Goodheart GJ: On the reliability and validity of manual muscle testing: a literature review. Chiropractic Osteopathy. 2007, 15: 4+-10.1186/1746-1340-15-4.PubMedCentralCrossRefPubMed
59.
go back to reference Schmitt WH, Cuthbert SC: Common errors and clinical guidelines for manual muscle testing: "the arm test" and other inaccurate procedures. Chiropractic Osteopathy. 2008, 16: 16+-10.1186/1746-1340-16-16.PubMedCentralCrossRefPubMed Schmitt WH, Cuthbert SC: Common errors and clinical guidelines for manual muscle testing: "the arm test" and other inaccurate procedures. Chiropractic Osteopathy. 2008, 16: 16+-10.1186/1746-1340-16-16.PubMedCentralCrossRefPubMed
60.
go back to reference Cockrell JR, Folstein MF: Mini-mental state examination. Principles Pract Geriatric Psychiatry. 1988, 140-141. Cockrell JR, Folstein MF: Mini-mental state examination. Principles Pract Geriatric Psychiatry. 1988, 140-141.
61.
go back to reference Dittuno PL, Dittuno JF: Walking index for spinal cord injury (WISCI II): scale revision. Spinal Cord. 2001, 39: 654-656. 10.1038/sj.sc.3101223.CrossRefPubMed Dittuno PL, Dittuno JF: Walking index for spinal cord injury (WISCI II): scale revision. Spinal Cord. 2001, 39: 654-656. 10.1038/sj.sc.3101223.CrossRefPubMed
62.
go back to reference van Hedel HJ, Dietz V, European multicenter study on human spinal cord injury EM-SCI study group: Walking during daily life can be validly and responsively assessed in subjects with a spinal cord injury. Neurorehabilitation Neural Repair. 2009, 23 (2): 117-124.CrossRefPubMed van Hedel HJ, Dietz V, European multicenter study on human spinal cord injury EM-SCI study group: Walking during daily life can be validly and responsively assessed in subjects with a spinal cord injury. Neurorehabilitation Neural Repair. 2009, 23 (2): 117-124.CrossRefPubMed
63.
go back to reference Zimmerli L, Duschau-Wicke A, Mayr A, Riener R, Lünenburger L: Virtual reality and gait rehabilitation Augmented feedback for the Lokomat. Virtual Rehabilitation International Conference. 2009, 150-153.CrossRef Zimmerli L, Duschau-Wicke A, Mayr A, Riener R, Lünenburger L: Virtual reality and gait rehabilitation Augmented feedback for the Lokomat. Virtual Rehabilitation International Conference. 2009, 150-153.CrossRef
64.
go back to reference Borg G: Perceived exertion as an indicator of somatic stress. Scand J Rehabilitation Med. 1970, 2 (2): 92-98. Borg G: Perceived exertion as an indicator of somatic stress. Scand J Rehabilitation Med. 1970, 2 (2): 92-98.
65.
go back to reference Lewis JE, Nash MS, Hamm LF, Martins SC, Groah SL: The relationship between perceived exertion and physiologic indicators of stress during graded arm exercise in persons with spinal cord injuries. Arch Phys Med Rehabilitation. 2007, 88 (9): 1205-1211. 10.1016/j.apmr.2007.05.016.CrossRef Lewis JE, Nash MS, Hamm LF, Martins SC, Groah SL: The relationship between perceived exertion and physiologic indicators of stress during graded arm exercise in persons with spinal cord injuries. Arch Phys Med Rehabilitation. 2007, 88 (9): 1205-1211. 10.1016/j.apmr.2007.05.016.CrossRef
66.
go back to reference Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Haegg G: European Recommendations for Surface Electromyography. 1999 Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Haegg G: European Recommendations for Surface Electromyography. 1999
67.
go back to reference Marino RJ, Barros T, Biering-Sorensen F, Burns SP, Donovan WH, Graves DE, Haak M, Hudson LM, Priebe MM, ASIA Neurological Standards Committee 2002: International standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2003, 26 (Suppl 1): Marino RJ, Barros T, Biering-Sorensen F, Burns SP, Donovan WH, Graves DE, Haak M, Hudson LM, Priebe MM, ASIA Neurological Standards Committee 2002: International standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2003, 26 (Suppl 1):
68.
go back to reference Alexander MS, Anderson KD, Biering-Sorensen F, Blight AR, Brannon R, Bryce TN, Creasey G, Catz A, Curt A, Donovan W, Ditunno J, Ellaway P, Finnerup NB, Graves DE, Haynes BA, Heinemann AW, Jackson AB, Johnston MV, Kalpakjian CZ, Kleitman N, Krassioukov A, Krogh K, Lammertse D, Magasi S, Mulcahey MJ, Schurch B, Sherwood A, Steeves JD, Stiens S, Tulsky DS, van Hedel HJA, Whiteneck G: Outcome measures in spinal cord injury: recent assessments and recommendations for future directions. Spinal Cord. 2009, 47 (8): 582-591. 10.1038/sc.2009.18.PubMedCentralCrossRefPubMed Alexander MS, Anderson KD, Biering-Sorensen F, Blight AR, Brannon R, Bryce TN, Creasey G, Catz A, Curt A, Donovan W, Ditunno J, Ellaway P, Finnerup NB, Graves DE, Haynes BA, Heinemann AW, Jackson AB, Johnston MV, Kalpakjian CZ, Kleitman N, Krassioukov A, Krogh K, Lammertse D, Magasi S, Mulcahey MJ, Schurch B, Sherwood A, Steeves JD, Stiens S, Tulsky DS, van Hedel HJA, Whiteneck G: Outcome measures in spinal cord injury: recent assessments and recommendations for future directions. Spinal Cord. 2009, 47 (8): 582-591. 10.1038/sc.2009.18.PubMedCentralCrossRefPubMed
69.
go back to reference Ricamato AL, Hidler JM: Quantification of the dynamic properties of EMG patterns during gait. J Electromyography Kinesiology. 2005, 15 (4): 384-392. 10.1016/j.jelekin.2004.10.003.CrossRef Ricamato AL, Hidler JM: Quantification of the dynamic properties of EMG patterns during gait. J Electromyography Kinesiology. 2005, 15 (4): 384-392. 10.1016/j.jelekin.2004.10.003.CrossRef
70.
go back to reference Gibbons JD: Nonparametric Statistical Inference. 1985, Marcel Dekker Ltd Gibbons JD: Nonparametric Statistical Inference. 1985, Marcel Dekker Ltd
71.
go back to reference Hochberg Yosef, Tamhane AjitC: Multiple Comparison Procedures (Wiley Series in Probability and Statistics). 1987, WileyCrossRef Hochberg Yosef, Tamhane AjitC: Multiple Comparison Procedures (Wiley Series in Probability and Statistics). 1987, WileyCrossRef
72.
go back to reference Goosey-Tolfrey V, Lenton J, Goddard J, Oldfield V, Tolfrey K, Eston R: Regulating intensity using perceived exertion in spinal cord-injured participants. Med Sci Sports Exercise. 2010, 42 (3): 608-613. 10.1249/MSS.0b013e3181b72cbc.CrossRef Goosey-Tolfrey V, Lenton J, Goddard J, Oldfield V, Tolfrey K, Eston R: Regulating intensity using perceived exertion in spinal cord-injured participants. Med Sci Sports Exercise. 2010, 42 (3): 608-613. 10.1249/MSS.0b013e3181b72cbc.CrossRef
73.
go back to reference Hidler JM, Wall AE: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech. 2005, 20 (2): 184-193. 10.1016/j.clinbiomech.2004.09.016.CrossRef Hidler JM, Wall AE: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech. 2005, 20 (2): 184-193. 10.1016/j.clinbiomech.2004.09.016.CrossRef
74.
go back to reference Israel JF, Campbell DD, Kahn JH, Hornby GT: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Therapy. 2006, 86 (11): 1466-1478. 10.2522/ptj.20050266.CrossRef Israel JF, Campbell DD, Kahn JH, Hornby GT: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Therapy. 2006, 86 (11): 1466-1478. 10.2522/ptj.20050266.CrossRef
75.
go back to reference Reinkensmeyer DJ, Maier MA, Guigon E, Chan V, Akoner O, Wolbrecht ET, Cramer SC, Bobrow JE: Do robotic and non-robotic arm movement training drive motor recovery after stroke by a common neural mechanism? Experimental evidence and a computational model. Conf. IEEE Engineering in Medicine and Biology Society (EMBS). 2009, 2439-2441. Reinkensmeyer DJ, Maier MA, Guigon E, Chan V, Akoner O, Wolbrecht ET, Cramer SC, Bobrow JE: Do robotic and non-robotic arm movement training drive motor recovery after stroke by a common neural mechanism? Experimental evidence and a computational model. Conf. IEEE Engineering in Medicine and Biology Society (EMBS). 2009, 2439-2441.
76.
go back to reference Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005, 86 (4): 672-680. 10.1016/j.apmr.2004.08.004.CrossRefPubMed Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005, 86 (4): 672-680. 10.1016/j.apmr.2004.08.004.CrossRefPubMed
77.
go back to reference Schweighofer N, Han CE, Wolf SL, Arbib MA, Winstein CJ: A functional threshold for long-term use of hand and arm function can be determined: predictions from a computational model and supporting data from the Extremity Constraint-Induced Therapy Evaluation (EXCITE) Trial. Phys therapy. 2009, 89 (12): 1327-1336. 10.2522/ptj.20080402.CrossRef Schweighofer N, Han CE, Wolf SL, Arbib MA, Winstein CJ: A functional threshold for long-term use of hand and arm function can be determined: predictions from a computational model and supporting data from the Extremity Constraint-Induced Therapy Evaluation (EXCITE) Trial. Phys therapy. 2009, 89 (12): 1327-1336. 10.2522/ptj.20080402.CrossRef
78.
go back to reference Han CE, Arbib MA, Schweighofer N: Stroke rehabilitation reaches a threshold. PLoS Computat Biol. 2008, 4 (8): Han CE, Arbib MA, Schweighofer N: Stroke rehabilitation reaches a threshold. PLoS Computat Biol. 2008, 4 (8):
Metadata
Title
Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial
Authors
Alex Schück
Rob Labruyère
Heike Vallery
Robert Riener
Alexander Duschau-Wicke
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2012
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-9-31

Other articles of this Issue 1/2012

Journal of NeuroEngineering and Rehabilitation 1/2012 Go to the issue