Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2011

Open Access 01-12-2011 | Research

Results of Clinicians Using a Therapeutic Robotic System in an Inpatient Stroke Rehabilitation Unit

Authors: Hussein A Abdullah, Cole Tarry, Cynthia Lambert, Susan Barreca, Brian O Allen

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2011

Login to get access

Abstract

Background

Physical rehabilitation is an area where robotics could contribute significantly to improved motor return for individuals following a stroke. This paper presents the results of a preliminary randomized controlled trial (RCT) of a robot system used in the rehabilitation of the paretic arm following a stroke.

Methods

The study's objectives were to explore the efficacy of this new type of robotic therapy as compared to standard physiotherapy treatment in treating the post-stroke arm; to evaluate client satisfaction with the proposed robotic system; and to provide data for sample size calculations for a proposed larger multicenter RCT. Twenty clients admitted to an inpatient stroke rehabilitation unit were randomly allocated to one of two groups, an experimental (robotic arm therapy) group or a control group (conventional therapy). An occupational therapist blinded to patient allocation administered two reliable measures, the Chedoke Arm and Hand Activity Inventory (CAHAI-7) and the Chedoke McMaster Stroke Assessment of the Arm and Hand (CMSA) at admission and discharge. For both groups, at admission, the CMSA motor impairment stage of the affected arm was between 1 and 3.

Results

Data were compared to determine the effectiveness of robot-assisted versus conventional therapy treatments. At the functional level, both groups performed well, with improvement in scores on the CAHAI-7 showing clinical and statistical significance. The CAHAI-7 (range7-49) is a measure of motor performance using functional items. Individuals in the robotic therapy group, on average, improved by 62% (95% CI: 26% to 107%) while those in the conventional therapy group changed by 30% (95% CI: 4% to 61%). Although performance on this measure is influenced by hand recovery, our results showed that both groups had similar stages of motor impairment in the hand. Furthermore, the degree of shoulder pain, as measured by the CMSA pain inventory scale, did not worsen for either group over the course of treatment.

Conclusion

Our findings indicated that robotic arm therapy alone, without additional physical therapy interventions tailored to the paretic arm, was as effective as standard physiotherapy treatment for all responses and more effective than conventional treatment for the CMSA Arm (p = 0.04) and Hand (p = 0.04). At the functional level, both groups performed equally well.
Appendix
Available only for authorised users
Literature
1.
go back to reference Barreca S, Wolf S, Fasoli S, Bohannon R: Treatment interventions for the paretic upper limb of stroke survivors: A critical review. Neurorehabil &Neural Repair 2003, 17: 220-226. 10.1177/0888439003259415CrossRef Barreca S, Wolf S, Fasoli S, Bohannon R: Treatment interventions for the paretic upper limb of stroke survivors: A critical review. Neurorehabil &Neural Repair 2003, 17: 220-226. 10.1177/0888439003259415CrossRef
2.
go back to reference Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS: Compensation in recovery of upper extremity function after stroke: the Copenhagen Stroke Study. Arch Phys Med Rehabil 1994,75(8):852-857. 10.1016/0003-9993(94)90108-2CrossRefPubMed Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS: Compensation in recovery of upper extremity function after stroke: the Copenhagen Stroke Study. Arch Phys Med Rehabil 1994,75(8):852-857. 10.1016/0003-9993(94)90108-2CrossRefPubMed
3.
go back to reference Fisher B, Sullivan K: Activity-dependent factors affecting poststroke functional outcomes. Topics in Stroke Rehabil 2001,8(3):31-44. 10.1310/B3JD-NML4-V1FB-5YHGCrossRef Fisher B, Sullivan K: Activity-dependent factors affecting poststroke functional outcomes. Topics in Stroke Rehabil 2001,8(3):31-44. 10.1310/B3JD-NML4-V1FB-5YHGCrossRef
4.
go back to reference Schaechter JD: Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog Neurobiol 2004,73(1):61-72. 10.1016/j.pneurobio.2004.04.001CrossRefPubMed Schaechter JD: Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog Neurobiol 2004,73(1):61-72. 10.1016/j.pneurobio.2004.04.001CrossRefPubMed
5.
go back to reference Biernaskie J, Chemenko G, Corbett D: Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci 2004,24(5):1245-54. 10.1523/JNEUROSCI.3834-03.2004CrossRefPubMed Biernaskie J, Chemenko G, Corbett D: Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci 2004,24(5):1245-54. 10.1523/JNEUROSCI.3834-03.2004CrossRefPubMed
6.
go back to reference Biernaskie J, Corbett D: Enriched rehabilitative training promotes improved forelimb motor function and enhanced dentritic grow after focal ischemic injury. J Neurosci 2001,21(4):5272-80.PubMed Biernaskie J, Corbett D: Enriched rehabilitative training promotes improved forelimb motor function and enhanced dentritic grow after focal ischemic injury. J Neurosci 2001,21(4):5272-80.PubMed
7.
go back to reference Consensus Panel on the Stroke Rehabilitation System: Time is function. Heart and Stroke Foundation of Ontario 2007. Consensus Panel on the Stroke Rehabilitation System: Time is function. Heart and Stroke Foundation of Ontario 2007.
8.
go back to reference Mima T, Sadato N, Yazawa T, Fukuyama H, Yonekura Y, Shibasaki H: Brain structures related to active and passive finger movements in man. Brain 1999, 4: 105-110. Mima T, Sadato N, Yazawa T, Fukuyama H, Yonekura Y, Shibasaki H: Brain structures related to active and passive finger movements in man. Brain 1999, 4: 105-110.
9.
go back to reference Carel C, Loubinoux I, Thilman AF: Neural substrate for the effects of passive training on sensorimtoor cortical representation: a study with functional magnetic resonance imaging in healthy subjects. Cerebr Blood Flow Metab 2000, 20: 478-484.CrossRef Carel C, Loubinoux I, Thilman AF: Neural substrate for the effects of passive training on sensorimtoor cortical representation: a study with functional magnetic resonance imaging in healthy subjects. Cerebr Blood Flow Metab 2000, 20: 478-484.CrossRef
10.
go back to reference Woldag H, Hummelsheim H: Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients: a review. J Neurol 2002, 249: 518-528. 10.1007/s004150200058CrossRefPubMed Woldag H, Hummelsheim H: Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients: a review. J Neurol 2002, 249: 518-528. 10.1007/s004150200058CrossRefPubMed
11.
go back to reference Van der LJ, Snels I, Beckerman H, Lankhorst G, wagenaar R, Bouter L: Exercise therapy for arm function in stroke patients: a systematic review of randomized controlled trials. Clin Rehabil 2001, 15: 20-31. 10.1191/026921501677557755CrossRef Van der LJ, Snels I, Beckerman H, Lankhorst G, wagenaar R, Bouter L: Exercise therapy for arm function in stroke patients: a systematic review of randomized controlled trials. Clin Rehabil 2001, 15: 20-31. 10.1191/026921501677557755CrossRef
12.
go back to reference Teasel R, Foley N, Bhogal S, Jutai J, Speechley M: Evidence-Based Review Stroke Rehabilitation, Retrieved. Teasel R, Foley N, Bhogal S, Jutai J, Speechley M: Evidence-Based Review Stroke Rehabilitation, Retrieved.
13.
go back to reference Kwakkel G, Boudewijn J, Kollem , Krebs H: Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabil & Repair 2008,22(2):111-121.CrossRef Kwakkel G, Boudewijn J, Kollem , Krebs H: Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabil & Repair 2008,22(2):111-121.CrossRef
14.
go back to reference Fasoli SE, Krebs HL, Hogan N: Robotic technology and stroke rehabilitation: Translating research into practice. Top Stroke Rehabil 2004, 11: 11-19. 10.1310/G8XB-VM23-1TK7-PWQUCrossRefPubMed Fasoli SE, Krebs HL, Hogan N: Robotic technology and stroke rehabilitation: Translating research into practice. Top Stroke Rehabil 2004, 11: 11-19. 10.1310/G8XB-VM23-1TK7-PWQUCrossRefPubMed
15.
go back to reference Krebs HI, Hogan NA, Aisen ML, Volpe BT: "Robot-aided neuro-rehabilitation", IEEE Transactions on Rehabilitation Engineering ". 1998, 6: 75-87. Krebs HI, Hogan NA, Aisen ML, Volpe BT: "Robot-aided neuro-rehabilitation", IEEE Transactions on Rehabilitation Engineering ". 1998, 6: 75-87.
16.
go back to reference Erlandson RF: Application of robotic/mechatronic systems in special education, rehabilitation therapy, and vocational training: A paradigm shift". IEEE Transactions on Rehabilitation Engineering 1995,13(1):22-34.CrossRef Erlandson RF: Application of robotic/mechatronic systems in special education, rehabilitation therapy, and vocational training: A paradigm shift". IEEE Transactions on Rehabilitation Engineering 1995,13(1):22-34.CrossRef
17.
go back to reference Dijkers MP, de Bear PC, Erlandson RF, Kristy K, Geer DM, Nicholes A: Patient and staff acceptance of robot technology in occupational therapy. J Rehabil Research & Development 1991,28(2):33-44. 10.1682/JRRD.1991.04.0033CrossRef Dijkers MP, de Bear PC, Erlandson RF, Kristy K, Geer DM, Nicholes A: Patient and staff acceptance of robot technology in occupational therapy. J Rehabil Research & Development 1991,28(2):33-44. 10.1682/JRRD.1991.04.0033CrossRef
18.
go back to reference Krebs HI, Palazzolo JJ, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe BT, Hogan N: Rehabilitation robotics: Performance-based progressive robot-assisted therapy. Autonomous Robots 2003, 15: 7-20. 10.1023/A:1024494031121CrossRef Krebs HI, Palazzolo JJ, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe BT, Hogan N: Rehabilitation robotics: Performance-based progressive robot-assisted therapy. Autonomous Robots 2003, 15: 7-20. 10.1023/A:1024494031121CrossRef
19.
go back to reference Krebs HI, Mernoff S, Fasoli SE, Hughes R, Stein J, Hogan NA: Comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: A pilot study. NeuroRehabil 2008, 23: 81-87. Krebs HI, Mernoff S, Fasoli SE, Hughes R, Stein J, Hogan NA: Comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: A pilot study. NeuroRehabil 2008, 23: 81-87.
20.
go back to reference Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al.: Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 2010, 362: 1772-1783. 10.1056/NEJMoa0911341CrossRefPubMed Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al.: Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 2010, 362: 1772-1783. 10.1056/NEJMoa0911341CrossRefPubMed
21.
go back to reference Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 2002, 83: y663-673.CrossRef Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 2002, 83: y663-673.CrossRef
22.
go back to reference Lum PS, Burgar CG, Van der Loos M, Shor PC, Majmundar M, Yap R: MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. Journal of Rehabilitation Research and Development 2006,43(5):631-42. 10.1682/JRRD.2005.02.0044CrossRefPubMed Lum PS, Burgar CG, Van der Loos M, Shor PC, Majmundar M, Yap R: MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. Journal of Rehabilitation Research and Development 2006,43(5):631-42. 10.1682/JRRD.2005.02.0044CrossRefPubMed
23.
go back to reference Reinkensmeyer J, Rian D, Schmit Z Rymer: Assessment of active and passive restraint during guided reaching after chronic brain injury. Ann Biomedical Engineering 1999,27(6):952-959.CrossRef Reinkensmeyer J, Rian D, Schmit Z Rymer: Assessment of active and passive restraint during guided reaching after chronic brain injury. Ann Biomedical Engineering 1999,27(6):952-959.CrossRef
24.
go back to reference Coote S, Murphy B, Harwin W, Stoke E: The effect of the GENTLE/s Robot-mediated therapy system on arm function after stroke. Clin Rehabil 2008, 22: 395-405. 10.1177/0269215507085060CrossRefPubMed Coote S, Murphy B, Harwin W, Stoke E: The effect of the GENTLE/s Robot-mediated therapy system on arm function after stroke. Clin Rehabil 2008, 22: 395-405. 10.1177/0269215507085060CrossRefPubMed
25.
go back to reference Hesse S, Schmidt H, Werner C: Machine to support motor rehabilitation after stroke: 10 years of experience in Berlin. J Rehabil Research & Devel 2006, 43: 671-678. 10.1682/JRRD.2005.02.0052CrossRef Hesse S, Schmidt H, Werner C: Machine to support motor rehabilitation after stroke: 10 years of experience in Berlin. J Rehabil Research & Devel 2006, 43: 671-678. 10.1682/JRRD.2005.02.0052CrossRef
26.
go back to reference Whitall J, McCombe A, Waller S, Silver KH, Macko RF: Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic Stroke. Stroke 2000,31(10):2390-2395. 10.1161/01.STR.31.10.2390CrossRefPubMed Whitall J, McCombe A, Waller S, Silver KH, Macko RF: Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic Stroke. Stroke 2000,31(10):2390-2395. 10.1161/01.STR.31.10.2390CrossRefPubMed
27.
go back to reference Fazekas G, Horvath M, Troznai T, Toth A: Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: A preliminary study. Journal of Rehabilitation Medicine 2007,39(7):580-2. 10.2340/16501977-0087CrossRefPubMed Fazekas G, Horvath M, Troznai T, Toth A: Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: A preliminary study. Journal of Rehabilitation Medicine 2007,39(7):580-2. 10.2340/16501977-0087CrossRefPubMed
28.
go back to reference Sivan M, O'Connor R, Makower S, Levesley M, Bhakta B: Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J Rehabil Med 2011, 43: 181-189. 10.2340/16501977-0674CrossRefPubMed Sivan M, O'Connor R, Makower S, Levesley M, Bhakta B: Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J Rehabil Med 2011, 43: 181-189. 10.2340/16501977-0674CrossRefPubMed
29.
go back to reference Brewer BR, McDowell SK, Worthen-Chaudhari LC: Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results. Top Stroke Rehabilitation 2007,4(6):22-44.CrossRef Brewer BR, McDowell SK, Worthen-Chaudhari LC: Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results. Top Stroke Rehabilitation 2007,4(6):22-44.CrossRef
30.
go back to reference Khan L, Zygman M, Rymer W, Reinkensmeyer D: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: A randomised controlled pilot study 6. Journal of NeuroEngineering & Rehabil 2006,3(2):1-13. Khan L, Zygman M, Rymer W, Reinkensmeyer D: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: A randomised controlled pilot study 6. Journal of NeuroEngineering & Rehabil 2006,3(2):1-13.
31.
go back to reference Loureiro R, Amirabdollahian F, Topping M, Driessen B, Harwin W: Upper limb robot mediated stroke therapy--GENTLE/s approach. Autonomous Robots 2003, 15: 35-51. 10.1023/A:1024436732030CrossRef Loureiro R, Amirabdollahian F, Topping M, Driessen B, Harwin W: Upper limb robot mediated stroke therapy--GENTLE/s approach. Autonomous Robots 2003, 15: 35-51. 10.1023/A:1024436732030CrossRef
32.
go back to reference Timmermans AA, Seelen A, Willmann RD, Kingma H: Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. Journal of NeuroEngineering and rehab 2008,6(1):1-44.CrossRef Timmermans AA, Seelen A, Willmann RD, Kingma H: Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. Journal of NeuroEngineering and rehab 2008,6(1):1-44.CrossRef
33.
go back to reference Mehrholz J, Platz T, Kugler J, Pohl M: Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. In 2009 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd; 2009:1-34. Mehrholz J, Platz T, Kugler J, Pohl M: Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. In 2009 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd; 2009:1-34.
34.
go back to reference Abdullah HA, Tarry C, Datta R, Mittal GS, Abderrahim M: "A Dynamic Bio-mechanical Model to Assess and Monitor Robot-Assisted Therapy of Upper Limb Impairment". Journal of Rehabilitation Research and Development 2007, 44: 43-62. no 1 10.1682/JRRD.2006.03.0025CrossRefPubMed Abdullah HA, Tarry C, Datta R, Mittal GS, Abderrahim M: "A Dynamic Bio-mechanical Model to Assess and Monitor Robot-Assisted Therapy of Upper Limb Impairment". Journal of Rehabilitation Research and Development 2007, 44: 43-62. no 1 10.1682/JRRD.2006.03.0025CrossRefPubMed
35.
go back to reference Barreca S, Gowland C, Stratford P, et al.: Development of the Chedoke Arm and Hand Activity Inventory: Theoretical constructs item generation and selection. Top Stroke Rehabil 2004,11(4):31-42. 10.1310/JU8P-UVK6-68VW-CF3WCrossRefPubMed Barreca S, Gowland C, Stratford P, et al.: Development of the Chedoke Arm and Hand Activity Inventory: Theoretical constructs item generation and selection. Top Stroke Rehabil 2004,11(4):31-42. 10.1310/JU8P-UVK6-68VW-CF3WCrossRefPubMed
36.
go back to reference Barreca B, Stratford P, Lambert C, Masters L, Streiner D: Test-retest reliability,validity and sensitivity of the Chedoke Arm and Hand Activity Inventory: A new measure of upper limb function for survivors of stroke. Arch Phys Med &Rehabil 2005, 86: 1616-22. 10.1016/j.apmr.2005.03.017CrossRef Barreca B, Stratford P, Lambert C, Masters L, Streiner D: Test-retest reliability,validity and sensitivity of the Chedoke Arm and Hand Activity Inventory: A new measure of upper limb function for survivors of stroke. Arch Phys Med &Rehabil 2005, 86: 1616-22. 10.1016/j.apmr.2005.03.017CrossRef
37.
go back to reference Barreca S, Stratford P, Masters L, Lambert C, Griffiths J, McBay C: Validation of three shortened versions of the Chedoke Arm and Hand Activity Inventory: The CAHAI-7, CAHAI-8 and CAHAI-9. Physiotherapy Canada 2006, 58: 1-9. 10.3138/ptc.58.1.01CrossRef Barreca S, Stratford P, Masters L, Lambert C, Griffiths J, McBay C: Validation of three shortened versions of the Chedoke Arm and Hand Activity Inventory: The CAHAI-7, CAHAI-8 and CAHAI-9. Physiotherapy Canada 2006, 58: 1-9. 10.3138/ptc.58.1.01CrossRef
38.
go back to reference Barreca S, Stratford P, Masters L, Lambert C, Griffiths J: Comparing 2 versions of the Chedoke Arm and Hand Activity Inventory with the Action Research Arm Test. Phys Therapy 2006,86(2):245-253. Barreca S, Stratford P, Masters L, Lambert C, Griffiths J: Comparing 2 versions of the Chedoke Arm and Hand Activity Inventory with the Action Research Arm Test. Phys Therapy 2006,86(2):245-253.
39.
go back to reference Gowland C, Stratford P, Ward M, Moreland J, Torresin W, et al.: Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke 1993, 24: 58-63. 10.1161/01.STR.24.1.58CrossRefPubMed Gowland C, Stratford P, Ward M, Moreland J, Torresin W, et al.: Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke 1993, 24: 58-63. 10.1161/01.STR.24.1.58CrossRefPubMed
40.
go back to reference SAS Institute Inc: SAS/STAT User's Guide. Cary, NC: SAS Institute, Inc; SAS Institute Inc: SAS/STAT User's Guide. Cary, NC: SAS Institute, Inc;
41.
go back to reference Snedecor G, Cochran W: Statistical methods. 8th edition. Ames: Iowa State University Press; 1989. Snedecor G, Cochran W: Statistical methods. 8th edition. Ames: Iowa State University Press; 1989.
Metadata
Title
Results of Clinicians Using a Therapeutic Robotic System in an Inpatient Stroke Rehabilitation Unit
Authors
Hussein A Abdullah
Cole Tarry
Cynthia Lambert
Susan Barreca
Brian O Allen
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2011
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-8-50

Other articles of this Issue 1/2011

Journal of NeuroEngineering and Rehabilitation 1/2011 Go to the issue