Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2011

Open Access 01-12-2011 | Research

Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis

Authors: Alma S Merians, Gerard G Fluet, Qinyin Qiu, Soha Saleh, Ian Lafond, Amy Davidow, Sergei V Adamovich

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2011

Login to get access

Abstract

Background

Recovery of upper extremity function is particularly recalcitrant to successful rehabilitation. Robotic-assisted arm training devices integrated with virtual targets or complex virtual reality gaming simulations are being developed to deal with this problem. Neural control mechanisms indicate that reaching and hand-object manipulation are interdependent, suggesting that training on tasks requiring coordinated effort of both the upper arm and hand may be a more effective method for improving recovery of real world function. However, most robotic therapies have focused on training the proximal, rather than distal effectors of the upper extremity. This paper describes the effects of robotically-assisted, integrated upper extremity training.

Methods

Twelve subjects post-stroke were trained for eight days on four upper extremity gaming simulations using adaptive robots during 2-3 hour sessions.

Results

The subjects demonstrated improved proximal stability, smoothness and efficiency of the movement path. This was in concert with improvement in the distal kinematic measures of finger individuation and improved speed. Importantly, these changes were accompanied by a robust 16-second decrease in overall time in the Wolf Motor Function Test and a 24-second decrease in the Jebsen Test of Hand Function.

Conclusions

Complex gaming simulations interfaced with adaptive robots requiring integrated control of shoulder, elbow, forearm, wrist and finger movements appear to have a substantial effect on improving hemiparetic hand function. We believe that the magnitude of the changes and the stability of the patient's function prior to training, along with maintenance of several aspects of the gains demonstrated at retention make a compelling argument for this approach to training.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ: Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke 2003, 34: 2181-2186. 10.1161/01.STR.0000087172.16305.CDCrossRefPubMed Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ: Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke 2003, 34: 2181-2186. 10.1161/01.STR.0000087172.16305.CDCrossRefPubMed
2.
go back to reference Carey JR, Bhatt E, Nagpal A: Neuroplasticity promoted by task complexity. Exerc Sport Sci Rev 2005, 33: 24-31.PubMed Carey JR, Bhatt E, Nagpal A: Neuroplasticity promoted by task complexity. Exerc Sport Sci Rev 2005, 33: 24-31.PubMed
3.
go back to reference Hlustik P, Solodkin A, Noll DC, Small SL: Cortical plasticity during three-week motor skill learning. J Clin Neurophysiol 2004, 21: 180-191. 10.1097/00004691-200405000-00006CrossRefPubMed Hlustik P, Solodkin A, Noll DC, Small SL: Cortical plasticity during three-week motor skill learning. J Clin Neurophysiol 2004, 21: 180-191. 10.1097/00004691-200405000-00006CrossRefPubMed
4.
go back to reference Nudo RJ, Milliken GW: Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol 1996, 75: 2144-2149.PubMed Nudo RJ, Milliken GW: Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol 1996, 75: 2144-2149.PubMed
5.
go back to reference Frost SB, Milliken GW, Plautz EJ, Masterton RB, Nudo RJ: Somatosensory and motor representations in cerebral cortex of a primitive mammal (Monodelphis domestica): a window into the early evolution of sensorimotor cortex. J Comp Neurol 2000, 421: 29-51. 10.1002/(SICI)1096-9861(20000522)421:1<29::AID-CNE3>3.0.CO;2-9CrossRefPubMed Frost SB, Milliken GW, Plautz EJ, Masterton RB, Nudo RJ: Somatosensory and motor representations in cerebral cortex of a primitive mammal (Monodelphis domestica): a window into the early evolution of sensorimotor cortex. J Comp Neurol 2000, 421: 29-51. 10.1002/(SICI)1096-9861(20000522)421:1<29::AID-CNE3>3.0.CO;2-9CrossRefPubMed
6.
go back to reference Merians AS, Poizner H, Boian R, Burdea G, Adamovich S: Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabil Neural Repair 2006, 20: 252-267. 10.1177/1545968306286914CrossRefPubMed Merians AS, Poizner H, Boian R, Burdea G, Adamovich S: Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabil Neural Repair 2006, 20: 252-267. 10.1177/1545968306286914CrossRefPubMed
7.
go back to reference Merians AS, Tunik E, Fluet GG, Qiu Q, Adamovich SV: Innovative approaches to the rehabilitation of upper extremity hemiparesis using virtual environments. Eur J Phys Rehabil Med 2008. Merians AS, Tunik E, Fluet GG, Qiu Q, Adamovich SV: Innovative approaches to the rehabilitation of upper extremity hemiparesis using virtual environments. Eur J Phys Rehabil Med 2008.
8.
go back to reference Adamovich S, Qiu Q, Mathai A, Fluet G, Merians A: Recovery of hand function in virtual reality: training hemiparetic hand and arm together or separately. IEEE Engineering in Medicine and Biology Conference; Vancouver, Canada 2008, 3475-3478. Adamovich S, Qiu Q, Mathai A, Fluet G, Merians A: Recovery of hand function in virtual reality: training hemiparetic hand and arm together or separately. IEEE Engineering in Medicine and Biology Conference; Vancouver, Canada 2008, 3475-3478.
9.
go back to reference Krebs HI, Volpe BT, Ferraro M, Fasoli S, Palazzolo J, Rohrer B, Edelstein L, Hogan N: Robot-aided neurorehabilitation: from evidence-based to science-based rehabilitation. Top Stroke Rehabil 2002, 8: 54-70. 10.1310/6177-QDJJ-56DU-0NW0CrossRefPubMed Krebs HI, Volpe BT, Ferraro M, Fasoli S, Palazzolo J, Rohrer B, Edelstein L, Hogan N: Robot-aided neurorehabilitation: from evidence-based to science-based rehabilitation. Top Stroke Rehabil 2002, 8: 54-70. 10.1310/6177-QDJJ-56DU-0NW0CrossRefPubMed
10.
go back to reference Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, Cramer SC, Bobrow JE, Reinkensmeyer DJ: Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng 2006, 14: 378-389. 10.1109/TNSRE.2006.881553CrossRefPubMed Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, Cramer SC, Bobrow JE, Reinkensmeyer DJ: Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng 2006, 14: 378-389. 10.1109/TNSRE.2006.881553CrossRefPubMed
11.
go back to reference Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ: Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does? J Rehabil Res Dev 2006, 43: 619-630. 10.1682/JRRD.2005.03.0056CrossRefPubMed Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ: Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does? J Rehabil Res Dev 2006, 43: 619-630. 10.1682/JRRD.2005.03.0056CrossRefPubMed
12.
go back to reference Lum PS, Burgar CG, Van der Loos M, Shor PC, Majmundar M, Yap R: MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. J Rehabil Res Dev 2006, 43: 631-642. 10.1682/JRRD.2005.02.0044CrossRefPubMed Lum PS, Burgar CG, Van der Loos M, Shor PC, Majmundar M, Yap R: MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. J Rehabil Res Dev 2006, 43: 631-642. 10.1682/JRRD.2005.02.0044CrossRefPubMed
13.
go back to reference Hesse S, Schmidt H, Werner C, Bardeleben A: Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol 2003, 16: 705-710. 10.1097/00019052-200312000-00010CrossRefPubMed Hesse S, Schmidt H, Werner C, Bardeleben A: Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol 2003, 16: 705-710. 10.1097/00019052-200312000-00010CrossRefPubMed
14.
go back to reference Adamovich SV, Fluet GG, Merians AS, Mathai A, Qiu Q: Incorporating haptic effects into three-dimensional virtual environments to train the hemiparetic upper extremity. IEEE Trans Neural Syst Rehabil Eng 2009, 17: 512-520.PubMedCentralCrossRefPubMed Adamovich SV, Fluet GG, Merians AS, Mathai A, Qiu Q: Incorporating haptic effects into three-dimensional virtual environments to train the hemiparetic upper extremity. IEEE Trans Neural Syst Rehabil Eng 2009, 17: 512-520.PubMedCentralCrossRefPubMed
15.
go back to reference Adamovich SV, Fluet GG, Mathai A, Qiu Q, Lewis J, Merians AS: Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study. J Neuroeng Rehabil 2009, 6: 28. 10.1186/1743-0003-6-28PubMedCentralCrossRefPubMed Adamovich SV, Fluet GG, Mathai A, Qiu Q, Lewis J, Merians AS: Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study. J Neuroeng Rehabil 2009, 6: 28. 10.1186/1743-0003-6-28PubMedCentralCrossRefPubMed
16.
go back to reference Merians AS, Tunik E, Adamovich SV: Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms. Stud Health Technol Inform 2009, 145: 109-125.PubMedCentralPubMed Merians AS, Tunik E, Adamovich SV: Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms. Stud Health Technol Inform 2009, 145: 109-125.PubMedCentralPubMed
17.
go back to reference Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, Sanford J, Barreca S, Vanspall B, Plews N: Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke 1993, 24: 58-63.CrossRefPubMed Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, Sanford J, Barreca S, Vanspall B, Plews N: Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke 1993, 24: 58-63.CrossRefPubMed
18.
go back to reference Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A: Assessing Wolf motor function test as outcome measure for research in patients after stroke. Stroke 2001, 32: 1635-1639.CrossRefPubMed Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A: Assessing Wolf motor function test as outcome measure for research in patients after stroke. Stroke 2001, 32: 1635-1639.CrossRefPubMed
19.
go back to reference Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA: An objective and standardized test of hand function. Arch Phys Med Rehabil 1969, 50: 311-319.PubMed Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA: An objective and standardized test of hand function. Arch Phys Med Rehabil 1969, 50: 311-319.PubMed
20.
go back to reference Charles JR, Wolf SL, Schneider JA, Gordon AM: Efficacy of a child-friendly form of constraint-induced movement therapy in hemiplegic cerebral palsy: a randomized control trial. Dev Med Child Neurol 2006, 48: 635-642. 10.1017/S0012162206001356CrossRefPubMed Charles JR, Wolf SL, Schneider JA, Gordon AM: Efficacy of a child-friendly form of constraint-induced movement therapy in hemiplegic cerebral palsy: a randomized control trial. Dev Med Child Neurol 2006, 48: 635-642. 10.1017/S0012162206001356CrossRefPubMed
21.
go back to reference Conforto AB, Ferreiro KN, Tomasi C, dos Santos RL, Moreira VL, Marie SK, Baltieri SC, Scaff M, Cohen LG: Effects of somatosensory stimulation on motor function after subacute stroke. Neurorehabil Neural Repair 24: 263-272. Conforto AB, Ferreiro KN, Tomasi C, dos Santos RL, Moreira VL, Marie SK, Baltieri SC, Scaff M, Cohen LG: Effects of somatosensory stimulation on motor function after subacute stroke. Neurorehabil Neural Repair 24: 263-272.
22.
go back to reference Qiu Q, Fluet GG, Lafond I, Merians AS, Adamovich SV: Coordination changes demonstrated by subjects with hemiparesis performing hand-arm training using the NJIT-RAVR robotically assisted virtual rehabilitation system. Conf Proc IEEE Eng Med Biol Soc 2009, 1: 1143-1146.PubMedCentral Qiu Q, Fluet GG, Lafond I, Merians AS, Adamovich SV: Coordination changes demonstrated by subjects with hemiparesis performing hand-arm training using the NJIT-RAVR robotically assisted virtual rehabilitation system. Conf Proc IEEE Eng Med Biol Soc 2009, 1: 1143-1146.PubMedCentral
23.
go back to reference Rohrer B, Fasoli S, Krebs HI, Volpe B, Frontera WR, Stein J, Hogan N: Submovements grow larger, fewer, and more blended during stroke recovery. Motor Control 2004, 8: 472-483.PubMed Rohrer B, Fasoli S, Krebs HI, Volpe B, Frontera WR, Stein J, Hogan N: Submovements grow larger, fewer, and more blended during stroke recovery. Motor Control 2004, 8: 472-483.PubMed
24.
go back to reference Adamovich S, Merians A, Boian R, Tremaine M, Burdea G, Recce M, Poizner H: A virtual reality (VR)-based exercise system for hand rehabilitation post stroke. Presence 2005, 14: 161-174. 10.1162/1054746053966996CrossRef Adamovich S, Merians A, Boian R, Tremaine M, Burdea G, Recce M, Poizner H: A virtual reality (VR)-based exercise system for hand rehabilitation post stroke. Presence 2005, 14: 161-174. 10.1162/1054746053966996CrossRef
25.
go back to reference Krakauer JW: Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol 2006, 19: 84-90. 10.1097/01.wco.0000200544.29915.ccCrossRefPubMed Krakauer JW: Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol 2006, 19: 84-90. 10.1097/01.wco.0000200544.29915.ccCrossRefPubMed
26.
go back to reference Lang CE, Beebe JA: Relating movement control at 9 upper extremity segments to loss of hand function in people with chronic hemiparesis. Neurorehabil Neural Repair 2007, 21: 279-291. 10.1177/1545968306296964CrossRefPubMed Lang CE, Beebe JA: Relating movement control at 9 upper extremity segments to loss of hand function in people with chronic hemiparesis. Neurorehabil Neural Repair 2007, 21: 279-291. 10.1177/1545968306296964CrossRefPubMed
27.
go back to reference Lin KC, Hsieh YW, Wu CY, Chen CL, Jang Y, Liu JS: Minimal detectable change and clinically important difference of the Wolf Motor Function Test in stroke patients. Neurorehabil Neural Repair 2009, 23: 429-434. 10.1177/1545968308331144CrossRefPubMed Lin KC, Hsieh YW, Wu CY, Chen CL, Jang Y, Liu JS: Minimal detectable change and clinically important difference of the Wolf Motor Function Test in stroke patients. Neurorehabil Neural Repair 2009, 23: 429-434. 10.1177/1545968308331144CrossRefPubMed
28.
go back to reference Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D: Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. Jama 2006, 296: 2095-2104. 10.1001/jama.296.17.2095CrossRefPubMed Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D: Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. Jama 2006, 296: 2095-2104. 10.1001/jama.296.17.2095CrossRefPubMed
29.
go back to reference Kwakkel G: Impact of intensity of practice after stroke: issues for consideration. Disabil Rehabil 2006, 28: 823-830. 10.1080/09638280500534861CrossRefPubMed Kwakkel G: Impact of intensity of practice after stroke: issues for consideration. Disabil Rehabil 2006, 28: 823-830. 10.1080/09638280500534861CrossRefPubMed
30.
go back to reference Kwakkel G, Kollen BJ, Krebs HI: Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 2008, 22: 111-121.PubMedCentralCrossRefPubMed Kwakkel G, Kollen BJ, Krebs HI: Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 2008, 22: 111-121.PubMedCentralCrossRefPubMed
31.
go back to reference Mehrholz J, Platz T, Kugler J, Pohl M: Electromechanical and Robot-Assisted Arm Training for Improving Arm Function and Activities of Daily Living After Stroke. Stroke 2009. Mehrholz J, Platz T, Kugler J, Pohl M: Electromechanical and Robot-Assisted Arm Training for Improving Arm Function and Activities of Daily Living After Stroke. Stroke 2009.
32.
go back to reference Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT: The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol 1997, 54: 443-446.CrossRefPubMed Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT: The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol 1997, 54: 443-446.CrossRefPubMed
33.
go back to reference Ferraro M, Palazzolo JJ, Krol J, Krebs HI, Hogan N, Volpe BT: Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology 2003, 61: 1604-1607.CrossRefPubMed Ferraro M, Palazzolo JJ, Krol J, Krebs HI, Hogan N, Volpe BT: Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology 2003, 61: 1604-1607.CrossRefPubMed
34.
go back to reference Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Hogan N: Submovement changes characterize generalization of motor recovery after stroke. Cortex 2008. Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Hogan N: Submovement changes characterize generalization of motor recovery after stroke. Cortex 2008.
35.
go back to reference Lang CE, MacDonald JR, Gnip C: Counting repetitions: an observational study of outpatient therapy for people with hemiparesis post-stroke. J Neurol Phys Ther 2007, 31: 3-10.CrossRefPubMed Lang CE, MacDonald JR, Gnip C: Counting repetitions: an observational study of outpatient therapy for people with hemiparesis post-stroke. J Neurol Phys Ther 2007, 31: 3-10.CrossRefPubMed
36.
go back to reference Daly JJ, Hogan N, Perepezko EM, Krebs HI, Rogers JM, Goyal KS, Dohring ME, Fredrickson E, Nethery J, Ruff RL: Response to upper-limb robotics and functional neuromuscular stimulation following stroke. J Rehabil Res Dev 2005, 42: 723-736. 10.1682/JRRD.2005.02.0048CrossRefPubMed Daly JJ, Hogan N, Perepezko EM, Krebs HI, Rogers JM, Goyal KS, Dohring ME, Fredrickson E, Nethery J, Ruff RL: Response to upper-limb robotics and functional neuromuscular stimulation following stroke. J Rehabil Res Dev 2005, 42: 723-736. 10.1682/JRRD.2005.02.0048CrossRefPubMed
37.
go back to reference Lum PS, Burgar CG, Shor PC: Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng 2004, 12: 186-194. 10.1109/TNSRE.2004.827225CrossRefPubMed Lum PS, Burgar CG, Shor PC: Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng 2004, 12: 186-194. 10.1109/TNSRE.2004.827225CrossRefPubMed
38.
go back to reference Fasoli SE, Krebs HI, Stein J, Frontera WR, Hogan N: Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil 2003, 84: 477-482. 10.1053/apmr.2003.50110CrossRefPubMed Fasoli SE, Krebs HI, Stein J, Frontera WR, Hogan N: Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil 2003, 84: 477-482. 10.1053/apmr.2003.50110CrossRefPubMed
39.
go back to reference Wulf G, McNevin NH, Fuchs T, Ritter F, Toole T: Attentional focus in complex skill learning. Res Q Exerc Sport 2000, 71: 229-239.CrossRefPubMed Wulf G, McNevin NH, Fuchs T, Ritter F, Toole T: Attentional focus in complex skill learning. Res Q Exerc Sport 2000, 71: 229-239.CrossRefPubMed
40.
go back to reference Wulf G, Landers M, Lewthwaite R, Tollner T: External focus instructions reduce postural instability in individuals with Parkinson disease. Phys Ther 2009, 89: 162-168. 10.2522/ptj.20080045CrossRefPubMed Wulf G, Landers M, Lewthwaite R, Tollner T: External focus instructions reduce postural instability in individuals with Parkinson disease. Phys Ther 2009, 89: 162-168. 10.2522/ptj.20080045CrossRefPubMed
41.
go back to reference Underwood J, Clark PC, Blanton S, Aycock DM, Wolf SL: Pain, fatigue, and intensity of practice in people with stroke who are receiving constraint-induced movement therapy. Phys Ther 2006, 86: 1241-1250. 10.2522/ptj.20050357CrossRefPubMed Underwood J, Clark PC, Blanton S, Aycock DM, Wolf SL: Pain, fatigue, and intensity of practice in people with stroke who are receiving constraint-induced movement therapy. Phys Ther 2006, 86: 1241-1250. 10.2522/ptj.20050357CrossRefPubMed
Metadata
Title
Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis
Authors
Alma S Merians
Gerard G Fluet
Qinyin Qiu
Soha Saleh
Ian Lafond
Amy Davidow
Sergei V Adamovich
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2011
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-8-27

Other articles of this Issue 1/2011

Journal of NeuroEngineering and Rehabilitation 1/2011 Go to the issue