Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2009

Open Access 01-12-2009 | Research

Multi-subject/daily-life activity EMG-based control of mechanical hands

Authors: Claudio Castellini, Angelo Emanuele Fiorilla, Giulio Sandini

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2009

Login to get access

Abstract

Background

Forearm surface electromyography (EMG) has been in use since the Sixties to feed-forward control active hand prostheses in a more and more refined way. Recent research shows that it can be used to control even a dexterous polyarticulate hand prosthesis such as Touch Bionics's i-LIMB, as well as a multifingered, multi-degree-of-freedom mechanical hand such as the DLR II. In this paper we extend previous work and investigate the robustness of such fine control possibilities, in two ways: firstly, we conduct an analysis on data obtained from 10 healthy subjects, trying to assess the general applicability of the technique; secondly, we compare the baseline controlled condition (arm relaxed and still on a table) with a "Daily-Life Activity" (DLA) condition in which subjects walk, raise their hands and arms, sit down and stand up, etc., as an experimental proxy of what a patient is supposed to do in real life. We also propose a cross-subject model analysis, i.e., training a model on a subject and testing it on another one. The use of pre-trained models could be useful in shortening the time required by the subject/patient to become proficient in using the hand.

Results

A standard machine learning technique was able to achieve a real-time grip posture classification rate of about 97% in the baseline condition and 95% in the DLA condition; and an average correlation to the target of about 0.93 (0.90) while reconstructing the required force. Cross-subject analysis is encouraging although not definitive in its present state.

Conclusion

Performance figures obtained here are in the same order of magnitude of those obtained in previous work about healthy subjects in controlled conditions and/or amputees, which lets us claim that this technique can be used by reasonably any subject, and in DLA situations. Use of previously trained models is not fully assessed here, but more recent work indicates it is a promising way ahead.
Appendix
Available only for authorised users
Literature
1.
go back to reference De Luca CJ: The use of surface electromyography in biomechanics. Journal of Applied Biomechanics 1997,13(2):135-163. De Luca CJ: The use of surface electromyography in biomechanics. Journal of Applied Biomechanics 1997,13(2):135-163.
2.
go back to reference De Luca CJ: Surface Electromyography: Detection and Recording. 2002. De Luca CJ: Surface Electromyography: Detection and Recording. 2002.
3.
go back to reference Bottomley AH: Myoelectric control of powered prostheses. J Bone Joint Surg 1965, B47: 411-415. Bottomley AH: Myoelectric control of powered prostheses. J Bone Joint Surg 1965, B47: 411-415.
4.
go back to reference Childress DA: A myoelectric three-state controller using rate sensitivity. Proceedings 8th ICMBE, Chicago, IL 1969, 4-5. Childress DA: A myoelectric three-state controller using rate sensitivity. Proceedings 8th ICMBE, Chicago, IL 1969, 4-5.
5.
go back to reference Sears HH, Shaperman J: Proportional myoelectric hand control: an evaluation. Am J Phys Med Rehabil 1991, 70: 20-28. 10.1097/00002060-199102000-00005CrossRefPubMed Sears HH, Shaperman J: Proportional myoelectric hand control: an evaluation. Am J Phys Med Rehabil 1991, 70: 20-28. 10.1097/00002060-199102000-00005CrossRefPubMed
9.
go back to reference Huang H, Jiang L, Zhao D, Zhao J, Cai H, Liu H, Meusel P, Willberg B, Hirzinger G: The Development on a New Biomechatronic Prosthetic Hand Based on Under-actuated Mechanism. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems 2006, 3791-3796. full_text Huang H, Jiang L, Zhao D, Zhao J, Cai H, Liu H, Meusel P, Willberg B, Hirzinger G: The Development on a New Biomechatronic Prosthetic Hand Based on Under-actuated Mechanism. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems 2006, 3791-3796. full_text
10.
go back to reference Carrozza M, Cappiello G, Micera S, Edin BB, Beccai L, Cipriani C: Design of a cybernetic hand for perception and action. Biological Cybernetics 2006,95(6):629-644. 10.1007/s00422-006-0124-2PubMedCentralCrossRefPubMed Carrozza M, Cappiello G, Micera S, Edin BB, Beccai L, Cipriani C: Design of a cybernetic hand for perception and action. Biological Cybernetics 2006,95(6):629-644. 10.1007/s00422-006-0124-2PubMedCentralCrossRefPubMed
11.
go back to reference Cipriani C, Zaccone F, Micera S, Carrozza MC: On the Shared Control of an EMG-Controlled Prosthetic Hand: Analysis of User Prosthesis Interaction. IEEE Transactions on Robotics 2008, 24: 170-184. 10.1109/TRO.2007.910708CrossRef Cipriani C, Zaccone F, Micera S, Carrozza MC: On the Shared Control of an EMG-Controlled Prosthetic Hand: Analysis of User Prosthesis Interaction. IEEE Transactions on Robotics 2008, 24: 170-184. 10.1109/TRO.2007.910708CrossRef
12.
go back to reference Ferguson S, Dunlop GR: Grasp Recognition from Myoelectric Signals. Proceedings of the Australasian Conference on Robotics and Automation, Auckland, New Zealand 2002. Ferguson S, Dunlop GR: Grasp Recognition from Myoelectric Signals. Proceedings of the Australasian Conference on Robotics and Automation, Auckland, New Zealand 2002.
13.
go back to reference Zecca M, Micera S, Carrozza MC, Dario P: Control of Multifunctional Prosthetic Hands by Processing the Electromyographic Signal. Critical Reviews in Biomedical Engineering 2002,30(4-6):459-485. 10.1615/CritRevBiomedEng.v30.i456.80CrossRefPubMed Zecca M, Micera S, Carrozza MC, Dario P: Control of Multifunctional Prosthetic Hands by Processing the Electromyographic Signal. Critical Reviews in Biomedical Engineering 2002,30(4-6):459-485. 10.1615/CritRevBiomedEng.v30.i456.80CrossRefPubMed
14.
go back to reference Bitzer S, Smagt P: Learning EMG control of a robotic hand: Towards Active Prostheses. Proceedings of ICRA, International Conference on Robotics and Automation, Orlando, Florida, USA 2006, 2819-2823. full_text Bitzer S, Smagt P: Learning EMG control of a robotic hand: Towards Active Prostheses. Proceedings of ICRA, International Conference on Robotics and Automation, Orlando, Florida, USA 2006, 2819-2823. full_text
15.
go back to reference Castellini C, Smagt P, Sandini G, Hirzinger G: Surface EMG for Force Control of Mechanical Hands. Proceedings of ICRA-08 - International Conference on Robotics and Automation 2008, 725-730. Castellini C, Smagt P, Sandini G, Hirzinger G: Surface EMG for Force Control of Mechanical Hands. Proceedings of ICRA-08 - International Conference on Robotics and Automation 2008, 725-730.
16.
go back to reference Castellini C, Smagt P: Surface EMG in Advanced Hand Prosthetics. Biological Cybernetics 2008, 100: 35-47. 10.1007/s00422-008-0278-1CrossRefPubMed Castellini C, Smagt P: Surface EMG in Advanced Hand Prosthetics. Biological Cybernetics 2008, 100: 35-47. 10.1007/s00422-008-0278-1CrossRefPubMed
19.
go back to reference Kendall FP, McCreary EK, Provance PG, Rodgers MM, Romani W: Muscles: Testing and Function, with Posture and Pain. 530 Walnut St. Philadelphia, PA 19106-3621: Lippincott Williams & Wilkins; 2005. Kendall FP, McCreary EK, Provance PG, Rodgers MM, Romani W: Muscles: Testing and Function, with Posture and Pain. 530 Walnut St. Philadelphia, PA 19106-3621: Lippincott Williams & Wilkins; 2005.
20.
go back to reference Kampas P: The optimal use of myoelectrodes. Medizinisch-Orthopädische Technik 2001, 121: 21-27. [English translation from the German of "Myoelektroden - optimal eingesetzt"]. Kampas P: The optimal use of myoelectrodes. Medizinisch-Orthopädische Technik 2001, 121: 21-27. [English translation from the German of "Myoelektroden - optimal eingesetzt"].
22.
go back to reference Wolf W, Staude C, Appel U: Enhanced onset detection accuracy "reduces" the electromechanical delay of distal muscles. Proc. 16th Annual International Conference of the IEEE Engineering Advances: New Opportunities for Biomedical Engineers Engineering in Medicine and Biology Society 1994, 392-393. full_text Wolf W, Staude C, Appel U: Enhanced onset detection accuracy "reduces" the electromechanical delay of distal muscles. Proc. 16th Annual International Conference of the IEEE Engineering Advances: New Opportunities for Biomedical Engineers Engineering in Medicine and Biology Society 1994, 392-393. full_text
23.
go back to reference Burges CJC: A Tutorial on Support Vector Machines for Pattern Recognition. Knowledge Discovery and Data Mining 1998.,2(2): Burges CJC: A Tutorial on Support Vector Machines for Pattern Recognition. Knowledge Discovery and Data Mining 1998.,2(2):
24.
go back to reference Smola AJ, Schölkopf B: A tutorial on support vector regression. Statistics and Computing 2004,14(3):199-222. 10.1023/B:STCO.0000035301.49549.88CrossRef Smola AJ, Schölkopf B: A tutorial on support vector regression. Statistics and Computing 2004,14(3):199-222. 10.1023/B:STCO.0000035301.49549.88CrossRef
25.
go back to reference Sebelius FCP, Rosén BN, Lundborg GN: Refined myoelectric control in below-elbow amputees using artificial neural networks and a data glove. J Hand Surg [Am] 2005,30(4):780-789. 10.1016/j.jhsa.2005.01.002CrossRef Sebelius FCP, Rosén BN, Lundborg GN: Refined myoelectric control in below-elbow amputees using artificial neural networks and a data glove. J Hand Surg [Am] 2005,30(4):780-789. 10.1016/j.jhsa.2005.01.002CrossRef
27.
go back to reference Chan A, Englehart K: Continuous myoelectric control for powered prostheses using hidden Markov models. Biomedical Engineering, IEEE Transactions on 2005, 52: 121-124. 10.1109/TBME.2004.836492CrossRef Chan A, Englehart K: Continuous myoelectric control for powered prostheses using hidden Markov models. Biomedical Engineering, IEEE Transactions on 2005, 52: 121-124. 10.1109/TBME.2004.836492CrossRef
28.
go back to reference Tsukamoto M, Kondo T, Ito K: A Prosthetic Hand Control Based on Nonstationary EMG at the Start of Movement. Journal of Robotics and Mechatronics 2007,19(4):381-387. Tsukamoto M, Kondo T, Ito K: A Prosthetic Hand Control Based on Nonstationary EMG at the Start of Movement. Journal of Robotics and Mechatronics 2007,19(4):381-387.
29.
go back to reference Jiang N, Englehart K, Parker P: Extracting Simultaneous and Proportional Neural Control Information for Multiple Degree of Freedom Prostheses From the Surface Electromyographic Signal. IEEE Transactions on Biomedical Engineering 2009,56(4):1070-1080. 10.1109/TBME.2008.2007967CrossRefPubMed Jiang N, Englehart K, Parker P: Extracting Simultaneous and Proportional Neural Control Information for Multiple Degree of Freedom Prostheses From the Surface Electromyographic Signal. IEEE Transactions on Biomedical Engineering 2009,56(4):1070-1080. 10.1109/TBME.2008.2007967CrossRefPubMed
30.
go back to reference Mercier C, Reilly KT, Vargas CD, Aballea A, Sirigu A: Mapping phantom movement representations in the motor cortex of amputees. Brain 2006, 129: 2202-2210. 10.1093/brain/awl180CrossRefPubMed Mercier C, Reilly KT, Vargas CD, Aballea A, Sirigu A: Mapping phantom movement representations in the motor cortex of amputees. Brain 2006, 129: 2202-2210. 10.1093/brain/awl180CrossRefPubMed
31.
go back to reference Reilly KT, Mercier C, Schieber MH, Sirigu A: Persistent hand motor commands in the amputees' brain. Brain 2006, 129: 2211-2223. 10.1093/brain/awl154CrossRefPubMed Reilly KT, Mercier C, Schieber MH, Sirigu A: Persistent hand motor commands in the amputees' brain. Brain 2006, 129: 2211-2223. 10.1093/brain/awl154CrossRefPubMed
32.
go back to reference Sebelius FCP, Rosén BN, Lundborg GN: Refined Myoelectric Control in Below-Elbow Amputees Using Artificial Neural Networks and a Data Glove. Journal of Hand Surgery 2005,30A(4):780-789.CrossRef Sebelius FCP, Rosén BN, Lundborg GN: Refined Myoelectric Control in Below-Elbow Amputees Using Artificial Neural Networks and a Data Glove. Journal of Hand Surgery 2005,30A(4):780-789.CrossRef
33.
go back to reference Castellini C, Gruppioni E, Davalli A, Sandini G: Fine detection of grasp force and posture by amputees via surface electromyography. Journal of Physiology (Paris) 2009,103(3-5):255-262. 10.1016/j.jphysparis.2009.08.008CrossRef Castellini C, Gruppioni E, Davalli A, Sandini G: Fine detection of grasp force and posture by amputees via surface electromyography. Journal of Physiology (Paris) 2009,103(3-5):255-262. 10.1016/j.jphysparis.2009.08.008CrossRef
34.
go back to reference Tenore F, Ramos A, Fahmy A, Acharya S, Etienne-Cummings R, Thakor NV: Decoding of individuated finger movements using surface Electromyography. IEEE transactions on bio-medical engineering 2009,56(5):1427-1434. 10.1109/TBME.2008.2005485CrossRefPubMed Tenore F, Ramos A, Fahmy A, Acharya S, Etienne-Cummings R, Thakor NV: Decoding of individuated finger movements using surface Electromyography. IEEE transactions on bio-medical engineering 2009,56(5):1427-1434. 10.1109/TBME.2008.2005485CrossRefPubMed
35.
go back to reference Vijayakumar S, D'Souza A, Schaal S: Incremental Online Learning in High Dimensions. Neural Computation 2005, 17: 2602-2634. 10.1162/089976605774320557CrossRefPubMed Vijayakumar S, D'Souza A, Schaal S: Incremental Online Learning in High Dimensions. Neural Computation 2005, 17: 2602-2634. 10.1162/089976605774320557CrossRefPubMed
36.
go back to reference Hoozemans MJM, van Dieën JH: Prediction of handgrip forces using surface EMG of forearm muscles. Journal of Electromyography and Kinesiology 2005,15(4):358-366. 10.1016/j.jelekin.2004.09.001CrossRefPubMed Hoozemans MJM, van Dieën JH: Prediction of handgrip forces using surface EMG of forearm muscles. Journal of Electromyography and Kinesiology 2005,15(4):358-366. 10.1016/j.jelekin.2004.09.001CrossRefPubMed
37.
go back to reference Orabona F, Castellini C, Caputo B, Fiorilla E, Sandini G: Model Adaptation with Least-Squares SVM for Hand Prosthetics. Proceedings of ICRA-09 - International Conference on Robotics and Automation 2009, 2897-2903. Orabona F, Castellini C, Caputo B, Fiorilla E, Sandini G: Model Adaptation with Least-Squares SVM for Hand Prosthetics. Proceedings of ICRA-09 - International Conference on Robotics and Automation 2009, 2897-2903.
Metadata
Title
Multi-subject/daily-life activity EMG-based control of mechanical hands
Authors
Claudio Castellini
Angelo Emanuele Fiorilla
Giulio Sandini
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2009
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-6-41

Other articles of this Issue 1/2009

Journal of NeuroEngineering and Rehabilitation 1/2009 Go to the issue