Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2008

Open Access 01-12-2008 | Review

Review on solving the inverse problem in EEG source analysis

Authors: Roberta Grech, Tracey Cassar, Joseph Muscat, Kenneth P Camilleri, Simon G Fabri, Michalis Zervakis, Petros Xanthopoulos, Vangelis Sakkalis, Bart Vanrumste

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2008

Login to get access

Abstract

In this primer, we give a review of the inverse problem for EEG source localization. This is intended for the researchers new in the field to get insight in the state-of-the-art techniques used to find approximate solutions of the brain sources giving rise to a scalp potential recording. Furthermore, a review of the performance results of the different techniques is provided to compare these different inverse solutions. The authors also include the results of a Monte-Carlo analysis which they performed to compare four non parametric algorithms and hence contribute to what is presently recorded in the literature. An extensive list of references to the work of other researchers is also provided.
This paper starts off with a mathematical description of the inverse problem and proceeds to discuss the two main categories of methods which were developed to solve the EEG inverse problem, mainly the non parametric and parametric methods. The main difference between the two is to whether a fixed number of dipoles is assumed a priori or not. Various techniques falling within these categories are described including minimum norm estimates and their generalizations, LORETA, sLORETA, VARETA, S-MAP, ST-MAP, Backus-Gilbert, LAURA, Shrinking LORETA FOCUSS (SLF), SSLOFO and ALF for non parametric methods and beamforming techniques, BESA, subspace techniques such as MUSIC and methods derived from it, FINES, simulated annealing and computational intelligence algorithms for parametric methods. From a review of the performance of these techniques as documented in the literature, one could conclude that in most cases the LORETA solution gives satisfactory results. In situations involving clusters of dipoles, higher resolution algorithms such as MUSIC or FINES are however preferred. Imposing reliable biophysical and psychological constraints, as done by LAURA has given superior results. The Monte-Carlo analysis performed, comparing WMN, LORETA, sLORETA and SLF, for different noise levels and different simulated source depths has shown that for single source localization, regularized sLORETA gives the best solution in terms of both localization error and ghost sources. Furthermore the computationally intensive solution given by SLF was not found to give any additional benefits under such simulated conditions.
Appendix
Available only for authorised users
Literature
1.
go back to reference De Munck JC, Van Dijk BW, Spekreijse H: Mathematical Dipoles are Adequate to Describe Realistic Generators of Human Brain Activity. IEEE Transactions on Biomedical Engineering 1988,35(11):960-966. 10.1109/10.8677CrossRefPubMed De Munck JC, Van Dijk BW, Spekreijse H: Mathematical Dipoles are Adequate to Describe Realistic Generators of Human Brain Activity. IEEE Transactions on Biomedical Engineering 1988,35(11):960-966. 10.1109/10.8677CrossRefPubMed
2.
go back to reference Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, D'Asseler Y, Camilleri KP, Fabri SG, Van Huffel S, Lemahieu I: Review on solving the forward problem in EEG source analysis. Journal of NeuroEngineering and Rehabilitation 2007.,4(46): Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, D'Asseler Y, Camilleri KP, Fabri SG, Van Huffel S, Lemahieu I: Review on solving the forward problem in EEG source analysis. Journal of NeuroEngineering and Rehabilitation 2007.,4(46):
4.
go back to reference Baillet S, Garnero L: A Bayesian Approach to Introducing Anatomo-Functional Priors in the EEG/MEG Inverse Problem. IEEE Transactions on Biomedical Engineering 1997,44(5):374-385. 10.1109/10.568913CrossRefPubMed Baillet S, Garnero L: A Bayesian Approach to Introducing Anatomo-Functional Priors in the EEG/MEG Inverse Problem. IEEE Transactions on Biomedical Engineering 1997,44(5):374-385. 10.1109/10.568913CrossRefPubMed
5.
go back to reference Pascual-Marqui RD: Review of Methods for Solving the EEG Inverse Problem. International Journal of Bioelectromagnetism 1999, 1: 75-86. [Author's version] Pascual-Marqui RD: Review of Methods for Solving the EEG Inverse Problem. International Journal of Bioelectromagnetism 1999, 1: 75-86. [Author's version]
6.
go back to reference Baillet S, Mosher JC, Leahy RM: Electromagnetic Brain Mapping. IEEE Signal Processing Magazine 2001,18(6):14-30. 10.1109/79.962275CrossRef Baillet S, Mosher JC, Leahy RM: Electromagnetic Brain Mapping. IEEE Signal Processing Magazine 2001,18(6):14-30. 10.1109/79.962275CrossRef
7.
go back to reference Groetsch W: Inverse Problems in the Mathematical Sciences. Vieweg 1993. Groetsch W: Inverse Problems in the Mathematical Sciences. Vieweg 1993.
8.
go back to reference Hansen PC: Rank-Deficient and Discrete Ill-Posed Problems. SIAM 1998. Hansen PC: Rank-Deficient and Discrete Ill-Posed Problems. SIAM 1998.
9.
go back to reference Vogel CR: Computational Methods for Inverse Problems. SIAM 2002. Vogel CR: Computational Methods for Inverse Problems. SIAM 2002.
10.
go back to reference De Munck JC: The estimation of time varying dipoles on the basis of evoked potentials. Electroencephalography and Clinical Neurophysiology 1990, 77: 156-160. 10.1016/0168-5597(90)90032-9CrossRefPubMed De Munck JC: The estimation of time varying dipoles on the basis of evoked potentials. Electroencephalography and Clinical Neurophysiology 1990, 77: 156-160. 10.1016/0168-5597(90)90032-9CrossRefPubMed
11.
go back to reference Rodriguez-Rivera A, Van Veen BD, Wakai RT: Statistical Performance Analysis of Signal Variance-Based Dipole Models for MEG/EEG Source Localization and Detection. IEEE Transactions on Biomedical Engineering 2003,50(2):137-149. 10.1109/TBME.2002.807661CrossRefPubMed Rodriguez-Rivera A, Van Veen BD, Wakai RT: Statistical Performance Analysis of Signal Variance-Based Dipole Models for MEG/EEG Source Localization and Detection. IEEE Transactions on Biomedical Engineering 2003,50(2):137-149. 10.1109/TBME.2002.807661CrossRefPubMed
12.
go back to reference Liu AK, Dale AM, Belliveau JW: Monte Carlo Simulation Studies of EEG and MEG Localization Accuracy. Human Brain Mapping 2002, 16: 47-62. 10.1002/hbm.10024CrossRefPubMed Liu AK, Dale AM, Belliveau JW: Monte Carlo Simulation Studies of EEG and MEG Localization Accuracy. Human Brain Mapping 2002, 16: 47-62. 10.1002/hbm.10024CrossRefPubMed
13.
go back to reference Schmidt DM, George JS, Wood CC: Bayesian Inference Applied to the Electromagnetic Inverse Problem. Progress Report 1997–1998, Physics Division. 2002. Schmidt DM, George JS, Wood CC: Bayesian Inference Applied to the Electromagnetic Inverse Problem. Progress Report 1997–1998, Physics Division. 2002.
14.
go back to reference Dale A, Sereno M: Improved Localization of Cortical Activity By Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach. Journal of Cognitive Neuroscience 1993,5(2):162-176. 10.1162/jocn.1993.5.2.162CrossRefPubMed Dale A, Sereno M: Improved Localization of Cortical Activity By Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach. Journal of Cognitive Neuroscience 1993,5(2):162-176. 10.1162/jocn.1993.5.2.162CrossRefPubMed
15.
go back to reference Gavit L, Baillet S, Mangin JF, Pescatore J, Garnero L: A Multiresolution Framework to MEG/EEG Source Imaging. IEEE Transactions on Biomedical Engineering 2001,48(10):1080-1087. 10.1109/10.951510CrossRefPubMed Gavit L, Baillet S, Mangin JF, Pescatore J, Garnero L: A Multiresolution Framework to MEG/EEG Source Imaging. IEEE Transactions on Biomedical Engineering 2001,48(10):1080-1087. 10.1109/10.951510CrossRefPubMed
16.
go back to reference Kreyszig E: Introductory Functional Analysis With Applications. John Wiley & Sons, Inc; 1978. Kreyszig E: Introductory Functional Analysis With Applications. John Wiley & Sons, Inc; 1978.
17.
go back to reference Silva C, Maltez JC, Trindade E, Arriaga A, Ducla-Soares E: Evaluation of L 1 and L 2 minimum-norm performances on EEG localizations. Clinical Neurophysiology 2004, 115: 1657-1668. 10.1016/j.clinph.2004.02.009CrossRefPubMed Silva C, Maltez JC, Trindade E, Arriaga A, Ducla-Soares E: Evaluation of L 1 and L 2 minimum-norm performances on EEG localizations. Clinical Neurophysiology 2004, 115: 1657-1668. 10.1016/j.clinph.2004.02.009CrossRefPubMed
18.
go back to reference Chellapa R, Jain A, Eds: Markov Random Fields: Theory and Applications. Academic Press; 1991. Chellapa R, Jain A, Eds: Markov Random Fields: Theory and Applications. Academic Press; 1991.
19.
go back to reference Li SZ: Markov Random Field Modeling in Computer Vision. New York: Springer-Verlag; 1995.CrossRef Li SZ: Markov Random Field Modeling in Computer Vision. New York: Springer-Verlag; 1995.CrossRef
20.
go back to reference Liu H, Gao X, Schimpf PH, Yang F, Gao S: A Recursive Algorithm for the Three-Dimensional Imaging of Brain Electric Activity: Shrinking LORETA-FOCUSS. IEEE Transactions on Biomedical Engineering 2004,51(10):1794-1802. 10.1109/TBME.2004.831537CrossRefPubMed Liu H, Gao X, Schimpf PH, Yang F, Gao S: A Recursive Algorithm for the Three-Dimensional Imaging of Brain Electric Activity: Shrinking LORETA-FOCUSS. IEEE Transactions on Biomedical Engineering 2004,51(10):1794-1802. 10.1109/TBME.2004.831537CrossRefPubMed
21.
go back to reference Hansen PC: Regularization Tools: A Matlab package for Analysis and Solution of Discrete Ill-Posed Problems. Numerical Algorithms 1994, 6: 1-35. 10.1007/BF02149761CrossRef Hansen PC: Regularization Tools: A Matlab package for Analysis and Solution of Discrete Ill-Posed Problems. Numerical Algorithms 1994, 6: 1-35. 10.1007/BF02149761CrossRef
22.
go back to reference Hansen PC: The L-curve and its use in the numerical treatment of inverse problems. In Computational Inverse Problems in Electrocardiology. Edited by: Johnston P. WIT Press; 2001:119-142. Hansen PC: The L-curve and its use in the numerical treatment of inverse problems. In Computational Inverse Problems in Electrocardiology. Edited by: Johnston P. WIT Press; 2001:119-142.
23.
go back to reference Cheng LK, Bodley JM, Pullan AJ: Comparison of Potential- and Activation-Based Formulations for the Inverse Problem of Electrocardiology. IEEE Transactions on Biomedical Engineering 2003,50(1):11-22. 10.1109/TBME.2002.807326CrossRefPubMed Cheng LK, Bodley JM, Pullan AJ: Comparison of Potential- and Activation-Based Formulations for the Inverse Problem of Electrocardiology. IEEE Transactions on Biomedical Engineering 2003,50(1):11-22. 10.1109/TBME.2002.807326CrossRefPubMed
24.
go back to reference Lian J, Yao D, He BP: A New Method for Implementaion of Regularization in Cortical Potential Imaging. Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 1998.,20(4): Lian J, Yao D, He BP: A New Method for Implementaion of Regularization in Cortical Potential Imaging. Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 1998.,20(4):
25.
go back to reference Ding L, He B: 3-Dimensional Brain Source Imaging by Means of Laplacian Weighted Minimum Norm Estimate in a Realistic Geometry Head Model. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference 1995. Ding L, He B: 3-Dimensional Brain Source Imaging by Means of Laplacian Weighted Minimum Norm Estimate in a Realistic Geometry Head Model. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference 1995.
26.
go back to reference De Peralta-Menendez RG, Gonzalez-Andino SL: A Critical Analysis of Linear Inverse Solutions to the Neuroelectromagnetic Inverse Problem. IEEE Transactions on Biomedical Engineering 1998,45(4):440-448. 10.1109/10.664200CrossRef De Peralta-Menendez RG, Gonzalez-Andino SL: A Critical Analysis of Linear Inverse Solutions to the Neuroelectromagnetic Inverse Problem. IEEE Transactions on Biomedical Engineering 1998,45(4):440-448. 10.1109/10.664200CrossRef
27.
go back to reference Baillet S: Toward Functional Brain Imaging of Cortical Electrophysiology Markovian Models for Magneto and Electroencephalogram Source Estimation and Experimental Assessments. In Ph.D thesis. University of Paris-ParisXI, Orsay, France; 1998. Baillet S: Toward Functional Brain Imaging of Cortical Electrophysiology Markovian Models for Magneto and Electroencephalogram Source Estimation and Experimental Assessments. In Ph.D thesis. University of Paris-ParisXI, Orsay, France; 1998.
28.
go back to reference Gençer NG, Williamson SJ: Characterization of Neural Sources with Bimodal Truncated SVD Pseudo-Inverse for EEG and MEG Measurements. IEEE Transactions on Biomedical Engineering 1998,45(7):827-838. 10.1109/10.686790CrossRefPubMed Gençer NG, Williamson SJ: Characterization of Neural Sources with Bimodal Truncated SVD Pseudo-Inverse for EEG and MEG Measurements. IEEE Transactions on Biomedical Engineering 1998,45(7):827-838. 10.1109/10.686790CrossRefPubMed
29.
go back to reference Gorodnitsky IF, Rao BD: Sparse Signal Reconstruction from Limited Data Using FOCUSS: A Re-weighted Minimum Norm Algorithm. IEEE Transactions on Signal Processing 1997,45(3):600-615. 10.1109/78.558475CrossRef Gorodnitsky IF, Rao BD: Sparse Signal Reconstruction from Limited Data Using FOCUSS: A Re-weighted Minimum Norm Algorithm. IEEE Transactions on Signal Processing 1997,45(3):600-615. 10.1109/78.558475CrossRef
30.
go back to reference Gorodnitsky IF, George JS, Rao BD: Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalography and clinical Neurophysiology 1995, 231-251. 10.1016/0013-4694(95)00107-A Gorodnitsky IF, George JS, Rao BD: Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalography and clinical Neurophysiology 1995, 231-251. 10.1016/0013-4694(95)00107-A
31.
go back to reference Xin G, Xinshan M, Yaoqin X: A new algorithm for EEG source reconstruction based on LORETA by contracting the source region. Progress in Natural Science 2002,12(11):859-862. Xin G, Xinshan M, Yaoqin X: A new algorithm for EEG source reconstruction based on LORETA by contracting the source region. Progress in Natural Science 2002,12(11):859-862.
32.
go back to reference Pascual-Marqui RD: Standardized low resolution brain electromagnetic tomography (sLORETA):technical details. Methods and Findings in Experimental & Clinical Pharmacology 2002, 24D: 5-12. [Author's version] Pascual-Marqui RD: Standardized low resolution brain electromagnetic tomography (sLORETA):technical details. Methods and Findings in Experimental & Clinical Pharmacology 2002, 24D: 5-12. [Author's version]
33.
go back to reference Dale A, Liu A, Fischl B, Buckner R, Belliveau J, Lewine J, Halgren E: Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 2000, 26: 55-67. 10.1016/S0896-6273(00)81138-1CrossRefPubMed Dale A, Liu A, Fischl B, Buckner R, Belliveau J, Lewine J, Halgren E: Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 2000, 26: 55-67. 10.1016/S0896-6273(00)81138-1CrossRefPubMed
34.
go back to reference Valdes-Sosa P, Marti F, Casanova R: Variable Resolution Electric-Magnetic Tomography. Cuban Neuroscience Center, Havana Cuba, in press. Valdes-Sosa P, Marti F, Casanova R: Variable Resolution Electric-Magnetic Tomography. Cuban Neuroscience Center, Havana Cuba, in press.
35.
go back to reference Galka A, Yamashita O, Ozaki T, Biscay R, Valdés-Sosa P: A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering. NeuroImage 2004, 23: 435-453. 10.1016/j.neuroimage.2004.02.022CrossRefPubMed Galka A, Yamashita O, Ozaki T, Biscay R, Valdés-Sosa P: A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering. NeuroImage 2004, 23: 435-453. 10.1016/j.neuroimage.2004.02.022CrossRefPubMed
36.
go back to reference Riera JJ, Valdes PA, Fuentes ME, Oharriz Y: Explicit Backus and Gilbert EEG Inverse Solution for Spherical Symmetry. Department of Neurophysics, Cuban Neuroscience Center, Havana, Cuba 2002, in press. Riera JJ, Valdes PA, Fuentes ME, Oharriz Y: Explicit Backus and Gilbert EEG Inverse Solution for Spherical Symmetry. Department of Neurophysics, Cuban Neuroscience Center, Havana, Cuba 2002, in press.
37.
go back to reference De Peralta-Menendez RG, Hauk O, Gonzalez-Andino S, Vogt H, Michel C: Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography. Human Brain Mapping 1997,5(6):454-467. Publisher Full Text 10.1002/(SICI)1097-0193(1997)5:6<454::AID-HBM6>3.0.CO;2-2CrossRef De Peralta-Menendez RG, Hauk O, Gonzalez-Andino S, Vogt H, Michel C: Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography. Human Brain Mapping 1997,5(6):454-467. Publisher Full Text 10.1002/(SICI)1097-0193(1997)5:6<454::AID-HBM6>3.0.CO;2-2CrossRef
38.
go back to reference De Peralta-Menendez RG, Gonzalez-Andino SL: Comparison of algorithms for the localization of focal sources: evaluation with simulated data and analysis of experimental data. International Journal of Bioelectromagnetism 2002.,4(1): De Peralta-Menendez RG, Gonzalez-Andino SL: Comparison of algorithms for the localization of focal sources: evaluation with simulated data and analysis of experimental data. International Journal of Bioelectromagnetism 2002.,4(1):
39.
go back to reference Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, De Peralta RG: EEG source imaging. Clinical Neurophysiology 2004,115(10):2195-2222. 10.1016/j.clinph.2004.06.001CrossRefPubMed Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, De Peralta RG: EEG source imaging. Clinical Neurophysiology 2004,115(10):2195-2222. 10.1016/j.clinph.2004.06.001CrossRefPubMed
40.
go back to reference De Peralta Menendez RG, Murray MM, Michel CM, Martuzzi R, Gonzalez-Andino SL: Electrical neuroimaging based on biophysical constraints. NeuroImage 2004,21(2):527-539. 10.1016/j.neuroimage.2003.09.051CrossRef De Peralta Menendez RG, Murray MM, Michel CM, Martuzzi R, Gonzalez-Andino SL: Electrical neuroimaging based on biophysical constraints. NeuroImage 2004,21(2):527-539. 10.1016/j.neuroimage.2003.09.051CrossRef
41.
go back to reference Liu H, Schimpf PH, Dong G, Gao X, Yang F, Gao S: Standardized Shrinking LORETA-FOCUSS (SSLOFO): A New Algorithm for Spatio-Temporal EEG Source Reconstruction. IEEE Transactions on Biomedical Engineering 2005,52(10):1681-1691. 10.1109/TBME.2005.855720CrossRefPubMed Liu H, Schimpf PH, Dong G, Gao X, Yang F, Gao S: Standardized Shrinking LORETA-FOCUSS (SSLOFO): A New Algorithm for Spatio-Temporal EEG Source Reconstruction. IEEE Transactions on Biomedical Engineering 2005,52(10):1681-1691. 10.1109/TBME.2005.855720CrossRefPubMed
42.
go back to reference Schimpf PH, Liu H, Ramon C, Haueisen J: Efficient Electromagnetic Source Imaging With Adaptive Standardized LORETA/FOCUSS. IEEE Transactions on Biomedical Engineering 2005,52(5):901-908. 10.1109/TBME.2005.845365CrossRefPubMed Schimpf PH, Liu H, Ramon C, Haueisen J: Efficient Electromagnetic Source Imaging With Adaptive Standardized LORETA/FOCUSS. IEEE Transactions on Biomedical Engineering 2005,52(5):901-908. 10.1109/TBME.2005.845365CrossRefPubMed
43.
go back to reference Cuffin BN: A Method for Localizing EEG Head Models. IEEE Transactions on Biomedical Engineering 1995,42(1):68-71. 10.1109/10.362917CrossRefPubMed Cuffin BN: A Method for Localizing EEG Head Models. IEEE Transactions on Biomedical Engineering 1995,42(1):68-71. 10.1109/10.362917CrossRefPubMed
44.
go back to reference Finke S, Gulrajani RM, Gotman J: Conventional and Reciprocal Approaches to the Inverse Dipole Localization Problem of Electroencephalography. IEEE Transactions on Biomedical Engineering 2003,50(6):657-666. 10.1109/TBME.2003.812198CrossRefPubMed Finke S, Gulrajani RM, Gotman J: Conventional and Reciprocal Approaches to the Inverse Dipole Localization Problem of Electroencephalography. IEEE Transactions on Biomedical Engineering 2003,50(6):657-666. 10.1109/TBME.2003.812198CrossRefPubMed
45.
go back to reference Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipes in C. Second edition. Cambridge University Press; 1992. Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipes in C. Second edition. Cambridge University Press; 1992.
46.
go back to reference Vanrumste B, Van Hoey G, Walle R, Van Hese P, D'Havé M, Boon P, Lemahieu I: The Realistic Versus the Spherical Head Model in EEG Dipole Source Analysis in the Presence of Noise. Proceedings-23rd Annual Conference-IEEE/EMBS, Istanbul, Turkey 2001. Vanrumste B, Van Hoey G, Walle R, Van Hese P, D'Havé M, Boon P, Lemahieu I: The Realistic Versus the Spherical Head Model in EEG Dipole Source Analysis in the Presence of Noise. Proceedings-23rd Annual Conference-IEEE/EMBS, Istanbul, Turkey 2001.
47.
go back to reference Miga MI, Kerner TE, Darcey TM: Source Localization Using a Current-Density Minimization Approach. IEEE Transactions on Biomedical Engineering 2002,49(7):743-745. 10.1109/TBME.2002.1010860CrossRefPubMed Miga MI, Kerner TE, Darcey TM: Source Localization Using a Current-Density Minimization Approach. IEEE Transactions on Biomedical Engineering 2002,49(7):743-745. 10.1109/TBME.2002.1010860CrossRefPubMed
48.
go back to reference Uutela K, Hämäaläinen M, Salmelin R: Global Optimization in the Localization of Neuromagnetic Sources. IEEE Transactions on Biomedical Engineering 1998,45(6):716-723. 10.1109/10.678606CrossRefPubMed Uutela K, Hämäaläinen M, Salmelin R: Global Optimization in the Localization of Neuromagnetic Sources. IEEE Transactions on Biomedical Engineering 1998,45(6):716-723. 10.1109/10.678606CrossRefPubMed
49.
go back to reference Van Veen BD, Van Drongelen W, Yuchtman M, Suzuki A: Localization of Brain Electrical Activity via Linearly Constrained Minimum Variance Spatial Filtering. IEEE Transactions on Biomedical Engineering 1997,44(9):867-880. 10.1109/10.623056CrossRefPubMed Van Veen BD, Van Drongelen W, Yuchtman M, Suzuki A: Localization of Brain Electrical Activity via Linearly Constrained Minimum Variance Spatial Filtering. IEEE Transactions on Biomedical Engineering 1997,44(9):867-880. 10.1109/10.623056CrossRefPubMed
50.
go back to reference Sekihara K, Nagarajan S, Poeppe D, Miyashita Y: Reconstrusting Spatio-Temporal Activities of Neural Sources from Magnetoencephalographic Data Using a Vector Beamformer. IEEE International Conference on Acoustics, Speech and Signal Processing Proceedings 2001, 3: 2021-2024. Sekihara K, Nagarajan S, Poeppe D, Miyashita Y: Reconstrusting Spatio-Temporal Activities of Neural Sources from Magnetoencephalographic Data Using a Vector Beamformer. IEEE International Conference on Acoustics, Speech and Signal Processing Proceedings 2001, 3: 2021-2024.
51.
go back to reference Mosher JC, Lewis PS, Leahy RM: Multiple Dipole Modeling and Localization from Spatio-Temporal MEG Data. IEEE Transactions on Biomedical Engineering 1992,39(6):541-557. 10.1109/10.141192CrossRefPubMed Mosher JC, Lewis PS, Leahy RM: Multiple Dipole Modeling and Localization from Spatio-Temporal MEG Data. IEEE Transactions on Biomedical Engineering 1992,39(6):541-557. 10.1109/10.141192CrossRefPubMed
52.
go back to reference Maris E: A Resampling Method for Estimating the Signal Subspace of Spatio-Temporal EEG/MEG Data. IEEE Transactions on Biomedical Engineering 2003,50(8):935-949. 10.1109/TBME.2003.814293CrossRefPubMed Maris E: A Resampling Method for Estimating the Signal Subspace of Spatio-Temporal EEG/MEG Data. IEEE Transactions on Biomedical Engineering 2003,50(8):935-949. 10.1109/TBME.2003.814293CrossRefPubMed
53.
go back to reference Mosher JC, Leahy RM: Recursive MUSIC: A Framework for EEG and MEG Source Localization. IEEE Transactions on Biomedical Engineering 1998,45(11):1342-1354. 10.1109/10.725331CrossRefPubMed Mosher JC, Leahy RM: Recursive MUSIC: A Framework for EEG and MEG Source Localization. IEEE Transactions on Biomedical Engineering 1998,45(11):1342-1354. 10.1109/10.725331CrossRefPubMed
54.
go back to reference Mosher JC, Leahy RM: Source Localization Using Recursively Applied and Projected (RAP) MUSIC. IEEE Transactions on Signal Processing 1999,47(2):332-340. 10.1109/78.740118CrossRef Mosher JC, Leahy RM: Source Localization Using Recursively Applied and Projected (RAP) MUSIC. IEEE Transactions on Signal Processing 1999,47(2):332-340. 10.1109/78.740118CrossRef
55.
go back to reference Ermer JJ, Mosher JC, Huang M, Leahy RM: Paired MEG Data Set Source Localization Using Recursively Applied and Projected (RAP) MUSIC. IEEE Transactions on Biomedical Engineering 2000,47(9):1248-1260. 10.1109/10.867959CrossRefPubMed Ermer JJ, Mosher JC, Huang M, Leahy RM: Paired MEG Data Set Source Localization Using Recursively Applied and Projected (RAP) MUSIC. IEEE Transactions on Biomedical Engineering 2000,47(9):1248-1260. 10.1109/10.867959CrossRefPubMed
56.
go back to reference Xu X, Xu B, He B: An alternative subspace approach to EEG dipole source localization. Physics in Medicine and Biology 2004, 49: 327-343. 10.1088/0031-9155/49/2/010CrossRefPubMed Xu X, Xu B, He B: An alternative subspace approach to EEG dipole source localization. Physics in Medicine and Biology 2004, 49: 327-343. 10.1088/0031-9155/49/2/010CrossRefPubMed
57.
go back to reference Robert C, Gaudy J, Limoge A: Electroencephalogram processing using neural networks. Clinical Neurophysiology 2002, 113: 694-701. 10.1016/S1388-2457(02)00033-0CrossRefPubMed Robert C, Gaudy J, Limoge A: Electroencephalogram processing using neural networks. Clinical Neurophysiology 2002, 113: 694-701. 10.1016/S1388-2457(02)00033-0CrossRefPubMed
58.
go back to reference Tun AK, Lye NT, Guanglan Z, Abeyratne UR, Saratchandran P: RBF networks for source localization in quantitative electrophysiology. EMBS 1998, 2190-2192. [Oct 29 Nov 1, Hong Kong] Tun AK, Lye NT, Guanglan Z, Abeyratne UR, Saratchandran P: RBF networks for source localization in quantitative electrophysiology. EMBS 1998, 2190-2192. [Oct 29 Nov 1, Hong Kong]
59.
go back to reference Abeyratne R, Kinouchi Y, Oki H, Okada J, Shichijo F, Matsumoto K: Artificial neural networks for source localization in the human brain. Brain Topography 1991, 4: 321. 10.1007/BF01129661CrossRef Abeyratne R, Kinouchi Y, Oki H, Okada J, Shichijo F, Matsumoto K: Artificial neural networks for source localization in the human brain. Brain Topography 1991, 4: 321. 10.1007/BF01129661CrossRef
60.
go back to reference Abeyratne R, Zhang G, Saratchandran P: EEG source localization: a comparative study of classical and neural network methods. International Journal of Neural Systems 2001,11(4):349-360. 10.1142/S0129065701000813CrossRefPubMed Abeyratne R, Zhang G, Saratchandran P: EEG source localization: a comparative study of classical and neural network methods. International Journal of Neural Systems 2001,11(4):349-360. 10.1142/S0129065701000813CrossRefPubMed
61.
go back to reference Kinouchi Y, Oki H, Okada J, Shichijo F, Matsumoto K: Artificial neural networks for source localization in the human brain. Brain Topography 1991,4(1):3-21. 10.1007/BF01129661CrossRefPubMed Kinouchi Y, Oki H, Okada J, Shichijo F, Matsumoto K: Artificial neural networks for source localization in the human brain. Brain Topography 1991,4(1):3-21. 10.1007/BF01129661CrossRefPubMed
62.
go back to reference Sclabassi RJ, Sonmez M, Sun M: EEG source localization: a neural network approach. Neurological Research 2001,23(5):457-464. 10.1179/016164101101198848CrossRefPubMed Sclabassi RJ, Sonmez M, Sun M: EEG source localization: a neural network approach. Neurological Research 2001,23(5):457-464. 10.1179/016164101101198848CrossRefPubMed
63.
go back to reference Sun M, Sclabassi RJ: The forward EEG solutions can be computed using artificial neural networks. IEEE Transactions on Biomedical Engineering 2000,47(8):1044-1050. 10.1109/10.855931CrossRefPubMed Sun M, Sclabassi RJ: The forward EEG solutions can be computed using artificial neural networks. IEEE Transactions on Biomedical Engineering 2000,47(8):1044-1050. 10.1109/10.855931CrossRefPubMed
64.
go back to reference Tun AK, Lye NT, Guanglan Z, Abeyratne UR, Saratchandran P: RBF networks for source localization in quantitative electrophysiology. Critical Reviews in Biomedical Engineering 2000, 28: 463-472.CrossRefPubMed Tun AK, Lye NT, Guanglan Z, Abeyratne UR, Saratchandran P: RBF networks for source localization in quantitative electrophysiology. Critical Reviews in Biomedical Engineering 2000, 28: 463-472.CrossRefPubMed
65.
go back to reference Van Hoey G, De Clercq J, Vanrumste B, Walle R, Lemahieu I, DHave M, Boon P: EEG dipole source localization using artificial neural networks. Physics in Medicine and Biology 2000, 45: 997-1011. 10.1088/0031-9155/45/4/314CrossRefPubMed Van Hoey G, De Clercq J, Vanrumste B, Walle R, Lemahieu I, DHave M, Boon P: EEG dipole source localization using artificial neural networks. Physics in Medicine and Biology 2000, 45: 997-1011. 10.1088/0031-9155/45/4/314CrossRefPubMed
66.
go back to reference Yuasa M, Zhang Q, Nagashino H, Kinouchi Y: EEG source localization for two dipoles by neural networks. Proceedings IEEE 20th Annual International Conference IEEE/EMBS, Oct 29 Nov 1, Hong Kong 1998, 2190-2192. Yuasa M, Zhang Q, Nagashino H, Kinouchi Y: EEG source localization for two dipoles by neural networks. Proceedings IEEE 20th Annual International Conference IEEE/EMBS, Oct 29 Nov 1, Hong Kong 1998, 2190-2192.
67.
go back to reference Zhang Q, Yuasa M, Nagashino H, Kinoushi Y: Single dipole source localization from conventional EEG using BP neural networks. Proceedings IEEE 20th Annual International Conference IEEE/EMBS, Oct 29 Nov 1 1998, 2163-2166. Zhang Q, Yuasa M, Nagashino H, Kinoushi Y: Single dipole source localization from conventional EEG using BP neural networks. Proceedings IEEE 20th Annual International Conference IEEE/EMBS, Oct 29 Nov 1 1998, 2163-2166.
68.
go back to reference McNay D, Michielssen E, Rogers RL, Taylor SA, Akhtari M, Sutherling WW: Multiple source localization using genetic algorithms. Journal of Neuroscience Methods 1996,64(2):163-172. 10.1016/0165-0270(95)00122-0CrossRefPubMed McNay D, Michielssen E, Rogers RL, Taylor SA, Akhtari M, Sutherling WW: Multiple source localization using genetic algorithms. Journal of Neuroscience Methods 1996,64(2):163-172. 10.1016/0165-0270(95)00122-0CrossRefPubMed
69.
go back to reference Weinstein DM, Zhukov L, Potts G: Localization of Multiple Deep Epileptic Sources in a Realistic Head Model via Independent Component Analysis. Tech. rep., School of Computing, University of Utah; 2000. Weinstein DM, Zhukov L, Potts G: Localization of Multiple Deep Epileptic Sources in a Realistic Head Model via Independent Component Analysis. Tech. rep., School of Computing, University of Utah; 2000.
70.
go back to reference Zhukov L, Weinstein D, Johnson CR: Independent Component Analysis for EEG Source Localization in Realistic Head Models. Proceedings of the IEEE Engineering in Medicine and Biology Society, 22nd Annual International Conference 2000,3(19):87-96. Zhukov L, Weinstein D, Johnson CR: Independent Component Analysis for EEG Source Localization in Realistic Head Models. Proceedings of the IEEE Engineering in Medicine and Biology Society, 22nd Annual International Conference 2000,3(19):87-96.
71.
go back to reference Salu Y, Cohen LG, Rose D, Sato S, Kufta C, Hallett M: An Improved Method for Localizing Electric Brain Dipoles. IEEE Transactions on Biomedical Engineering 1990,37(7):699-705. 10.1109/10.55680CrossRefPubMed Salu Y, Cohen LG, Rose D, Sato S, Kufta C, Hallett M: An Improved Method for Localizing Electric Brain Dipoles. IEEE Transactions on Biomedical Engineering 1990,37(7):699-705. 10.1109/10.55680CrossRefPubMed
72.
go back to reference Yao J, Dewald JPA: Evaluation of different cortical source localization methods using simulated and experimental EEG data. NeuroImage 2005, 25: 369-382. 10.1016/j.neuroimage.2004.11.036CrossRefPubMed Yao J, Dewald JPA: Evaluation of different cortical source localization methods using simulated and experimental EEG data. NeuroImage 2005, 25: 369-382. 10.1016/j.neuroimage.2004.11.036CrossRefPubMed
73.
go back to reference Cuffin BN: EEG Dipole Source Localization. IEEE Engineering in Medicine and Biology 1998,17(5):118-122. 10.1109/51.715495CrossRef Cuffin BN: EEG Dipole Source Localization. IEEE Engineering in Medicine and Biology 1998,17(5):118-122. 10.1109/51.715495CrossRef
74.
go back to reference Miltner W, Braun C, Johnson R Jr, Simpson G, Ruchkin D: A test of brain electrical source analysis (BESA): a simulation study. Electroenceph Clin Neurophysiol 1994, 91: 295-310. 10.1016/0013-4694(94)90193-7CrossRefPubMed Miltner W, Braun C, Johnson R Jr, Simpson G, Ruchkin D: A test of brain electrical source analysis (BESA): a simulation study. Electroenceph Clin Neurophysiol 1994, 91: 295-310. 10.1016/0013-4694(94)90193-7CrossRefPubMed
75.
go back to reference Ding L, He B: Spatio-Temporal EEG Source Localization Using a Three-Dimensional Subspace FINE Approach in a Realistic Geometry Inhomogeneous Head Model. IEEE Transactions on Biomedical Engineering 2006,53(9):1732-1739. 10.1109/TBME.2006.878118PubMedCentralCrossRefPubMed Ding L, He B: Spatio-Temporal EEG Source Localization Using a Three-Dimensional Subspace FINE Approach in a Realistic Geometry Inhomogeneous Head Model. IEEE Transactions on Biomedical Engineering 2006,53(9):1732-1739. 10.1109/TBME.2006.878118PubMedCentralCrossRefPubMed
76.
go back to reference Field A: Discovering statistics using SPSS: (and sex, drugs and rock 'n' roll). 2nd edition. SAGE publications; 2005. Field A: Discovering statistics using SPSS: (and sex, drugs and rock 'n' roll). 2nd edition. SAGE publications; 2005.
77.
go back to reference Ochi A, Otsubo H, Chitoku S, Hunjan A, Sharma R, Rutka JT, Chuang SH, Kamijo K, Yamazaki T, Snead OC: Dipole localization for identification of neuronal generators in independent neighboring interictal EEG spike foci. Epilepsia 2001,42(4):483-490. 10.1046/j.1528-1157.2001.27000.xCrossRefPubMed Ochi A, Otsubo H, Chitoku S, Hunjan A, Sharma R, Rutka JT, Chuang SH, Kamijo K, Yamazaki T, Snead OC: Dipole localization for identification of neuronal generators in independent neighboring interictal EEG spike foci. Epilepsia 2001,42(4):483-490. 10.1046/j.1528-1157.2001.27000.xCrossRefPubMed
78.
go back to reference Snead OC: Surgical treatment of medical refractory epilepsy in childhood. Brain and Development 2001,23(4):199-207. 10.1016/S0387-7604(01)00204-2CrossRefPubMed Snead OC: Surgical treatment of medical refractory epilepsy in childhood. Brain and Development 2001,23(4):199-207. 10.1016/S0387-7604(01)00204-2CrossRefPubMed
79.
go back to reference Duchowny M, Jayakar P, Koh S: Selection criteria and preoperative investigation of patients with focal epilepsy who lack a localized structural lesion. Epileptic Disorders 2000,2(4):219-226.PubMed Duchowny M, Jayakar P, Koh S: Selection criteria and preoperative investigation of patients with focal epilepsy who lack a localized structural lesion. Epileptic Disorders 2000,2(4):219-226.PubMed
80.
go back to reference Harmony T, Fernandez-Bouzas A, Marosi E, Fernandez T, Valdes P, Bosch J, Riera J, Bernal J, Rodriguez M, Reyes A, Koh S: Frequency source analysis in patients with brain lesions. Brain Topography 1998, 8: 109-117. 10.1007/BF01199774CrossRef Harmony T, Fernandez-Bouzas A, Marosi E, Fernandez T, Valdes P, Bosch J, Riera J, Bernal J, Rodriguez M, Reyes A, Koh S: Frequency source analysis in patients with brain lesions. Brain Topography 1998, 8: 109-117. 10.1007/BF01199774CrossRef
81.
go back to reference Isotani T, Tanaka H, Lehmann D, Pascual-Marqui RD, Kochi K, Saito N, Yagyu T, Kinoshita T, Sasada K: Source localization of EEG activity during hypnotically induced anxiety and relaxation. Int J Psychophysiology 2001, 41: 143-153. 10.1016/S0167-8760(00)00197-5CrossRef Isotani T, Tanaka H, Lehmann D, Pascual-Marqui RD, Kochi K, Saito N, Yagyu T, Kinoshita T, Sasada K: Source localization of EEG activity during hypnotically induced anxiety and relaxation. Int J Psychophysiology 2001, 41: 143-153. 10.1016/S0167-8760(00)00197-5CrossRef
82.
go back to reference Dierks T, Strik WK, Maurer K: Electrical brain activity in schizophrenia described by equivalent dipoles of FFT-data. Schizophr Res 1995, 14: 145-154. 10.1016/0920-9964(94)00032-4CrossRefPubMed Dierks T, Strik WK, Maurer K: Electrical brain activity in schizophrenia described by equivalent dipoles of FFT-data. Schizophr Res 1995, 14: 145-154. 10.1016/0920-9964(94)00032-4CrossRefPubMed
83.
go back to reference Huang C, Wahlung L, Dierks T, Julin P, Winblad B, Jelic V: Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study. Clinical Neurophysiology 2000, 111: 1961-1967. 10.1016/S1388-2457(00)00454-5CrossRefPubMed Huang C, Wahlung L, Dierks T, Julin P, Winblad B, Jelic V: Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study. Clinical Neurophysiology 2000, 111: 1961-1967. 10.1016/S1388-2457(00)00454-5CrossRefPubMed
84.
go back to reference Lubar JF, Congedo M, Askew JH: Low-resolution electromagnetic tomography (LORETA) of cerebral activity in chronic depressive disorder. Int J Psychophysiol 2003, 49: 175-185. 10.1016/S0167-8760(03)00115-6CrossRefPubMed Lubar JF, Congedo M, Askew JH: Low-resolution electromagnetic tomography (LORETA) of cerebral activity in chronic depressive disorder. Int J Psychophysiol 2003, 49: 175-185. 10.1016/S0167-8760(03)00115-6CrossRefPubMed
85.
go back to reference Frei E, Gamma A, Pascual-Marqui RD, Lehmann D, Hell D, Vollenweider FX: Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA). Human Brain Mapping 2001, 14: 152-165. 10.1002/hbm.1049CrossRefPubMed Frei E, Gamma A, Pascual-Marqui RD, Lehmann D, Hell D, Vollenweider FX: Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA). Human Brain Mapping 2001, 14: 152-165. 10.1002/hbm.1049CrossRefPubMed
86.
go back to reference Michel CM, Pascual-Marqui RD, Strik WK, Koenig T, Lehmann D: Frequency domain source localization shows state-dependent diazepam effects in 47-channel EEG. J Neural Transm Gen Sect 1995, 99: 157-171. 10.1007/BF01271476CrossRefPubMed Michel CM, Pascual-Marqui RD, Strik WK, Koenig T, Lehmann D: Frequency domain source localization shows state-dependent diazepam effects in 47-channel EEG. J Neural Transm Gen Sect 1995, 99: 157-171. 10.1007/BF01271476CrossRefPubMed
87.
go back to reference Boon P, D'Hav M, Vandekerckhove T, Achten E, Adam C, Clmenceau S, Baulac M, Goosens L, Calliauw L, De Reuck J: Dipole modelling and intracranial EEG recording: Correlation between dipole and ictal onset zone. Acta Neurochir 1997, 139: 643-652. 10.1007/BF01412000CrossRefPubMed Boon P, D'Hav M, Vandekerckhove T, Achten E, Adam C, Clmenceau S, Baulac M, Goosens L, Calliauw L, De Reuck J: Dipole modelling and intracranial EEG recording: Correlation between dipole and ictal onset zone. Acta Neurochir 1997, 139: 643-652. 10.1007/BF01412000CrossRefPubMed
88.
go back to reference Krings T, Chiappa KH, Cocchius JI, Connolly S, Cosgrove GR: Accuracy of EEG dipole source localization using implanted sources in the human brain. Clinical Neurophysiology 1999, 110: 106-114. 10.1016/S0013-4694(98)00106-0CrossRefPubMed Krings T, Chiappa KH, Cocchius JI, Connolly S, Cosgrove GR: Accuracy of EEG dipole source localization using implanted sources in the human brain. Clinical Neurophysiology 1999, 110: 106-114. 10.1016/S0013-4694(98)00106-0CrossRefPubMed
89.
go back to reference Merlet I: Dipole modeling of interictal and ictal EEG and MEG paroxysms. Epileptic Disord 2001, 3: 11-36. [(special issue)] Merlet I: Dipole modeling of interictal and ictal EEG and MEG paroxysms. Epileptic Disord 2001, 3: 11-36. [(special issue)]
90.
go back to reference Paetau R, Granstrom M, Blomstedt G, Jousmaki V, Korkman M: Magnetoencephalography in presurgical evaluation of children with Landau-Kleffner syndrome. Epilepsia 1999, 40: 326-335. 10.1111/j.1528-1157.1999.tb00713.xCrossRefPubMed Paetau R, Granstrom M, Blomstedt G, Jousmaki V, Korkman M: Magnetoencephalography in presurgical evaluation of children with Landau-Kleffner syndrome. Epilepsia 1999, 40: 326-335. 10.1111/j.1528-1157.1999.tb00713.xCrossRefPubMed
91.
go back to reference Roche-Labarbe N, Aarabi A, Kongolo G, Gondry-Jouet C, Dmpelmann M, Grebe R, Wallois F: High-resolution electroencephalography and source localization in neonates. Human Brain Mapping 2007, 40. Roche-Labarbe N, Aarabi A, Kongolo G, Gondry-Jouet C, Dmpelmann M, Grebe R, Wallois F: High-resolution electroencephalography and source localization in neonates. Human Brain Mapping 2007, 40.
92.
go back to reference John ER, Prichep LS, Valdes-Sosa P, Bosch J, Aubert E, Gugino LD, Kox W, Tom M, Di Michele F: Invariant reversible QEEG effects of anesthetics. Consciousness and Cognition 2001, 10: 165-183. 10.1006/ccog.2001.0507CrossRefPubMed John ER, Prichep LS, Valdes-Sosa P, Bosch J, Aubert E, Gugino LD, Kox W, Tom M, Di Michele F: Invariant reversible QEEG effects of anesthetics. Consciousness and Cognition 2001, 10: 165-183. 10.1006/ccog.2001.0507CrossRefPubMed
93.
go back to reference Lantz G, Grave de Peralta R, Gonzalez S, Michel CM: Noninvasive localization of electromagnetic epileptic activity. II. Demonstration of sublobar accuracy in patients with simultaneous surface and depth recordings. Brain Topography 2001, 14: 139-147. 10.1023/A:1012996930489CrossRefPubMed Lantz G, Grave de Peralta R, Gonzalez S, Michel CM: Noninvasive localization of electromagnetic epileptic activity. II. Demonstration of sublobar accuracy in patients with simultaneous surface and depth recordings. Brain Topography 2001, 14: 139-147. 10.1023/A:1012996930489CrossRefPubMed
94.
go back to reference Merlet I, Gotman J: Dipole modeling of scalp electroencephalogram epileptic discharges: correlation with intracerebral fields. Clinical Neurophysiolology 2001, 112: 414-430. 10.1016/S1388-2457(01)00458-8CrossRef Merlet I, Gotman J: Dipole modeling of scalp electroencephalogram epileptic discharges: correlation with intracerebral fields. Clinical Neurophysiolology 2001, 112: 414-430. 10.1016/S1388-2457(01)00458-8CrossRef
Metadata
Title
Review on solving the inverse problem in EEG source analysis
Authors
Roberta Grech
Tracey Cassar
Joseph Muscat
Kenneth P Camilleri
Simon G Fabri
Michalis Zervakis
Petros Xanthopoulos
Vangelis Sakkalis
Bart Vanrumste
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2008
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-5-25

Other articles of this Issue 1/2008

Journal of NeuroEngineering and Rehabilitation 1/2008 Go to the issue