Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2007

Open Access 01-12-2007 | Short report

The sensory feedback mechanisms enabling couples to walk synchronously: An initial investigation

Authors: Ari Z Zivotofsky, Jeffrey M Hausdorff

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2007

Login to get access

Abstract

The inattentive eye often will not notice it, but synchronization among human walking partners is quite common. In this first investigation of this phenomenon, we studied its frequency and the mechanisms that contribute to this form of "entrainment." Specifically, by modifying the available communication links between two walking partners, we isolated the feedback mechanisms that enable couples to synchronize their stepping pattern when they walk side-by-side. Although subjects were unaware of the research aims and were not specifically asked to walk in synchrony, we observed synchronized walking in almost 50% of the walking trials, among couples who do not usually walk together. The strongest in-phase synchrony occurred in the presence of tactile feedback (i.e., handholding), perhaps because of lower and upper extremity coupling driven in part by arm swing. Interestingly, however, even in the absence of visual or auditory communication, couples also frequently walked in synchrony while 180 degrees out-of-phase, likely using different feedback mechanisms. These findings may partially explain how patients with certain gait disorders and disturbed rhythm enhance their gait when they walk with a partner and suggest alternative interventions that might improve the stepping pattern. Further, this preliminary investigation highlights the relatively ubiquitous nature of an interesting phenomenon that has not previously been studied and suggests that further work is needed to better understand the mechanisms that entrain the gait of two walking partners and allows couples to walk in synchrony with minimal or no conscious effort.
Appendix
Available only for authorised users
Literature
1.
go back to reference Glass L: Synchronization and rhythmic processes in physiology. Nature 2001, 410: 277-284. 10.1038/35065745CrossRefPubMed Glass L: Synchronization and rhythmic processes in physiology. Nature 2001, 410: 277-284. 10.1038/35065745CrossRefPubMed
2.
go back to reference Stern K, McClintock MK: Regulation of ovulation by human pheromones. Nature 1998, 392: 177-179. 10.1038/32408CrossRefPubMed Stern K, McClintock MK: Regulation of ovulation by human pheromones. Nature 1998, 392: 177-179. 10.1038/32408CrossRefPubMed
3.
go back to reference Camhi J, Sumbre G, Wendler G: Wing-beat coupling between flying locust pairs: preferred phase and lift enhancement. J Exp Biol 1995, 198: 1051-1063.PubMed Camhi J, Sumbre G, Wendler G: Wing-beat coupling between flying locust pairs: preferred phase and lift enhancement. J Exp Biol 1995, 198: 1051-1063.PubMed
4.
go back to reference Hadar-Frumer M, Giladi N, Hausdorff JM: Idiopathic "cautious" gait disorder of the elderly: Effects of reducing fear of failing. Movement Disorders 2004, 19: S327-S327. 10.1002/mds.20179CrossRef Hadar-Frumer M, Giladi N, Hausdorff JM: Idiopathic "cautious" gait disorder of the elderly: Effects of reducing fear of failing. Movement Disorders 2004, 19: S327-S327. 10.1002/mds.20179CrossRef
5.
go back to reference Morris ME, Iansek R, Matyas TA, Summers JJ: Stride length regulation in Parkinson's disease. Normalization strategies and underlying mechanisms. Brain 1996, 119 ( Pt 2): 551-568. 10.1093/brain/119.2.551CrossRef Morris ME, Iansek R, Matyas TA, Summers JJ: Stride length regulation in Parkinson's disease. Normalization strategies and underlying mechanisms. Brain 1996, 119 ( Pt 2): 551-568. 10.1093/brain/119.2.551CrossRef
6.
go back to reference Rubenstein TC, Giladi N, Hausdorff JM: The power of cueing to circumvent dopamine deficits: A review of physical therapy treatment of gait disturbances in Parkinson's disease. Mov Disord 2002, 17: 1148-1160. 10.1002/mds.10259CrossRef Rubenstein TC, Giladi N, Hausdorff JM: The power of cueing to circumvent dopamine deficits: A review of physical therapy treatment of gait disturbances in Parkinson's disease. Mov Disord 2002, 17: 1148-1160. 10.1002/mds.10259CrossRef
7.
go back to reference Dickstein R, Shupert CL, Horak FB: Fingertip touch improves postural stability in patients with peripheral neuropathy. Gait Posture 2001, 14: 238-247. 10.1016/S0966-6362(01)00161-8CrossRefPubMed Dickstein R, Shupert CL, Horak FB: Fingertip touch improves postural stability in patients with peripheral neuropathy. Gait Posture 2001, 14: 238-247. 10.1016/S0966-6362(01)00161-8CrossRefPubMed
8.
go back to reference Dickstein R, Peterka RJ, Horak FB: Effects of light fingertip touch on postural responses in subjects with diabetic neuropathy. J Neurol Neurosurg Psychiatry 2003, 74: 620-626. 10.1136/jnnp.74.5.620PubMedCentralCrossRefPubMed Dickstein R, Peterka RJ, Horak FB: Effects of light fingertip touch on postural responses in subjects with diabetic neuropathy. J Neurol Neurosurg Psychiatry 2003, 74: 620-626. 10.1136/jnnp.74.5.620PubMedCentralCrossRefPubMed
9.
go back to reference Lackner JR, Rabin E, DiZio P: Stabilization of posture by precision touch of the index finger with rigid and flexible filaments. Exp Brain Res 2001, 139: 454-464. 10.1007/s002210100775CrossRefPubMed Lackner JR, Rabin E, DiZio P: Stabilization of posture by precision touch of the index finger with rigid and flexible filaments. Exp Brain Res 2001, 139: 454-464. 10.1007/s002210100775CrossRefPubMed
10.
go back to reference Kubo M, Wagenaar RC, Saltzman E, Holt KG: Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking. Biol Cybern 2004, 91: 91-98. 10.1007/s00422-004-0503-5CrossRefPubMed Kubo M, Wagenaar RC, Saltzman E, Holt KG: Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking. Biol Cybern 2004, 91: 91-98. 10.1007/s00422-004-0503-5CrossRefPubMed
11.
go back to reference Wagenaar RC, van Emmerik RE: Resonant frequencies of arms and legs identify different walking patterns. J Biomech 2000, 33: 853-861. 10.1016/S0021-9290(00)00020-8CrossRefPubMed Wagenaar RC, van Emmerik RE: Resonant frequencies of arms and legs identify different walking patterns. J Biomech 2000, 33: 853-861. 10.1016/S0021-9290(00)00020-8CrossRefPubMed
12.
go back to reference Ducourant T, Vieilledent S, Kerlirzin Y, Berthoz A: Timing and distance characteristics of interpersonal coordination during locomotion. Neurosci Lett 2005, 389: 6-11. 10.1016/j.neulet.2005.06.052CrossRefPubMed Ducourant T, Vieilledent S, Kerlirzin Y, Berthoz A: Timing and distance characteristics of interpersonal coordination during locomotion. Neurosci Lett 2005, 389: 6-11. 10.1016/j.neulet.2005.06.052CrossRefPubMed
Metadata
Title
The sensory feedback mechanisms enabling couples to walk synchronously: An initial investigation
Authors
Ari Z Zivotofsky
Jeffrey M Hausdorff
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2007
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-4-28

Other articles of this Issue 1/2007

Journal of NeuroEngineering and Rehabilitation 1/2007 Go to the issue