Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2014

Open Access 01-12-2014 | Research

System training and assessment in simultaneous proportional myoelectric prosthesis control

Authors: Anders L Fougner, Øyvind Stavdahl, Peter J Kyberd

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2014

Login to get access

Abstract

Background

Pattern recognition control of prosthetic hands take inputs from one or more myoelectric sensors and controls one or more degrees of freedom. However, most systems created allow only sequential control of one motion class at a time. Additionally, only recently have researchers demonstrated proportional myoelectric control in such systems, an option that is believed to make fine control easier for the user. Recent developments suggest improved reliability if the user follows a so-called prosthesis guided training (PGT) scheme.

Methods

In this study, a system for simultaneous proportional myoelectric control has been developed for a hand prosthesis with two motor functions (hand open/close, and wrist pro-/supination). The prosthesis has been used with a prosthesis socket equivalent designed for normally-limbed subjects. An extended version of PGT was developed for use with proportional control. The control system’s performance was tested for two subjects in the Clothespin Relocation Task and the Southampton Hand Assessment Procedure (SHAP). Simultaneous proportional control was compared with three other control strategies implemented on the same prosthesis: mutex proportional control (the same system but with simultaneous control disabled), mutex on-off control, and a more traditional, sequential proportional control system with co-contractions for state switching.

Results

The practical tests indicate that the simultaneous proportional control strategy and the two mutex-based pattern recognition strategies performed equally well, and superiorly to the more traditional sequential strategy according to the chosen outcome measures.

Conclusions

This is the first simultaneous proportional myoelectric control system demonstrated on a prosthesis affixed to the forearm of a subject. The study illustrates that PGT is a promising system training method for proportional control. Due to the limited number of subjects in this study, no definite conclusions can be drawn.
Literature
2.
go back to reference Lovely DF: Signals and signal processing for myoelectric control. In Powered upper limb prostheses: Control, implementation and clinical application. Edited by: Muzumdar A. Berlin Heidelberg, Germany: Springer-Verlag; 2004:35-53.CrossRef Lovely DF: Signals and signal processing for myoelectric control. In Powered upper limb prostheses: Control, implementation and clinical application. Edited by: Muzumdar A. Berlin Heidelberg, Germany: Springer-Verlag; 2004:35-53.CrossRef
4.
go back to reference Jiang N, Muceli S, Graimann B, Farina D: Effect of arm position on the prediction of kinematics from EMG in amputees. Med Biol Eng Comput 2013, 51: 143-151. [doi:10.1007/s11517-012-0979-4] 10.1007/s11517-012-0979-4CrossRefPubMedPubMedCentral Jiang N, Muceli S, Graimann B, Farina D: Effect of arm position on the prediction of kinematics from EMG in amputees. Med Biol Eng Comput 2013, 51: 143-151. [doi:10.1007/s11517-012-0979-4] 10.1007/s11517-012-0979-4CrossRefPubMedPubMedCentral
5.
go back to reference Muceli S, Farina D: Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom. IEEE Trans Neural Syst Rehabil Eng 2012,20(3):371-378. [doi:10.1109/TNSRE.2011.2178039]CrossRefPubMed Muceli S, Farina D: Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom. IEEE Trans Neural Syst Rehabil Eng 2012,20(3):371-378. [doi:10.1109/TNSRE.2011.2178039]CrossRefPubMed
7.
go back to reference Ameri A, Englehart KB, Parker PA: A comparison between force and position control strategies in myoelectric prostheses. In Proc. of the IEEE Eng. Med. Biol. Soc. Conf. (EMBC). IEEE EMBS: IEEE; 2012:1342-1345. Ameri A, Englehart KB, Parker PA: A comparison between force and position control strategies in myoelectric prostheses. In Proc. of the IEEE Eng. Med. Biol. Soc. Conf. (EMBC). IEEE EMBS: IEEE; 2012:1342-1345.
8.
go back to reference Pulliam CL, Lambrecht JM, Kirsch RF: User-in-the-loop continuous and proportional control of a virtual prosthesis in a posture matching task. In Proc. of the IEEE Eng. Med. Biol. Soc. Conf(EMBC), Volume 34. IEEE: IEEE EMBS; 2012:3557-3559. Pulliam CL, Lambrecht JM, Kirsch RF: User-in-the-loop continuous and proportional control of a virtual prosthesis in a posture matching task. In Proc. of the IEEE Eng. Med. Biol. Soc. Conf(EMBC), Volume 34. IEEE: IEEE EMBS; 2012:3557-3559.
10.
go back to reference Hargrove L, Losier YG, Lock B, Englehart KB, Hudgins B: A real-time pattern recognition based myoelectric control usability study implemented in a virtual environment. In Proc. of the IEEE Eng. Med. Biol. Soc. Conf. (EMBC). IEEE EMBS: IEEE; 2007:4842-4845. Hargrove L, Losier YG, Lock B, Englehart KB, Hudgins B: A real-time pattern recognition based myoelectric control usability study implemented in a virtual environment. In Proc. of the IEEE Eng. Med. Biol. Soc. Conf. (EMBC). IEEE EMBS: IEEE; 2007:4842-4845.
12.
go back to reference Scheme E, Fougner A, Chan ADC, Englehart KB, Stavdahl Ø: Examining the adverse effects of limb position on pattern recognition based myoelectric control. In Proc. of the IEEE Eng. MedBiol. Soc. Conf. (EMBC), Volume 32. IEEE EMBS: IEEE; 2010:6337-6340. Scheme E, Fougner A, Chan ADC, Englehart KB, Stavdahl Ø: Examining the adverse effects of limb position on pattern recognition based myoelectric control. In Proc. of the IEEE Eng. MedBiol. Soc. Conf. (EMBC), Volume 32. IEEE EMBS: IEEE; 2010:6337-6340.
14.
go back to reference Scheme E, Biron K, Englehart KB: Improving myoelectric pattern recognition positional robustness using advanced training protocols. In Proc. of the IEEE Eng. Med. Biol. Soc. Conf(EMBC), Volume 33. IEEE EMBS: IEEE; 2011:4828-4831. Scheme E, Biron K, Englehart KB: Improving myoelectric pattern recognition positional robustness using advanced training protocols. In Proc. of the IEEE Eng. Med. Biol. Soc. Conf(EMBC), Volume 33. IEEE EMBS: IEEE; 2011:4828-4831.
15.
go back to reference Hill W, Hermansson LN, Kyberd PJ, Swanson S, Hubbard S, Stavdahl Ø: Upper limb prosthetic outcome measures (ULPOM): a working group and their findings. J Prosthet Orthot 2009, 9: 69-82.CrossRef Hill W, Hermansson LN, Kyberd PJ, Swanson S, Hubbard S, Stavdahl Ø: Upper limb prosthetic outcome measures (ULPOM): a working group and their findings. J Prosthet Orthot 2009, 9: 69-82.CrossRef
22.
go back to reference Bouwsema H, van der Sluis C, Bongers R: Learning to control opening and closing a myoelectric hand. Arch Phys Med Rehab 2010,91(9):1442-1446. 10.1016/j.apmr.2010.06.025CrossRef Bouwsema H, van der Sluis C, Bongers R: Learning to control opening and closing a myoelectric hand. Arch Phys Med Rehab 2010,91(9):1442-1446. 10.1016/j.apmr.2010.06.025CrossRef
23.
go back to reference Simon A, Hargrove L, Lock B, Kuiken T: A decision-based velocity ramp for minimizing the effect of misclassifications during real-time pattern recognition control. IEEE Trans Biomed Eng 2011,58(8):2360-2368.CrossRef Simon A, Hargrove L, Lock B, Kuiken T: A decision-based velocity ramp for minimizing the effect of misclassifications during real-time pattern recognition control. IEEE Trans Biomed Eng 2011,58(8):2360-2368.CrossRef
24.
go back to reference Farrell T, Weir R: The optimal controller delay for myoelectric prostheses. IEEE Trans Neural Syst Rehabil Eng 2007, 15: 111-118.CrossRefPubMed Farrell T, Weir R: The optimal controller delay for myoelectric prostheses. IEEE Trans Neural Syst Rehabil Eng 2007, 15: 111-118.CrossRefPubMed
25.
go back to reference Hudgins B, Parker PA, Scott RN: A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 1993, 40: 82-94. 10.1109/10.204774CrossRefPubMed Hudgins B, Parker PA, Scott RN: A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 1993, 40: 82-94. 10.1109/10.204774CrossRefPubMed
26.
go back to reference Isidori A, Nicolò F: Uno Strumento Per la Rivelazione e la Misura di Alcuni Parametri dei Potenziali Mioelettrici [in Italian]. Rapporto interno no. II, Electrotechnical Institute, Sapienza Università, di Roma 1966. Isidori A, Nicolò F: Uno Strumento Per la Rivelazione e la Misura di Alcuni Parametri dei Potenziali Mioelettrici [in Italian]. Rapporto interno no. II, Electrotechnical Institute, Sapienza Università, di Roma 1966.
27.
go back to reference Isidori A, Monteleone M, Nicolò F: Hand prosthesis with continuous myoelectric control [in English]. Automazione e Strumentazione 1967,15(3):98-105. Isidori A, Monteleone M, Nicolò F: Hand prosthesis with continuous myoelectric control [in English]. Automazione e Strumentazione 1967,15(3):98-105.
28.
go back to reference Loomis A: Figure Drawing for All It’s Worth. Irvine, CA, US: Walter Foster; 1943. Loomis A: Figure Drawing for All It’s Worth. Irvine, CA, US: Walter Foster; 1943.
29.
go back to reference Miller L, Lipschutz R, Stubblefield K, Lock B, Huang H, Williams T, Weir R, Kuiken T: Control of a six degree of freedom prosthetic arm after targeted muscle reinnervation surgery. Arch Phys Med Rehabil 2008,89(11):2057-2065. 10.1016/j.apmr.2008.05.016CrossRefPubMedPubMedCentral Miller L, Lipschutz R, Stubblefield K, Lock B, Huang H, Williams T, Weir R, Kuiken T: Control of a six degree of freedom prosthetic arm after targeted muscle reinnervation surgery. Arch Phys Med Rehabil 2008,89(11):2057-2065. 10.1016/j.apmr.2008.05.016CrossRefPubMedPubMedCentral
30.
go back to reference O’Shaughnessy K, Dumanian G, Lipschutz R, Miller L, Stubblefield K, Kuiken T: Targeted reinnervation to improve prosthesis control in transhumeral amputees: A report of three cases. J Bone Joint Surg 2008,90(2):393-400.CrossRefPubMed O’Shaughnessy K, Dumanian G, Lipschutz R, Miller L, Stubblefield K, Kuiken T: Targeted reinnervation to improve prosthesis control in transhumeral amputees: A report of three cases. J Bone Joint Surg 2008,90(2):393-400.CrossRefPubMed
31.
go back to reference Simon A, Lock B, Stubblefield K: Patient training for functional use of pattern recognition–controlled prostheses. J Prosthet Orthot 2012,24(2):56-64. 10.1097/JPO.0b013e3182515437CrossRefPubMedPubMedCentral Simon A, Lock B, Stubblefield K: Patient training for functional use of pattern recognition–controlled prostheses. J Prosthet Orthot 2012,24(2):56-64. 10.1097/JPO.0b013e3182515437CrossRefPubMedPubMedCentral
32.
go back to reference Light C, Chappell P, Kyberd P: Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: normative data, reliability, and validity. Arch Phys Med Rehabil 2002, 83: 776-783. 10.1053/apmr.2002.32737CrossRefPubMed Light C, Chappell P, Kyberd P: Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: normative data, reliability, and validity. Arch Phys Med Rehabil 2002, 83: 776-783. 10.1053/apmr.2002.32737CrossRefPubMed
33.
go back to reference Kyberd P, Murgia A, Gasson M, Tjerks T, Metcalf C, Chappell P, Warwick K, Lawson S, Barnhill T: Case studies to demonstrate the range of applications of the Southampton Hand Assessment Procedure. 2009,72(5):212-218. Kyberd P, Murgia A, Gasson M, Tjerks T, Metcalf C, Chappell P, Warwick K, Lawson S, Barnhill T: Case studies to demonstrate the range of applications of the Southampton Hand Assessment Procedure. 2009,72(5):212-218.
35.
go back to reference Atkins DJ, Heard DC, Donovan WH: Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J Prosthet Orthot 1996, 8: 2-11. 10.1097/00008526-199600810-00003CrossRef Atkins DJ, Heard DC, Donovan WH: Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J Prosthet Orthot 1996, 8: 2-11. 10.1097/00008526-199600810-00003CrossRef
36.
go back to reference Hill W, Hermansson LN, Kyberd PJ, Swanson S, Hubbard S, Stavdahl Ø: Functional Outcomes in the WHO-ICF Model: establishment of the upper limb prosthetic outcome measures group. J Prosthet Orthot 2009,21(2):115-119. 10.1097/JPO.0b013e3181a1d2dcCrossRef Hill W, Hermansson LN, Kyberd PJ, Swanson S, Hubbard S, Stavdahl Ø: Functional Outcomes in the WHO-ICF Model: establishment of the upper limb prosthetic outcome measures group. J Prosthet Orthot 2009,21(2):115-119. 10.1097/JPO.0b013e3181a1d2dcCrossRef
37.
go back to reference Bongers RM, Bouwsema H, van der Sluis CK: Changes in prehension, force control, and gaze when learning to use a myoelectric simulator with a MyoHand VariPlus Speed. In World Congress of the Int. Soc. of Prosthetics and Orthotics (ISPO). Leipzig, Germany; 2010. Bongers RM, Bouwsema H, van der Sluis CK: Changes in prehension, force control, and gaze when learning to use a myoelectric simulator with a MyoHand VariPlus Speed. In World Congress of the Int. Soc. of Prosthetics and Orthotics (ISPO). Leipzig, Germany; 2010.
38.
go back to reference Bouwsema H, van der Sluis CK, Bongers RM: Trent International Prosthetics Symposium (TIPS). Loughborough, Trent, UK; 2012. Bouwsema H, van der Sluis CK, Bongers RM: Trent International Prosthetics Symposium (TIPS). Loughborough, Trent, UK; 2012.
Metadata
Title
System training and assessment in simultaneous proportional myoelectric prosthesis control
Authors
Anders L Fougner
Øyvind Stavdahl
Peter J Kyberd
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2014
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-11-75

Other articles of this Issue 1/2014

Journal of NeuroEngineering and Rehabilitation 1/2014 Go to the issue