Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2014

Open Access 01-12-2014 | Research

A biomechanical cause of low power production during FES cycling of subjects with SCI

Authors: Johann Szecsi, Andreas Straube, Che Fornusek

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2014

Login to get access

Abstract

Background

The goal of Functional Electrical Stimulation (FES) cycling is to provide the health benefits of exercise to persons with paralysis. To achieve the greatest health advantages, patients should produce the highest possible mechanical power. However, the mechanical power output (PO) produced during FES cycling is very low. Unfavorable biomechanics is one of the important factors reducing PO. The purpose of this study was to investigate the primary joints and muscles responsible for power generation and the role of antagonistic co-contraction in FES cycling.

Methods

Sixteen subjects with complete spinal cord injury (SCI) pedaled a stationary recumbent FES tricycle at 60 rpm and a workload of 15 W per leg, while pedal forces and crank angle were recorded. The joint muscle moments, power and work were calculated using inverse dynamics equations.

Results

Two characteristic patterns were found; in 12 subjects most work was generated by the knee extensors in the propulsion phase (83% of total work), while in 4 subjects most work was shared between by the knee extensors (42%) and flexors (44%), respectively during propulsive and recovery phases. Hip extensors produced only low net work (12 & 7%). For both patterns, extra concentric work was necessary to overcome considerable eccentric work (-82 & -96%).

Conclusions

The primary power sources were the knee extensors of the quadriceps and the knee flexors of the hamstrings. The antagonistic activity was generally low in subjects with SCI because of the weakness of the hamstrings (compared to quadriceps) and the superficial and insufficient hamstring mass activation with FES.
Appendix
Available only for authorised users
Literature
1.
go back to reference Glaser RM: Functional neuromuscular stimulation: exercise conditioning of spinal cord injured patients. Int J Sports Med 1994, 15: 142-148.CrossRefPubMed Glaser RM: Functional neuromuscular stimulation: exercise conditioning of spinal cord injured patients. Int J Sports Med 1994, 15: 142-148.CrossRefPubMed
2.
go back to reference Gater DR Jr, Dolbow D, Tsui B, Gorgey AS: Functional electrical stimulation therapies after spinal cord injury. NeuroRehabilitation 2011, 28: 231-248.PubMed Gater DR Jr, Dolbow D, Tsui B, Gorgey AS: Functional electrical stimulation therapies after spinal cord injury. NeuroRehabilitation 2011, 28: 231-248.PubMed
3.
go back to reference Davis GM, Hamzaid NA, Fornusek C: Cardiorespiratory, metabolic, and biomechanical responses during functional electrical stimulation leg exercise: health and fitness benefits. Artif Organs 2008, 32: 625-629.CrossRefPubMed Davis GM, Hamzaid NA, Fornusek C: Cardiorespiratory, metabolic, and biomechanical responses during functional electrical stimulation leg exercise: health and fitness benefits. Artif Organs 2008, 32: 625-629.CrossRefPubMed
4.
go back to reference Hamzaid NA, Davis GM: Health and fitness benefits of functional electrical stimulation-evoked leg exercise for spinal cord-injured individuals: a position review. Top Spinal Cord Inj Rehabil 2009, 14: 88-121.CrossRef Hamzaid NA, Davis GM: Health and fitness benefits of functional electrical stimulation-evoked leg exercise for spinal cord-injured individuals: a position review. Top Spinal Cord Inj Rehabil 2009, 14: 88-121.CrossRef
5.
go back to reference Dolbow DR, Gorgey AS, Gater DR, Moore JR: Body composition changes after 12 months of FES cycling: case report of a 60-year-old female with paraplegia. Spinal Cord 2014,52(Suppl 1):S3-S4.CrossRefPubMed Dolbow DR, Gorgey AS, Gater DR, Moore JR: Body composition changes after 12 months of FES cycling: case report of a 60-year-old female with paraplegia. Spinal Cord 2014,52(Suppl 1):S3-S4.CrossRefPubMed
6.
go back to reference Skold C, Lonn L, Harms-Ringdahl K, Hultling C, Levi R, Nash M, Seiger A: Effects of functional electrical stimulation training for six months on body composition and spasticity in motor complete tetraplegic spinal cord-injured individuals. J Rehabil Med 2002, 34: 25-32.CrossRefPubMed Skold C, Lonn L, Harms-Ringdahl K, Hultling C, Levi R, Nash M, Seiger A: Effects of functional electrical stimulation training for six months on body composition and spasticity in motor complete tetraplegic spinal cord-injured individuals. J Rehabil Med 2002, 34: 25-32.CrossRefPubMed
7.
go back to reference Dolbow DR, Gorgey AS, Daniels JA, Adler RA, Moore JR, Gater DR Jr: The effects of spinal cord injury and exercise on bone mass: a literature review. NeuroRehabilitation 2011, 29: 261-269.PubMed Dolbow DR, Gorgey AS, Daniels JA, Adler RA, Moore JR, Gater DR Jr: The effects of spinal cord injury and exercise on bone mass: a literature review. NeuroRehabilitation 2011, 29: 261-269.PubMed
8.
go back to reference Dolbow DR, Gorgey AS, Ketchum JM, Gater DR: Home-based functional electrical stimulation cycling enhances quality of life in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil 2013, 19: 324-329.CrossRefPubMedPubMedCentral Dolbow DR, Gorgey AS, Ketchum JM, Gater DR: Home-based functional electrical stimulation cycling enhances quality of life in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil 2013, 19: 324-329.CrossRefPubMedPubMedCentral
9.
go back to reference Newham DJ, Donaldson NN: FES cycling. Acta Neurochir Suppl 2007, 97: 395-402.PubMed Newham DJ, Donaldson NN: FES cycling. Acta Neurochir Suppl 2007, 97: 395-402.PubMed
10.
go back to reference Perkins TA, De NDN, Hatcher NA, Swain ID, Wood DE: Control of leg-powered paraplegic cycling using stimulation of the lumbo-sacral anterior spinal nerve roots. IEEE Trans Neural Syst Rehabil Eng 2002, 10: 158-164.CrossRefPubMed Perkins TA, De NDN, Hatcher NA, Swain ID, Wood DE: Control of leg-powered paraplegic cycling using stimulation of the lumbo-sacral anterior spinal nerve roots. IEEE Trans Neural Syst Rehabil Eng 2002, 10: 158-164.CrossRefPubMed
11.
go back to reference Duffell LD, Donaldson NN, Newham DJ: Power output during functional electrically stimulated cycling in trained spinal cord injured people. Neuromodulation 2010, 13: 50-57.CrossRefPubMed Duffell LD, Donaldson NN, Newham DJ: Power output during functional electrically stimulated cycling in trained spinal cord injured people. Neuromodulation 2010, 13: 50-57.CrossRefPubMed
12.
go back to reference Duffell LD, Donaldson NN, Perkins TA, Rushton DN, Hunt KJ, Kakebeeke TH, Newham DJ: Long-term intensive electrically stimulated cycling by spinal cord-injured people: effect on muscle properties and their relation to power output. Muscle Nerve 2008, 38: 1304-1311.CrossRefPubMed Duffell LD, Donaldson NN, Perkins TA, Rushton DN, Hunt KJ, Kakebeeke TH, Newham DJ: Long-term intensive electrically stimulated cycling by spinal cord-injured people: effect on muscle properties and their relation to power output. Muscle Nerve 2008, 38: 1304-1311.CrossRefPubMed
13.
go back to reference Duffell LD, Donaldson NN, Newham DJ: Why is the metabolic efficiency of FES cycling low? IEEE Trans Neural Syst Rehabil Eng 2009, 17: 263-269.CrossRefPubMed Duffell LD, Donaldson NN, Newham DJ: Why is the metabolic efficiency of FES cycling low? IEEE Trans Neural Syst Rehabil Eng 2009, 17: 263-269.CrossRefPubMed
14.
go back to reference Duffell LD, Rowlerson AM, Donaldson NN, Harridge SD, Newham DJ: Effects of endurance and strength-directed electrical stimulation training on the performance and histological properties of paralyzed human muscle: a pilot study. Muscle Nerve 2010, 42: 756-763.CrossRefPubMed Duffell LD, Rowlerson AM, Donaldson NN, Harridge SD, Newham DJ: Effects of endurance and strength-directed electrical stimulation training on the performance and histological properties of paralyzed human muscle: a pilot study. Muscle Nerve 2010, 42: 756-763.CrossRefPubMed
15.
go back to reference Szecsi J, Krause P, Krafczyk S, Brandt T, Straube A: Functional output improvement in FES cycling by means of forced smooth pedaling. Med Sci Sports Exerc 2007, 39: 764-780.CrossRefPubMed Szecsi J, Krause P, Krafczyk S, Brandt T, Straube A: Functional output improvement in FES cycling by means of forced smooth pedaling. Med Sci Sports Exerc 2007, 39: 764-780.CrossRefPubMed
16.
go back to reference Gorgey AS, Black CD, Elder CP, Dudley GA: Effects of electrical stimulation parameters on fatigue in skeletal muscle. J Orthop Sports Phys Ther 2009, 39: 684-692.CrossRefPubMed Gorgey AS, Black CD, Elder CP, Dudley GA: Effects of electrical stimulation parameters on fatigue in skeletal muscle. J Orthop Sports Phys Ther 2009, 39: 684-692.CrossRefPubMed
17.
go back to reference Theisen D, Fornusek C, Raymond J, Davis GM: External power output changes during prolonged cycling with electrical stimulation. J Rehabil Med 2002, 34: 171-175.CrossRefPubMed Theisen D, Fornusek C, Raymond J, Davis GM: External power output changes during prolonged cycling with electrical stimulation. J Rehabil Med 2002, 34: 171-175.CrossRefPubMed
18.
go back to reference Donaldson NN, Duffell LD, Newham DJ: The metabolic efficiency of FES exercise. In 1st Annual Conference of the UK and Republic of Ireland Chapter of the International Functional Electric Stimulation Society; April 15th-16th, 2010. UK: University of Salford; 2010:56. Donaldson NN, Duffell LD, Newham DJ: The metabolic efficiency of FES exercise. In 1st Annual Conference of the UK and Republic of Ireland Chapter of the International Functional Electric Stimulation Society; April 15th-16th, 2010. UK: University of Salford; 2010:56.
19.
go back to reference Haapala SA, Faghri PD, Adams DJ: Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue. J Neuroeng Rehabil 2008, 5: 14.CrossRefPubMedPubMedCentral Haapala SA, Faghri PD, Adams DJ: Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue. J Neuroeng Rehabil 2008, 5: 14.CrossRefPubMedPubMedCentral
20.
go back to reference Reiser RF II, Peterson ML, Broker JP: Influence of hip orientation on Wingate power output and cycling technique. J Strength Cond Res 2002, 16: 556-560.PubMed Reiser RF II, Peterson ML, Broker JP: Influence of hip orientation on Wingate power output and cycling technique. J Strength Cond Res 2002, 16: 556-560.PubMed
22.
go back to reference Franco JC, Perell KL, Gregor RJ, Scremin AM: Knee kinetics during functional electrical stimulation induced cycling in subjects with spinal cord injury: a preliminary study. J Rehabil Res Dev 1999, 36: 207-216.PubMed Franco JC, Perell KL, Gregor RJ, Scremin AM: Knee kinetics during functional electrical stimulation induced cycling in subjects with spinal cord injury: a preliminary study. J Rehabil Res Dev 1999, 36: 207-216.PubMed
23.
go back to reference Fornusek C, Davis GM, Sinclair PJ, Milthorpe B: Development of an isokinetic functional electrical stimulation cycle ergometer. Neuromodulation 2004, 7: 56-64.CrossRefPubMed Fornusek C, Davis GM, Sinclair PJ, Milthorpe B: Development of an isokinetic functional electrical stimulation cycle ergometer. Neuromodulation 2004, 7: 56-64.CrossRefPubMed
24.
go back to reference Crameri RM, Cooper P, Sinclair PJ, Bryant G, Weston A: Effect of load during electrical stimulation training in spinal cord injury. Muscle Nerve 2004, 29: 104-111.CrossRefPubMed Crameri RM, Cooper P, Sinclair PJ, Bryant G, Weston A: Effect of load during electrical stimulation training in spinal cord injury. Muscle Nerve 2004, 29: 104-111.CrossRefPubMed
25.
go back to reference Chen JJ, Yu NY, Huang DG, Ann BT, Chang GC: Applying fuzzy logic to control cycling movement induced by functional electrical stimulation. IEEE Trans Rehabil Eng 1997, 5: 158-169.CrossRefPubMed Chen JJ, Yu NY, Huang DG, Ann BT, Chang GC: Applying fuzzy logic to control cycling movement induced by functional electrical stimulation. IEEE Trans Rehabil Eng 1997, 5: 158-169.CrossRefPubMed
26.
go back to reference Janssen TW, Pringle DD: Effects of modified electrical stimulation-induced leg cycle ergometer training for individuals with spinal cord injury. J Rehabil Res Dev 2008, 45: 819-830.CrossRefPubMed Janssen TW, Pringle DD: Effects of modified electrical stimulation-induced leg cycle ergometer training for individuals with spinal cord injury. J Rehabil Res Dev 2008, 45: 819-830.CrossRefPubMed
27.
go back to reference Gerrits HL, De Haan A, Sargeant AJ, Dallmeijer A, Hopman MT: Altered contractile properties of the quadriceps muscle in people with spinal cord injury following functional electrical stimulated cycle training. Spinal Cord 2000, 38: 214-223.CrossRefPubMed Gerrits HL, De Haan A, Sargeant AJ, Dallmeijer A, Hopman MT: Altered contractile properties of the quadriceps muscle in people with spinal cord injury following functional electrical stimulated cycle training. Spinal Cord 2000, 38: 214-223.CrossRefPubMed
28.
go back to reference Benton LA, Baker LL, Bowman BR, Waters RL: Functional Electrical Stimulation - A Practical Guide. 2nd edition. Downey, California 90242: Rancho Los Amigos Rehabilitation Engineering Center; 1981. Benton LA, Baker LL, Bowman BR, Waters RL: Functional Electrical Stimulation - A Practical Guide. 2nd edition. Downey, California 90242: Rancho Los Amigos Rehabilitation Engineering Center; 1981.
29.
go back to reference Perkins TA, Donaldson NN, Fitzwater R, Phillips GF, Wood DE: Leg powered paraplegic cycling system using surface functional electrical stimulation. IFESS Proceedings of the 7th Vienna International Workshop on Functional Electrical Stimulation; 2001, Sep. 12–15; Vienna, Austria 2001, 36-39. Perkins TA, Donaldson NN, Fitzwater R, Phillips GF, Wood DE: Leg powered paraplegic cycling system using surface functional electrical stimulation. IFESS Proceedings of the 7th Vienna International Workshop on Functional Electrical Stimulation; 2001, Sep. 12–15; Vienna, Austria 2001, 36-39.
30.
go back to reference Fornusek C, Sinclair PJ, Davis GM: The force-velocity relationship of paralyzed quadriceps muscles during functional electrical stimulation cycling. Neuromodulation 2007, 10: 68-75.CrossRefPubMed Fornusek C, Sinclair PJ, Davis GM: The force-velocity relationship of paralyzed quadriceps muscles during functional electrical stimulation cycling. Neuromodulation 2007, 10: 68-75.CrossRefPubMed
31.
go back to reference Fregly B PhD Thesis. In The Siginificance of Crank Load Dynamics to Steady-State Pedaling Biomechanics: An Experimental and Computer Modeling Study. Stanford University; 1993. Fregly B PhD Thesis. In The Siginificance of Crank Load Dynamics to Steady-State Pedaling Biomechanics: An Experimental and Computer Modeling Study. Stanford University; 1993.
32.
go back to reference Van Ingen Schenau GJ, Van Woensel WW, Boots PJ, Snackers RW, De Groot G: Determination and interpretation of mechanical power in human movement: application to ergometer cycling. Eur J Appl Physiol Occup Physiol 1990, 61: 11-19.CrossRefPubMed Van Ingen Schenau GJ, Van Woensel WW, Boots PJ, Snackers RW, De Groot G: Determination and interpretation of mechanical power in human movement: application to ergometer cycling. Eur J Appl Physiol Occup Physiol 1990, 61: 11-19.CrossRefPubMed
33.
go back to reference Winter DA: Biomechanics and Motor Control of Human Movement. 2nd edition. Waterloo: John Wiley & Sons, Inc; 1990. Winter DA: Biomechanics and Motor Control of Human Movement. 2nd edition. Waterloo: John Wiley & Sons, Inc; 1990.
34.
go back to reference Zatsiorsky V, Seluyanov V: The mass and inertial characteristics of main segments of the human body. In Biomechanics VIII-B. Edited by: Matsui H, Kobayashi K. Champaign, IL: Human Kinetics; 1983:1152-1159. Zatsiorsky V, Seluyanov V: The mass and inertial characteristics of main segments of the human body. In Biomechanics VIII-B. Edited by: Matsui H, Kobayashi K. Champaign, IL: Human Kinetics; 1983:1152-1159.
35.
go back to reference Edrich T, Riener R, Quintern J: Analysis of passive elastic joint moments in paraplegics. IEEE Trans Biomed Eng 2000, 47: 1058-1065.CrossRefPubMed Edrich T, Riener R, Quintern J: Analysis of passive elastic joint moments in paraplegics. IEEE Trans Biomed Eng 2000, 47: 1058-1065.CrossRefPubMed
36.
go back to reference Stein RB, Momose K, Bobet J: Biomechanics of human quadriceps muscles during electrical stimulation. J Biomech 1999, 32: 347-357.CrossRefPubMed Stein RB, Momose K, Bobet J: Biomechanics of human quadriceps muscles during electrical stimulation. J Biomech 1999, 32: 347-357.CrossRefPubMed
37.
go back to reference Van Ingen Schenau GJ, Cavanagh PR: Power equations in endurance sports. J Biomech 1990, 23: 865-881.CrossRefPubMed Van Ingen Schenau GJ, Cavanagh PR: Power equations in endurance sports. J Biomech 1990, 23: 865-881.CrossRefPubMed
38.
go back to reference Sinclair PJ PhD Thesis. In Forward Dynamic Modelling of Cycling for People with Spinal Cord Injury. The University of Sydney, School of Exercise and Sport Science, Faculty of Health Sciences; 2001. Sinclair PJ PhD Thesis. In Forward Dynamic Modelling of Cycling for People with Spinal Cord Injury. The University of Sydney, School of Exercise and Sport Science, Faculty of Health Sciences; 2001.
39.
go back to reference Trumbower RD, Faghri PD: Improving pedal power during semireclined leg cycling. IEEE Eng Med Biol Mag 2004, 23: 62-71.CrossRefPubMed Trumbower RD, Faghri PD: Improving pedal power during semireclined leg cycling. IEEE Eng Med Biol Mag 2004, 23: 62-71.CrossRefPubMed
40.
go back to reference Gregor RJ, Cavanagh PR, LaFortune M: Knee flexor moments during propulsion in cycling–a creative solution to Lombard's Paradox. J Biomech 1985, 18: 307-316.CrossRefPubMed Gregor RJ, Cavanagh PR, LaFortune M: Knee flexor moments during propulsion in cycling–a creative solution to Lombard's Paradox. J Biomech 1985, 18: 307-316.CrossRefPubMed
41.
go back to reference Neptune RR, van den Bogert AJ: Standard mechanical energy analyses do not correlate with muscle work in cycling. J Biomech 1998, 31: 239-245.CrossRefPubMed Neptune RR, van den Bogert AJ: Standard mechanical energy analyses do not correlate with muscle work in cycling. J Biomech 1998, 31: 239-245.CrossRefPubMed
42.
go back to reference Ait-Haddou R, Jinha A, Herzog W, Binding P: Analysis of the force-sharing problem using an optimization model. Math Biosci 2004, 191: 111-122.CrossRefPubMed Ait-Haddou R, Jinha A, Herzog W, Binding P: Analysis of the force-sharing problem using an optimization model. Math Biosci 2004, 191: 111-122.CrossRefPubMed
43.
go back to reference Sinclair PJ, Fornusek C, Davis GM, Smith RM: The effect of fatigue on the timing of electrical stimulation-evoked muscle contractions in people with spinal cord injury. Neuromodulation 2004, 7: 214-222.CrossRefPubMed Sinclair PJ, Fornusek C, Davis GM, Smith RM: The effect of fatigue on the timing of electrical stimulation-evoked muscle contractions in people with spinal cord injury. Neuromodulation 2004, 7: 214-222.CrossRefPubMed
44.
go back to reference Gregor SM, Perell KL, Rushatakankovit S, Miyamoto E, Muffoletto R, Gregor RJ: Lower extremity general muscle moment patterns in healthy individuals during recumbent cycling. Clin Biomech (Bristol, Avon) 2002, 17: 123-129.CrossRef Gregor SM, Perell KL, Rushatakankovit S, Miyamoto E, Muffoletto R, Gregor RJ: Lower extremity general muscle moment patterns in healthy individuals during recumbent cycling. Clin Biomech (Bristol, Avon) 2002, 17: 123-129.CrossRef
45.
go back to reference Gorgey AS, Dudley GA: The role of pulse duration and stimulation duration in maximizing the normalized torque during neuromuscular electrical stimulation. J Orthop Sports Phys Ther 2008, 38: 508-516.CrossRefPubMedPubMedCentral Gorgey AS, Dudley GA: The role of pulse duration and stimulation duration in maximizing the normalized torque during neuromuscular electrical stimulation. J Orthop Sports Phys Ther 2008, 38: 508-516.CrossRefPubMedPubMedCentral
46.
go back to reference Gorgey AS, Dolbow DR, Cifu DX, Gater DR: Neuromuscular electrical stimulation attenuates thigh skeletal muscles atrophy but not trunk muscles after spinal cord injury. J Electromyogr Kinesiol 2013, 23: 977-984.CrossRefPubMed Gorgey AS, Dolbow DR, Cifu DX, Gater DR: Neuromuscular electrical stimulation attenuates thigh skeletal muscles atrophy but not trunk muscles after spinal cord injury. J Electromyogr Kinesiol 2013, 23: 977-984.CrossRefPubMed
47.
go back to reference Schutte LM, Rodgers MM, Zajac FE, Glaser RM: Improving the efficacy of electrical stimulation-induced leg cycle ergometry: an analysis based on a dynamic musculo-skeletal model. IEEE Trans Rehabil Eng 1993, 1: 109-125.CrossRef Schutte LM, Rodgers MM, Zajac FE, Glaser RM: Improving the efficacy of electrical stimulation-induced leg cycle ergometry: an analysis based on a dynamic musculo-skeletal model. IEEE Trans Rehabil Eng 1993, 1: 109-125.CrossRef
48.
go back to reference Glaser RM, Couch WP, Janssen TWJ, Almeyda JW, Pringle DD, Collins SR, Mathews T: A development system to enhance FES leg cycle ergometer technology. In Proceedings of the RESNA '96 Annual Conference; Salt Lake City Edited by: L A. 1996, 109. Glaser RM, Couch WP, Janssen TWJ, Almeyda JW, Pringle DD, Collins SR, Mathews T: A development system to enhance FES leg cycle ergometer technology. In Proceedings of the RESNA '96 Annual Conference; Salt Lake City Edited by: L A. 1996, 109.
49.
go back to reference Jager K, Newham DJ, Donaldson NN: Influence of selectiv stimulation of quadriceps on joint moments. In 1st Annual Conference of the UK and Republic of Ireland Chapter of the International Functional Electric Stimulation Society; April 15th-16th, 2010. UK: University of Salford; 2010:14. Jager K, Newham DJ, Donaldson NN: Influence of selectiv stimulation of quadriceps on joint moments. In 1st Annual Conference of the UK and Republic of Ireland Chapter of the International Functional Electric Stimulation Society; April 15th-16th, 2010. UK: University of Salford; 2010:14.
50.
go back to reference Ito T, Tsubahara A, Watanabe S: Use of electrical or magnetic stimulation for generating hip flexion torque. Am J Phys Med Rehabil 2013, 92: 755-761.CrossRefPubMed Ito T, Tsubahara A, Watanabe S: Use of electrical or magnetic stimulation for generating hip flexion torque. Am J Phys Med Rehabil 2013, 92: 755-761.CrossRefPubMed
Metadata
Title
A biomechanical cause of low power production during FES cycling of subjects with SCI
Authors
Johann Szecsi
Andreas Straube
Che Fornusek
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2014
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-11-123

Other articles of this Issue 1/2014

Journal of NeuroEngineering and Rehabilitation 1/2014 Go to the issue