Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Towards identification of finger flexions using single channel surface electromyography – able bodied and amputee subjects

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

This research has established a method for using single channel surface electromyogram (sEMG) recorded from the forearm to identify individual finger flexion. The technique uses the volume conduction properties of the tissues and uses the magnitude and density of the singularities in the signal as a measure of strength of the muscle activity.

Methods

SEMG was recorded from the flexor digitorum superficialis muscle during four different finger flexions. Based on the volume conduction properties of the tissues, sEMG was decomposed into wavelet maxima and grouped into four groups based on their magnitude. The mean magnitude and the density of each group were the inputs to the twin support vector machines (TSVM). The algorithm was tested on 11 able-bodied and one trans-radial amputated volunteer to determine the accuracy, sensitivity and specificity. The system was also tested to determine inter-experimental variations and variations due to difference in the electrode location.

Results

Accuracy and sensitivity of identification of finger actions from single channel sEMG signal was 93% and 94% for able-bodied and 81% and 84% for trans-radial amputated respectively, and there was only a small inter-experimental variation.

Conclusions

Volume conduction properties based sEMG analysis provides a suitable basis for identifying finger flexions from single channel sEMG. The reported system requires supervised training and automatic classification.
Appendix
Available only for authorised users
Literature
2.
go back to reference Childress DA: A myoelectric three state controller using rate sensitivity. In Proceedings of 8th International Conference on Medical and Biological Engineering conference(ICMBE). Chicago: Palmer House; 1969:4-5. Childress DA: A myoelectric three state controller using rate sensitivity. In Proceedings of 8th International Conference on Medical and Biological Engineering conference(ICMBE). Chicago: Palmer House; 1969:4-5.
3.
go back to reference Hudgins B, Parker PA, Scott RN: A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 1993, 40: 82-94.CrossRefPubMed Hudgins B, Parker PA, Scott RN: A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 1993, 40: 82-94.CrossRefPubMed
4.
go back to reference Englehart K, Hudgins B, Parker PA: A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Trans Biomed Eng 2001,48(3):302-311.CrossRefPubMed Englehart K, Hudgins B, Parker PA: A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Trans Biomed Eng 2001,48(3):302-311.CrossRefPubMed
5.
go back to reference Karlik B, Tokhi O, Musa A: A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis. IEEE Trans Biomed Eng 2003,50(11):1255-1261.CrossRefPubMed Karlik B, Tokhi O, Musa A: A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis. IEEE Trans Biomed Eng 2003,50(11):1255-1261.CrossRefPubMed
6.
go back to reference Nagata K, Adno K, Magatani K, Yamada M: A classification method of hand movements using multi channel electrode. In Proceedings of 27th annual international conference of the engineering in medicine and biology society. Shanghai: IEEE; 2005:2375-2378. Nagata K, Adno K, Magatani K, Yamada M: A classification method of hand movements using multi channel electrode. In Proceedings of 27th annual international conference of the engineering in medicine and biology society. Shanghai: IEEE; 2005:2375-2378.
7.
go back to reference Tenore F, Ramos A, Fahmy A, Acharya S, Etienne-Cummings R, Thakor NV: Decoding of individuated finger movements using surface electromyography. IEEE Trans Biomed Eng 2009,56(5):1427-1434.CrossRefPubMed Tenore F, Ramos A, Fahmy A, Acharya S, Etienne-Cummings R, Thakor NV: Decoding of individuated finger movements using surface electromyography. IEEE Trans Biomed Eng 2009,56(5):1427-1434.CrossRefPubMed
8.
go back to reference Smith JR, Huberdeau D, Tenore F, Thakor NV: Real- time myoelectric decoding of individual finger movements for a virtual target task. In Proceedings of 31st annual IEEE EMBS international conference. Minneapolis, Minnesota, USA: IEEE; 2009:2376-2379. Smith JR, Huberdeau D, Tenore F, Thakor NV: Real- time myoelectric decoding of individual finger movements for a virtual target task. In Proceedings of 31st annual IEEE EMBS international conference. Minneapolis, Minnesota, USA: IEEE; 2009:2376-2379.
9.
go back to reference Chen X, Lantz V, Kong-Qiao W, Zhang-Yan Z, Xu Z, Ji-Hai Y: Feasibility of building robust surface electromyography-based hand gesture interfaces. In Proceedings of 31st annual IEEE EMBS international conference. Minneapolis, Minnesota, USA: IEEE; 2009:2983-2986. Chen X, Lantz V, Kong-Qiao W, Zhang-Yan Z, Xu Z, Ji-Hai Y: Feasibility of building robust surface electromyography-based hand gesture interfaces. In Proceedings of 31st annual IEEE EMBS international conference. Minneapolis, Minnesota, USA: IEEE; 2009:2983-2986.
10.
go back to reference Tenore F, Ramos A, Fahmy A, Acharya S, Etienne-Cummings R, Thakor NV: Towards the control of individual fingers of a prosthetic hand using surface EMG signals. In Proceedings of 29th annual IEEE EMBS international conference. Lyon, France: IEEE; 2007:6145-6148. Tenore F, Ramos A, Fahmy A, Acharya S, Etienne-Cummings R, Thakor NV: Towards the control of individual fingers of a prosthetic hand using surface EMG signals. In Proceedings of 29th annual IEEE EMBS international conference. Lyon, France: IEEE; 2007:6145-6148.
11.
go back to reference Chan FHY, Yong-Sheng Y, Lam FK, Yuan-Ting Z, Parker PA: Fuzzy EMG classification for prosthesis control. IEEE Trans Rehabil Engin 2000,8(3):305-311.CrossRef Chan FHY, Yong-Sheng Y, Lam FK, Yuan-Ting Z, Parker PA: Fuzzy EMG classification for prosthesis control. IEEE Trans Rehabil Engin 2000,8(3):305-311.CrossRef
12.
go back to reference Englehart K, Hudgins B, Parker PA, Stevenson M: Classification of the myoelectric signal using time-frequency based representations. Med Engin and Physics 1999, 21: 431-438.CrossRef Englehart K, Hudgins B, Parker PA, Stevenson M: Classification of the myoelectric signal using time-frequency based representations. Med Engin and Physics 1999, 21: 431-438.CrossRef
13.
go back to reference Momen K, Krishnan S, Chau T: Real time classification of forearm electrmyographic signals corresponding to user-selected intentional movements for multifunction prosthesis control. IEEE Trans. Neural Systems and Rehab Engin 2007,15(4):535-542.CrossRef Momen K, Krishnan S, Chau T: Real time classification of forearm electrmyographic signals corresponding to user-selected intentional movements for multifunction prosthesis control. IEEE Trans. Neural Systems and Rehab Engin 2007,15(4):535-542.CrossRef
14.
go back to reference Arjunan SP, Kumar DK: Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors. J Neuroeng Rehabil 2010, 7: 53.PubMedCentralCrossRefPubMed Arjunan SP, Kumar DK: Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors. J Neuroeng Rehabil 2010, 7: 53.PubMedCentralCrossRefPubMed
15.
go back to reference Naik GR, Kumar DK, Jayadeva J: Twin SVM for gesture classification using the surface electromyogram. IEEE Trans Inf Technol Biomed 2010,14(2):301-308.CrossRefPubMed Naik GR, Kumar DK, Jayadeva J: Twin SVM for gesture classification using the surface electromyogram. IEEE Trans Inf Technol Biomed 2010,14(2):301-308.CrossRefPubMed
16.
go back to reference Englehart K, Hudgins B: A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans Biomed Eng 2003,50(7):848-854.CrossRefPubMed Englehart K, Hudgins B: A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans Biomed Eng 2003,50(7):848-854.CrossRefPubMed
17.
go back to reference Kyberd J, Holland OE, Chappel PH, Smith S, Tregdigo R, Bagwell PJ, Snaith M: Marcus: A two degree of freedom hand prosthesis with hierarchical grip control. IEEE Trans Rehabil Eng 1995,3(1):70-76.CrossRef Kyberd J, Holland OE, Chappel PH, Smith S, Tregdigo R, Bagwell PJ, Snaith M: Marcus: A two degree of freedom hand prosthesis with hierarchical grip control. IEEE Trans Rehabil Eng 1995,3(1):70-76.CrossRef
18.
go back to reference Cipriani C, Antfolk C, Controzzi M, Lundborg G, Rosen B, Carrozza MC, Sebelius F: Online myoelectric control of a dexterous hand prosthesis by transradial amputees. IEEE Trans Neural Syst Rehabil Eng 2011,19(3):260-270.CrossRefPubMed Cipriani C, Antfolk C, Controzzi M, Lundborg G, Rosen B, Carrozza MC, Sebelius F: Online myoelectric control of a dexterous hand prosthesis by transradial amputees. IEEE Trans Neural Syst Rehabil Eng 2011,19(3):260-270.CrossRefPubMed
20.
go back to reference Cram GS, Kasman J, Holtz J: Introduction to surface electromyography. Gaithersburg, Maryland: Aspen Publishers, Inc; 1998. Cram GS, Kasman J, Holtz J: Introduction to surface electromyography. Gaithersburg, Maryland: Aspen Publishers, Inc; 1998.
21.
go back to reference Kumar DK, Alemu M: Time-frequency analysis of SEMG- with special consideration to interelectrode spacing. IEEE Trans Neural Syst Rehabil Eng 2004,11(4):341-345. Kumar DK, Alemu M: Time-frequency analysis of SEMG- with special consideration to interelectrode spacing. IEEE Trans Neural Syst Rehabil Eng 2004,11(4):341-345.
22.
go back to reference Kumar DK, Pah ND: Thresholding wavelet networks for signal classification. Intl J Wavelets, Multiresolution and Info Process 2009, 2: 243-261. Kumar DK, Pah ND: Thresholding wavelet networks for signal classification. Intl J Wavelets, Multiresolution and Info Process 2009, 2: 243-261.
23.
go back to reference Zhou P, Rymer WZ, Suresh N, Zhang L: A study of surface motor unit action potentials in first dorsal interosseus (FDI) muscle. In Proceedings of 23rd annual IEEE EMBS international conference. Istanbul, Turkey: IEEE; 2001:1074-1077. Zhou P, Rymer WZ, Suresh N, Zhang L: A study of surface motor unit action potentials in first dorsal interosseus (FDI) muscle. In Proceedings of 23rd annual IEEE EMBS international conference. Istanbul, Turkey: IEEE; 2001:1074-1077.
24.
go back to reference Kleine BU, van Dijk JP, Lapatki BG, Zwarts MJ, Stegeman DF: Using two-dimensional spatial information in decomposition of surface EMG signals. J Electromyogr Kinesiol 2007, 17: 535-548.CrossRefPubMed Kleine BU, van Dijk JP, Lapatki BG, Zwarts MJ, Stegeman DF: Using two-dimensional spatial information in decomposition of surface EMG signals. J Electromyogr Kinesiol 2007, 17: 535-548.CrossRefPubMed
25.
go back to reference Plevin E, Zazula D: Decomposition of surface EMG signals using non-linear LMS optimisation of higher-order cumulants. In Proceedings of the 15th IEEE Symposium on Computer-Based Medical Systems volume 32. Maribor, Slovenia; 2002:149-154. Plevin E, Zazula D: Decomposition of surface EMG signals using non-linear LMS optimisation of higher-order cumulants. In Proceedings of the 15th IEEE Symposium on Computer-Based Medical Systems volume 32. Maribor, Slovenia; 2002:149-154.
26.
go back to reference Blok JH, Stegeman DF, Oosterom AV: Three-layer volume conductor model and software package for applications in surface electromyography. Ann Biomed Eng 2002, 30: 566-577.CrossRefPubMed Blok JH, Stegeman DF, Oosterom AV: Three-layer volume conductor model and software package for applications in surface electromyography. Ann Biomed Eng 2002, 30: 566-577.CrossRefPubMed
27.
go back to reference Roeleveld K, Blok J, Stegeman DF, Oosterom AV: Volume conduction models for surface EMG; confrontation with measurements. J Electromyogr Kinesiol 1997,7(4):221-232.CrossRefPubMed Roeleveld K, Blok J, Stegeman DF, Oosterom AV: Volume conduction models for surface EMG; confrontation with measurements. J Electromyogr Kinesiol 1997,7(4):221-232.CrossRefPubMed
28.
go back to reference Merletti R, Botter A, Troiano A, Merlo E, Minetto MA: Technology and instrumentation for detection and conditioning of the surface electromyographic signal: state of the art. Clin Biomech 2009, 24: 122-134.CrossRef Merletti R, Botter A, Troiano A, Merlo E, Minetto MA: Technology and instrumentation for detection and conditioning of the surface electromyographic signal: state of the art. Clin Biomech 2009, 24: 122-134.CrossRef
29.
go back to reference Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G: Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 2000, 10: 361-374.CrossRefPubMed Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G: Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 2000, 10: 361-374.CrossRefPubMed
30.
go back to reference Castellini S, Gruppioni E, Davalli A, Sandini G: Fine detection of grasp force and posture by amputees via surface electromyography. J Physiol Paris 2009,103(3–5):255-262.CrossRefPubMed Castellini S, Gruppioni E, Davalli A, Sandini G: Fine detection of grasp force and posture by amputees via surface electromyography. J Physiol Paris 2009,103(3–5):255-262.CrossRefPubMed
31.
go back to reference Andrade OA, Nasuto S, Kyberd P, Sweeney- Reed CM, Van Kanijn FR: EMG signal filtering based on empirical mode decomposition. Biomed Signal Proces and Control 2006,1(1):44-55.CrossRef Andrade OA, Nasuto S, Kyberd P, Sweeney- Reed CM, Van Kanijn FR: EMG signal filtering based on empirical mode decomposition. Biomed Signal Proces and Control 2006,1(1):44-55.CrossRef
32.
go back to reference Mallat S: A wavelet tour of signal processing. London: Academic Press; 1999. Mallat S: A wavelet tour of signal processing. London: Academic Press; 1999.
33.
go back to reference Abel EW, Meng H, Forster A, Holder D: Singularity characteristics of needle EMG IP signals. IEEE Trans Biomed Eng 2006,53(2):219-225.CrossRefPubMed Abel EW, Meng H, Forster A, Holder D: Singularity characteristics of needle EMG IP signals. IEEE Trans Biomed Eng 2006,53(2):219-225.CrossRefPubMed
34.
go back to reference Arikidis NS, Abel EW, Forster A: Interscale wavelet maximum—a fine to coarse algorithm for wavelet analysis of the EMG interference pattern. IEEE Trans Biomed Eng 2002,49(4):337-344.CrossRefPubMed Arikidis NS, Abel EW, Forster A: Interscale wavelet maximum—a fine to coarse algorithm for wavelet analysis of the EMG interference pattern. IEEE Trans Biomed Eng 2002,49(4):337-344.CrossRefPubMed
35.
go back to reference Jayadeva J, Khemchandani R, Chandra S: Twin support vector machines for pattern classification. IEEE Trans. Pattern Analysis and Machine Intelligence 2007,29(5):905-910.CrossRef Jayadeva J, Khemchandani R, Chandra S: Twin support vector machines for pattern classification. IEEE Trans. Pattern Analysis and Machine Intelligence 2007,29(5):905-910.CrossRef
Metadata
Title
Towards identification of finger flexions using single channel surface electromyography – able bodied and amputee subjects
Publication date
01-12-2013
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-50

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue