Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Review

The physiological basis of neurorehabilitation - locomotor training after spinal cord injury

Authors: Michèle Hubli, Volker Dietz

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Advances in our understanding of the physiological basis of locomotion enable us to optimize the neurorehabilitation of patients with lesions to the central nervous system, such as stroke or spinal cord injury (SCI). It is generally accepted, based on work in animal models, that spinal neuronal machinery can produce a stepping-like output. In both incomplete and complete SCI subjects spinal locomotor circuitries can be activated by functional training which provides appropriate afferent feedback. In motor complete SCI subjects, however, motor functions caudal to the spinal cord lesion are no longer used resulting in neuronal dysfunction. In contrast, in subjects with an incomplete SCI such training paradigms can lead to improved locomotor ability. Appropriate functional training involves the facilitation and assistance of stepping-like movements with the subjects’ legs and body weight support as far as is required. In severely affected subjects standardized assisted locomotor training is provided by body weight supported treadmill training with leg movements either manually assisted or moved by a driven gait orthosis. Load- and hip-joint related afferent input is of crucial importance during locomotor training as it leads to appropriate leg muscle activation and thus increases the efficacy of the rehabilitative training. Successful recovery of locomotion after SCI relies on the ability of spinal locomotor circuitries to utilize specific multisensory information to generate a locomotor pattern. It seems that a critical combination of sensory cues is required to generate and improve locomotor patterns after SCI. In addition to functional locomotor training there are numbers of other promising experimental approaches, such as tonic epidural electrical or magnetic stimulation of the spinal cord, which both promote locomotor permissive states that lead to a coordinated locomotor output. Therefore, a combination of functional training and activation of spinal locomotor circuitries, for example by epidural/flexor reflex electrical stimulation or drug application (e.g. noradrenergic agonists), might constitute an effective strategy to promote neuroplasticity after SCI in the future.
Appendix
Available only for authorised users
Literature
1.
go back to reference Anderson KD: Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 2004,21(10):1371-1383. 10.1089/neu.2004.21.1371PubMed Anderson KD: Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 2004,21(10):1371-1383. 10.1089/neu.2004.21.1371PubMed
2.
go back to reference Ditunno PL, Patrick M, Stineman M, Ditunno JF: Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord 2008,46(7):500-506. 10.1038/sj.sc.3102172PubMed Ditunno PL, Patrick M, Stineman M, Ditunno JF: Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord 2008,46(7):500-506. 10.1038/sj.sc.3102172PubMed
3.
go back to reference Barbeau H, McCrea DA, O'Donovan MJ, Rossignol S, Grill WM, Lemay MA: Tapping into spinal circuits to restore motor function. Brain Res Rev 1999,30(1):27-51. 10.1016/S0165-0173(99)00008-9PubMed Barbeau H, McCrea DA, O'Donovan MJ, Rossignol S, Grill WM, Lemay MA: Tapping into spinal circuits to restore motor function. Brain Res Rev 1999,30(1):27-51. 10.1016/S0165-0173(99)00008-9PubMed
4.
go back to reference Dietz V, Colombo G, Jensen L: Locomotor activity in spinal man. Lancet 1994,344(8932):1260-1263. 10.1016/S0140-6736(94)90751-XPubMed Dietz V, Colombo G, Jensen L: Locomotor activity in spinal man. Lancet 1994,344(8932):1260-1263. 10.1016/S0140-6736(94)90751-XPubMed
5.
go back to reference Wernig A, Muller S: Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia 1992,30(4):229-238. 10.1038/sc.1992.61PubMed Wernig A, Muller S: Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia 1992,30(4):229-238. 10.1038/sc.1992.61PubMed
6.
go back to reference Grillner S: Neurobiological bases of rhythmic motor acts in vertebrates. Science 1985,228(4696):143-149. 10.1126/science.3975635PubMed Grillner S: Neurobiological bases of rhythmic motor acts in vertebrates. Science 1985,228(4696):143-149. 10.1126/science.3975635PubMed
7.
go back to reference Sherrington CS: Flexion-reflex of the limb, crossed extension reflex, and reflex stepping and standing. J Physiol (Lond) 1910, 40: 28-121. Sherrington CS: Flexion-reflex of the limb, crossed extension reflex, and reflex stepping and standing. J Physiol (Lond) 1910, 40: 28-121.
8.
go back to reference Graham-Brown T: The intrinsic factors in the act of progression in the mammal. Proc R Sopc Lond B Biol Sci 1911, 84: 308-319. 10.1098/rspb.1911.0077 Graham-Brown T: The intrinsic factors in the act of progression in the mammal. Proc R Sopc Lond B Biol Sci 1911, 84: 308-319. 10.1098/rspb.1911.0077
9.
go back to reference Rossignol S, Dubuc R, Gossard JP: Dynamic sensorimotor interactions in locomotion. Physiol Rev 2006,86(1):89-154. 10.1152/physrev.00028.2005PubMed Rossignol S, Dubuc R, Gossard JP: Dynamic sensorimotor interactions in locomotion. Physiol Rev 2006,86(1):89-154. 10.1152/physrev.00028.2005PubMed
10.
go back to reference Horak FB, Nashner LM: Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol 1986,55(6):1369-1381.PubMed Horak FB, Nashner LM: Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol 1986,55(6):1369-1381.PubMed
11.
go back to reference Schubert M, Curt A, Jensen L, Dietz V: Corticospinal input in human gait: modulation of magnetically evoked motor responses. Exp Brain Res 1997,115(2):234-246. 10.1007/PL00005693PubMed Schubert M, Curt A, Jensen L, Dietz V: Corticospinal input in human gait: modulation of magnetically evoked motor responses. Exp Brain Res 1997,115(2):234-246. 10.1007/PL00005693PubMed
12.
go back to reference Edgerton VR, Roy RR, Hodgson JA, Prober RJ, de Guzman CP, de Leon R: Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input. J Neurotrauma 1992,9(1):119-128. Edgerton VR, Roy RR, Hodgson JA, Prober RJ, de Guzman CP, de Leon R: Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input. J Neurotrauma 1992,9(1):119-128.
13.
go back to reference Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K: Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 2001,14(5):1186-1192. 10.1006/nimg.2001.0905PubMed Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K: Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 2001,14(5):1186-1192. 10.1006/nimg.2001.0905PubMed
14.
go back to reference Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, Ogawa M, Kimura J, Shibasaki H: Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett 1997,228(3):183-186. 10.1016/S0304-3940(97)00381-9PubMed Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, Ogawa M, Kimura J, Shibasaki H: Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett 1997,228(3):183-186. 10.1016/S0304-3940(97)00381-9PubMed
15.
go back to reference Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, Kubota K: Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. Neuroimage 2004,23(3):1020-1026. 10.1016/j.neuroimage.2004.07.002PubMed Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, Kubota K: Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. Neuroimage 2004,23(3):1020-1026. 10.1016/j.neuroimage.2004.07.002PubMed
16.
go back to reference Schubert M, Curt A, Colombo G, Berger W, Dietz V: Voluntary control of human gait: conditioning of magnetically evoked motor responses in a precision stepping task. Exp Brain Res 1999,126(4):583-588. 10.1007/s002210050767PubMed Schubert M, Curt A, Colombo G, Berger W, Dietz V: Voluntary control of human gait: conditioning of magnetically evoked motor responses in a precision stepping task. Exp Brain Res 1999,126(4):583-588. 10.1007/s002210050767PubMed
18.
go back to reference Cazalets JR, Bertrand S: Coupling between lumbar and sacral motor networks in the neonatal rat spinal cord. Eur J Neurosci 2000,12(8):2993-3002. 10.1046/j.1460-9568.2000.00169.xPubMed Cazalets JR, Bertrand S: Coupling between lumbar and sacral motor networks in the neonatal rat spinal cord. Eur J Neurosci 2000,12(8):2993-3002. 10.1046/j.1460-9568.2000.00169.xPubMed
19.
go back to reference Nathan PW, Smith M, Deacon P: Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain 1996, 119: 1809-1833. 10.1093/brain/119.6.1809PubMed Nathan PW, Smith M, Deacon P: Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain 1996, 119: 1809-1833. 10.1093/brain/119.6.1809PubMed
20.
go back to reference Michel J, van Hedel HJ, Dietz V: Obstacle stepping involves spinal anticipatory activity associated with quadrupedal limb coordination. Eur J Neurosci 2008,27(7):1867-1875. 10.1111/j.1460-9568.2008.06145.xPubMed Michel J, van Hedel HJ, Dietz V: Obstacle stepping involves spinal anticipatory activity associated with quadrupedal limb coordination. Eur J Neurosci 2008,27(7):1867-1875. 10.1111/j.1460-9568.2008.06145.xPubMed
21.
go back to reference Dietz V, Fouad K, Bastiaanse CM: Neuronal coordination of arm and leg movements during human locomotion. Eur J Neurosci 2001,14(11):1906-1914. 10.1046/j.0953-816x.2001.01813.xPubMed Dietz V, Fouad K, Bastiaanse CM: Neuronal coordination of arm and leg movements during human locomotion. Eur J Neurosci 2001,14(11):1906-1914. 10.1046/j.0953-816x.2001.01813.xPubMed
22.
go back to reference Dietz V: Do human bipeds use quadrupedal coordination? Trends Neurosci 2002,25(9):462-467. 10.1016/S0166-2236(02)02229-4PubMed Dietz V: Do human bipeds use quadrupedal coordination? Trends Neurosci 2002,25(9):462-467. 10.1016/S0166-2236(02)02229-4PubMed
23.
go back to reference Jurkiewicz MT, Mikulis DJ, McIlroy WE, Fehlings MG, Verrier MC: Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study. Neurorehabil Neural Repair 2007,21(6):527-538. 10.1177/1545968307301872PubMed Jurkiewicz MT, Mikulis DJ, McIlroy WE, Fehlings MG, Verrier MC: Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study. Neurorehabil Neural Repair 2007,21(6):527-538. 10.1177/1545968307301872PubMed
24.
go back to reference Winchester P, McColl R, Querry R, Foreman N, Mosby J, Tansey K, Williamson J: Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair 2005,19(4):313-324. 10.1177/1545968305281515PubMed Winchester P, McColl R, Querry R, Foreman N, Mosby J, Tansey K, Williamson J: Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair 2005,19(4):313-324. 10.1177/1545968305281515PubMed
25.
go back to reference Lundell H, Christensen MS, Barthelemy D, Willerslev-Olsen M, Biering-Sorensen F, Nielsen JB: Cerebral activation is correlated to regional atrophy of the spinal cord and functional motor disability in spinal cord injured individuals. Neuroimage 2011,54(2):1254-1261. 10.1016/j.neuroimage.2010.09.009PubMed Lundell H, Christensen MS, Barthelemy D, Willerslev-Olsen M, Biering-Sorensen F, Nielsen JB: Cerebral activation is correlated to regional atrophy of the spinal cord and functional motor disability in spinal cord injured individuals. Neuroimage 2011,54(2):1254-1261. 10.1016/j.neuroimage.2010.09.009PubMed
26.
go back to reference Tansey KE: Neural plasticity and locomotor recovery after spinal cord injury. Pm R 2010,2(12):220-226. 10.1016/j.pmrj.2010.10.007 Tansey KE: Neural plasticity and locomotor recovery after spinal cord injury. Pm R 2010,2(12):220-226. 10.1016/j.pmrj.2010.10.007
27.
go back to reference Dietz V, Sinkjaer T: Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol 2007,6(8):725-733. 10.1016/S1474-4422(07)70193-XPubMed Dietz V, Sinkjaer T: Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol 2007,6(8):725-733. 10.1016/S1474-4422(07)70193-XPubMed
28.
go back to reference Pearson KG: Neural adaptation in the generation of rhythmic behavior. Annu Rev Physiol 2000, 62: 723-753. 10.1146/annurev.physiol.62.1.723PubMed Pearson KG: Neural adaptation in the generation of rhythmic behavior. Annu Rev Physiol 2000, 62: 723-753. 10.1146/annurev.physiol.62.1.723PubMed
29.
go back to reference Dietz V: Proprioception and locomotor disorders. Nat Rev Neurosci 2002,3(10):781-790. 10.1038/nrn939PubMed Dietz V: Proprioception and locomotor disorders. Nat Rev Neurosci 2002,3(10):781-790. 10.1038/nrn939PubMed
30.
go back to reference Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, Roy RR: Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci 2004, 27: 145-167. 10.1146/annurev.neuro.27.070203.144308PubMed Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, Roy RR: Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci 2004, 27: 145-167. 10.1146/annurev.neuro.27.070203.144308PubMed
31.
go back to reference Barbeau H, Rossignol S: Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 1987,412(1):84-95. 10.1016/0006-8993(87)91442-9PubMed Barbeau H, Rossignol S: Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 1987,412(1):84-95. 10.1016/0006-8993(87)91442-9PubMed
32.
go back to reference Lovely RG, Gregor RJ, Roy RR, Edgerton VR: Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol 1986,92(2):421-435. 10.1016/0014-4886(86)90094-4PubMed Lovely RG, Gregor RJ, Roy RR, Edgerton VR: Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol 1986,92(2):421-435. 10.1016/0014-4886(86)90094-4PubMed
33.
go back to reference De Leon RD, Hodgson JA, Roy RR, Edgerton VR: Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J Neurophysiol 1998,80(1):83-91.PubMed De Leon RD, Hodgson JA, Roy RR, Edgerton VR: Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J Neurophysiol 1998,80(1):83-91.PubMed
34.
go back to reference Tillakaratne NJ, de Leon RD, Hoang TX, Roy RR, Edgerton VR, Tobin AJ: Use-dependent modulation of inhibitory capacity in the feline lumbar spinal cord. J Neurosci 2002,22(8):3130-3143.PubMed Tillakaratne NJ, de Leon RD, Hoang TX, Roy RR, Edgerton VR, Tobin AJ: Use-dependent modulation of inhibitory capacity in the feline lumbar spinal cord. J Neurosci 2002,22(8):3130-3143.PubMed
35.
go back to reference Edgerton VR, Courtine G, Gerasimenko YP, Lavrov I, Ichiyama RM, Fong AJ, Cai LL, Otoshi CK, Tillakaratne NJ, Burdick JW, Roy RR: Training locomotor networks. Brain Res Rev 2008,57(1):241-254. 10.1016/j.brainresrev.2007.09.002PubMedCentralPubMed Edgerton VR, Courtine G, Gerasimenko YP, Lavrov I, Ichiyama RM, Fong AJ, Cai LL, Otoshi CK, Tillakaratne NJ, Burdick JW, Roy RR: Training locomotor networks. Brain Res Rev 2008,57(1):241-254. 10.1016/j.brainresrev.2007.09.002PubMedCentralPubMed
36.
go back to reference Cai LL, Courtine G, Fong AJ, Burdick JW, Roy RR, Edgerton VR: Plasticity of functional connectivity in the adult spinal cord. Philos Trans R Soc Lond B Biol Sci 2006,361(1473):1635-1646. 10.1098/rstb.2006.1884PubMedCentralPubMed Cai LL, Courtine G, Fong AJ, Burdick JW, Roy RR, Edgerton VR: Plasticity of functional connectivity in the adult spinal cord. Philos Trans R Soc Lond B Biol Sci 2006,361(1473):1635-1646. 10.1098/rstb.2006.1884PubMedCentralPubMed
37.
go back to reference Hou S, Duale H, Cameron AA, Abshire SM, Lyttle TS, Rabchevsky AG: Plasticity of lumbosacral propriospinal neurons is associated with the development of autonomic dysreflexia after thoracic spinal cord transection. J Comp Neurol 2008,509(4):382-399. 10.1002/cne.21771PubMedCentralPubMed Hou S, Duale H, Cameron AA, Abshire SM, Lyttle TS, Rabchevsky AG: Plasticity of lumbosacral propriospinal neurons is associated with the development of autonomic dysreflexia after thoracic spinal cord transection. J Comp Neurol 2008,509(4):382-399. 10.1002/cne.21771PubMedCentralPubMed
38.
go back to reference Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, et al.: Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 2009,12(10):1333-1342. 10.1038/nn.2401PubMedCentralPubMed Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, et al.: Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 2009,12(10):1333-1342. 10.1038/nn.2401PubMedCentralPubMed
39.
go back to reference Maegele M, Muller S, Wernig A, Edgerton VR, Harkema SJ: Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury. J Neurotrauma 2002,19(10):1217-1229. 10.1089/08977150260338010PubMed Maegele M, Muller S, Wernig A, Edgerton VR, Harkema SJ: Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury. J Neurotrauma 2002,19(10):1217-1229. 10.1089/08977150260338010PubMed
40.
go back to reference Hubli M, Bolliger M, Dietz V: Neuronal dysfunction in chronic spinal cord injury. Spinal Cord 2011,49(5):582-587. 10.1038/sc.2010.147PubMed Hubli M, Bolliger M, Dietz V: Neuronal dysfunction in chronic spinal cord injury. Spinal Cord 2011,49(5):582-587. 10.1038/sc.2010.147PubMed
41.
go back to reference Dietz V: Behavior of spinal neurons deprived of supraspinal input. Nat Rev Neurol 2010,6(3):167-174. 10.1038/nrneurol.2009.227PubMed Dietz V: Behavior of spinal neurons deprived of supraspinal input. Nat Rev Neurol 2010,6(3):167-174. 10.1038/nrneurol.2009.227PubMed
42.
go back to reference Dietz V, Grillner S, Trepp A, Hubli M, Bolliger M: Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism? Brain 2009,132(8):2196-2205. 10.1093/brain/awp124PubMed Dietz V, Grillner S, Trepp A, Hubli M, Bolliger M: Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism? Brain 2009,132(8):2196-2205. 10.1093/brain/awp124PubMed
43.
go back to reference Hubli M, Dietz V, Bolliger M: Spinal reflex activity: a marker for neuronal functionality after spinal cord injury. Neurorehabil Neural Repair 2012,26(2):188-196. 10.1177/1545968311420844PubMed Hubli M, Dietz V, Bolliger M: Spinal reflex activity: a marker for neuronal functionality after spinal cord injury. Neurorehabil Neural Repair 2012,26(2):188-196. 10.1177/1545968311420844PubMed
44.
go back to reference Belanger M, Drew T, Provencher J, Rossignol S: A comparison of treadmill locomotion in adult cats before and after spinal transection. J Neurophysiol 1996,76(1):471-491.PubMed Belanger M, Drew T, Provencher J, Rossignol S: A comparison of treadmill locomotion in adult cats before and after spinal transection. J Neurophysiol 1996,76(1):471-491.PubMed
45.
go back to reference Barbeau H, Rossignol S: Enhancement of locomotor recovery following spinal cord injury. Curr Opin Neurol 1994,7(6):517-524. 10.1097/00019052-199412000-00008PubMed Barbeau H, Rossignol S: Enhancement of locomotor recovery following spinal cord injury. Curr Opin Neurol 1994,7(6):517-524. 10.1097/00019052-199412000-00008PubMed
46.
go back to reference Vilensky JA, O'Connor BL: Stepping in nonhuman primates with a complete spinal cord transection: old and new data, and implications for humans. Ann N Y Acad Sci 1998, 860: 528-530. 10.1111/j.1749-6632.1998.tb09095.xPubMed Vilensky JA, O'Connor BL: Stepping in nonhuman primates with a complete spinal cord transection: old and new data, and implications for humans. Ann N Y Acad Sci 1998, 860: 528-530. 10.1111/j.1749-6632.1998.tb09095.xPubMed
47.
go back to reference Forssberg H: Ontogeny of human locomotor control. I. Infant stepping, supported locomotion and transition to independent locomotion. Exp Brain Res 1985,57(3):480-493.PubMed Forssberg H: Ontogeny of human locomotor control. I. Infant stepping, supported locomotion and transition to independent locomotion. Exp Brain Res 1985,57(3):480-493.PubMed
48.
go back to reference Lee MS, Choi YC, Lee SH, Lee SB: Sleep-related periodic leg movements associated with spinal cord lesions. Mov Disord 1996,11(6):719-722. 10.1002/mds.870110619PubMed Lee MS, Choi YC, Lee SH, Lee SB: Sleep-related periodic leg movements associated with spinal cord lesions. Mov Disord 1996,11(6):719-722. 10.1002/mds.870110619PubMed
49.
go back to reference Dimitrijevic MR, Gerasimenko Y, Pinter MM: Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 1998, 860: 360-376. 10.1111/j.1749-6632.1998.tb09062.xPubMed Dimitrijevic MR, Gerasimenko Y, Pinter MM: Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 1998, 860: 360-376. 10.1111/j.1749-6632.1998.tb09062.xPubMed
50.
go back to reference Rosenfeld JE, Sherwood AM, Halter JA, Dimitrijevic MR: Evidence of a pattern generator in paralyzed subject with spinal cord stimulation. Soc Neurosci Abstr 1995, 21: 688. Rosenfeld JE, Sherwood AM, Halter JA, Dimitrijevic MR: Evidence of a pattern generator in paralyzed subject with spinal cord stimulation. Soc Neurosci Abstr 1995, 21: 688.
51.
go back to reference Dietz V, Harkema SJ: Locomotor activity in spinal cord-injured persons. J Appl Physiol 2004,96(5):1954-1960. 10.1152/japplphysiol.00942.2003PubMed Dietz V, Harkema SJ: Locomotor activity in spinal cord-injured persons. J Appl Physiol 2004,96(5):1954-1960. 10.1152/japplphysiol.00942.2003PubMed
52.
go back to reference Dietz V, Muller R, Colombo G: Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 2002,125(12):2626-2634. 10.1093/brain/awf273PubMed Dietz V, Muller R, Colombo G: Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 2002,125(12):2626-2634. 10.1093/brain/awf273PubMed
53.
go back to reference Dietz V, Colombo G, Jensen L, Baumgartner L: Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol 1995,37(5):574-582. 10.1002/ana.410370506PubMed Dietz V, Colombo G, Jensen L, Baumgartner L: Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol 1995,37(5):574-582. 10.1002/ana.410370506PubMed
54.
go back to reference Pearson KG, Collins DF: Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. J Neurophysiol 1993,70(3):1009-1017.PubMed Pearson KG, Collins DF: Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. J Neurophysiol 1993,70(3):1009-1017.PubMed
55.
go back to reference Dietz V, Colombo G: Effects of body immersion on postural adjustments to voluntary arm movements in humans: role of load receptor input. J Physiol 1996, 497: 849-856.PubMedCentralPubMed Dietz V, Colombo G: Effects of body immersion on postural adjustments to voluntary arm movements in humans: role of load receptor input. J Physiol 1996, 497: 849-856.PubMedCentralPubMed
56.
go back to reference Dietz V, Gollhofer A, Kleiber M, Trippel M: Regulation of bipedal stance: dependency on "load" receptors. Exp Brain Res 1992,89(1):229-231.PubMed Dietz V, Gollhofer A, Kleiber M, Trippel M: Regulation of bipedal stance: dependency on "load" receptors. Exp Brain Res 1992,89(1):229-231.PubMed
57.
go back to reference Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P: Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke 2004,35(11):2529-2539. 10.1161/01.STR.0000143153.76460.7dPubMed Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P: Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke 2004,35(11):2529-2539. 10.1161/01.STR.0000143153.76460.7dPubMed
58.
go back to reference Wirz M, Bastiaenen C, de Bie R, Dietz V: Effectiveness of automated locomotor training in patients with acute incomplete spinal cord injury: a randomized controlled multicenter trial. BMC Neurol 2011, 11: 60. 10.1186/1471-2377-11-60PubMedCentralPubMed Wirz M, Bastiaenen C, de Bie R, Dietz V: Effectiveness of automated locomotor training in patients with acute incomplete spinal cord injury: a randomized controlled multicenter trial. BMC Neurol 2011, 11: 60. 10.1186/1471-2377-11-60PubMedCentralPubMed
59.
go back to reference Pohl M, Mehrholz J, Ritschel C, Ruckriem S: Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke 2002,33(2):553-558. 10.1161/hs0202.102365PubMed Pohl M, Mehrholz J, Ritschel C, Ruckriem S: Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke 2002,33(2):553-558. 10.1161/hs0202.102365PubMed
60.
go back to reference Pearson KG: Role of sensory feedback in the control of stance duration in walking cats. Brain Res Rev 2008,57(1):222-227. 10.1016/j.brainresrev.2007.06.014PubMed Pearson KG: Role of sensory feedback in the control of stance duration in walking cats. Brain Res Rev 2008,57(1):222-227. 10.1016/j.brainresrev.2007.06.014PubMed
61.
go back to reference Bouyer LJ, Rossignol S: Contribution of cutaneous inputs from the hindpaw to the control of locomotion. I Intact cats J Neurophysiol 2003,90(6):3625-3639.PubMed Bouyer LJ, Rossignol S: Contribution of cutaneous inputs from the hindpaw to the control of locomotion. I Intact cats J Neurophysiol 2003,90(6):3625-3639.PubMed
62.
go back to reference Forssberg H: Stumbling corrective reaction: a phase-dependent compensatory reaction during locomotion. J Neurophysiol 1979,42(4):936-953.PubMed Forssberg H: Stumbling corrective reaction: a phase-dependent compensatory reaction during locomotion. J Neurophysiol 1979,42(4):936-953.PubMed
63.
go back to reference Schillings AM, van Wezel BM, Mulder T, Duysens J: Muscular responses and movement strategies during stumbling over obstacles. J Neurophysiol 2000,83(4):2093-2102.PubMed Schillings AM, van Wezel BM, Mulder T, Duysens J: Muscular responses and movement strategies during stumbling over obstacles. J Neurophysiol 2000,83(4):2093-2102.PubMed
64.
go back to reference Duysens J, Pearson KG: The role of cutaneous afferents from the distal hindlimb in the regulation of the step cycle of thalamic cats. Exp Brain Res 1976, 24: 245-255.PubMed Duysens J, Pearson KG: The role of cutaneous afferents from the distal hindlimb in the regulation of the step cycle of thalamic cats. Exp Brain Res 1976, 24: 245-255.PubMed
65.
go back to reference Frigon A, Sirois J, Gossard JP: Effects of ankle and hip muscle afferent inputs on rhythm generation during fictive locomotion. J Neurophysiol 2010,103(3):1591-1605. 10.1152/jn.01028.2009PubMed Frigon A, Sirois J, Gossard JP: Effects of ankle and hip muscle afferent inputs on rhythm generation during fictive locomotion. J Neurophysiol 2010,103(3):1591-1605. 10.1152/jn.01028.2009PubMed
66.
go back to reference Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR: Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 1997,77(2):797-811.PubMed Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR: Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 1997,77(2):797-811.PubMed
67.
go back to reference Bastiaanse CM, Duysens J, Dietz V: Modulation of cutaneous reflexes by load receptor input during human walking. Exp Brain Res 2000,135(2):189-198. 10.1007/s002210000511PubMed Bastiaanse CM, Duysens J, Dietz V: Modulation of cutaneous reflexes by load receptor input during human walking. Exp Brain Res 2000,135(2):189-198. 10.1007/s002210000511PubMed
68.
go back to reference Prochazka A, Gillard D, Bennett DJ: Positive force feedback control of muscles. J Neurophysiol 1997,77(6):3226-3236.PubMed Prochazka A, Gillard D, Bennett DJ: Positive force feedback control of muscles. J Neurophysiol 1997,77(6):3226-3236.PubMed
69.
go back to reference Harkema SJ: Plasticity of interneuronal networks of the functionally isolated human spinal cord. Brain Res Rev 2008,57(1):255-264. 10.1016/j.brainresrev.2007.07.012PubMedCentralPubMed Harkema SJ: Plasticity of interneuronal networks of the functionally isolated human spinal cord. Brain Res Rev 2008,57(1):255-264. 10.1016/j.brainresrev.2007.07.012PubMedCentralPubMed
70.
go back to reference Gurfinkel VS, Levik YS, Kazennikov OV, Selionov VA: Locomotor-like movements evoked by leg muscle vibration in humans. Eur J Neurosci 1998,10(5):1608-1612. 10.1046/j.1460-9568.1998.00179.xPubMed Gurfinkel VS, Levik YS, Kazennikov OV, Selionov VA: Locomotor-like movements evoked by leg muscle vibration in humans. Eur J Neurosci 1998,10(5):1608-1612. 10.1046/j.1460-9568.1998.00179.xPubMed
71.
go back to reference Selionov VA, Ivanenko YP, Solopova IA, Gurfinkel VS: Tonic central and sensory stimuli facilitate involuntary air-stepping in humans. J Neurophysiol 2009,101(6):2847-2858. 10.1152/jn.90895.2008PubMed Selionov VA, Ivanenko YP, Solopova IA, Gurfinkel VS: Tonic central and sensory stimuli facilitate involuntary air-stepping in humans. J Neurophysiol 2009,101(6):2847-2858. 10.1152/jn.90895.2008PubMed
72.
go back to reference Gerasimenko Y, Gorodnichev R, Machueva E, Pivovarova E, Semyenov D, Savochin A, Roy RR, Edgerton VR: Novel and direct access to the human locomotor spinal circuitry. J Neurosci 2010,30(10):3700-3708. 10.1523/JNEUROSCI.4751-09.2010PubMedCentralPubMed Gerasimenko Y, Gorodnichev R, Machueva E, Pivovarova E, Semyenov D, Savochin A, Roy RR, Edgerton VR: Novel and direct access to the human locomotor spinal circuitry. J Neurosci 2010,30(10):3700-3708. 10.1523/JNEUROSCI.4751-09.2010PubMedCentralPubMed
73.
go back to reference Nielsen JF, Sinkjaer T, Jakobsen J: Treatment of spasticity with repetitive magnetic stimulation; a double-blind placebo-controlled study. Mult Scler 1996,2(5):227-232.PubMed Nielsen JF, Sinkjaer T, Jakobsen J: Treatment of spasticity with repetitive magnetic stimulation; a double-blind placebo-controlled study. Mult Scler 1996,2(5):227-232.PubMed
74.
go back to reference Krause P, Edrich T, Straube A: Lumbar repetitive magnetic stimulation reduces spastic tone increase of the lower limbs. Spinal Cord 2004,42(2):67-72. 10.1038/sj.sc.3101564PubMed Krause P, Edrich T, Straube A: Lumbar repetitive magnetic stimulation reduces spastic tone increase of the lower limbs. Spinal Cord 2004,42(2):67-72. 10.1038/sj.sc.3101564PubMed
75.
go back to reference Nielsen JF, Sinkjaer T: Long-lasting depression of soleus motoneurons excitability following repetitive magnetic stimuli of the spinal cord in multiple sclerosis patients. Mult Scler 1997,3(1):18-30. 10.1177/135245859700300103PubMed Nielsen JF, Sinkjaer T: Long-lasting depression of soleus motoneurons excitability following repetitive magnetic stimuli of the spinal cord in multiple sclerosis patients. Mult Scler 1997,3(1):18-30. 10.1177/135245859700300103PubMed
76.
go back to reference Minassian K, Persy I, Rattay F, Pinter MM, Kern H, Dimitrijevic MR: Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum Mov Sci 2007,26(2):275-295. 10.1016/j.humov.2007.01.005PubMed Minassian K, Persy I, Rattay F, Pinter MM, Kern H, Dimitrijevic MR: Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum Mov Sci 2007,26(2):275-295. 10.1016/j.humov.2007.01.005PubMed
77.
go back to reference Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR: Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 2011,377(9781):1938-1947. 10.1016/S0140-6736(11)60547-3PubMedCentralPubMed Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR: Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 2011,377(9781):1938-1947. 10.1016/S0140-6736(11)60547-3PubMedCentralPubMed
78.
go back to reference Rossignol S, Giroux N, Chau C, Marcoux J, Brustein E, Reader TA: Pharmacological aids to locomotor training after spinal injury in the cat. J Physiol 2001,533(1):65-74. 10.1111/j.1469-7793.2001.0065b.xPubMedCentralPubMed Rossignol S, Giroux N, Chau C, Marcoux J, Brustein E, Reader TA: Pharmacological aids to locomotor training after spinal injury in the cat. J Physiol 2001,533(1):65-74. 10.1111/j.1469-7793.2001.0065b.xPubMedCentralPubMed
79.
go back to reference Lapointe NP, Guertin PA: Synergistic effects of D1/5 and 5-HT1A/7 receptor agonists on locomotor movement induction in complete spinal cord-transected mice. J Neurophysiol 2008,100(1):160-168. 10.1152/jn.90339.2008PubMed Lapointe NP, Guertin PA: Synergistic effects of D1/5 and 5-HT1A/7 receptor agonists on locomotor movement induction in complete spinal cord-transected mice. J Neurophysiol 2008,100(1):160-168. 10.1152/jn.90339.2008PubMed
80.
go back to reference Domingo A, Al-Yahya AA, Asiri YA, Eng JJ, Lam T: A systematic review on the effects of pharmacological agents on walking function in people with spinal cord injury. J Neurotrauma 2012,29(5):865-879. 10.1089/neu.2011.2052PubMedCentralPubMed Domingo A, Al-Yahya AA, Asiri YA, Eng JJ, Lam T: A systematic review on the effects of pharmacological agents on walking function in people with spinal cord injury. J Neurotrauma 2012,29(5):865-879. 10.1089/neu.2011.2052PubMedCentralPubMed
81.
go back to reference Cogiamanian F, Vergari M, Pulecchi F, Marceglia S, Priori A: Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol 2008,119(11):2636-2640. 10.1016/j.clinph.2008.07.249PubMed Cogiamanian F, Vergari M, Pulecchi F, Marceglia S, Priori A: Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol 2008,119(11):2636-2640. 10.1016/j.clinph.2008.07.249PubMed
82.
go back to reference Winkler T, Hering P, Straube A: Spinal DC stimulation in humans modulates post-activation depression of the H-reflex depending on current polarity. Clin Neurophysiol 2010,121(6):957-961. 10.1016/j.clinph.2010.01.014PubMed Winkler T, Hering P, Straube A: Spinal DC stimulation in humans modulates post-activation depression of the H-reflex depending on current polarity. Clin Neurophysiol 2010,121(6):957-961. 10.1016/j.clinph.2010.01.014PubMed
83.
go back to reference Cogiamanian F, Vergari M, Schiaffi E, Marceglia S, Ardolino G, Barbieri S, Priori A: Transcutaneous spinal cord direct current stimulation inhibits the lower limb nociceptive flexion reflex in human beings. Pain 2010,152(2):370-375.PubMed Cogiamanian F, Vergari M, Schiaffi E, Marceglia S, Ardolino G, Barbieri S, Priori A: Transcutaneous spinal cord direct current stimulation inhibits the lower limb nociceptive flexion reflex in human beings. Pain 2010,152(2):370-375.PubMed
84.
go back to reference Cortes M, Thickbroom GW, Valls-Sole J, Pascual-Leone A, Edwards DJ: Spinal associative stimulation: a non-invasive stimulation paradigm to modulate spinal excitability. Clin Neurophysiol 2011,122(11):2254-2259. 10.1016/j.clinph.2011.02.038PubMedCentralPubMed Cortes M, Thickbroom GW, Valls-Sole J, Pascual-Leone A, Edwards DJ: Spinal associative stimulation: a non-invasive stimulation paradigm to modulate spinal excitability. Clin Neurophysiol 2011,122(11):2254-2259. 10.1016/j.clinph.2011.02.038PubMedCentralPubMed
85.
go back to reference Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, Henning S, Tergau F, Paulus W: Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 2003,553(1):293-301. 10.1113/jphysiol.2003.049916PubMedCentralPubMed Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, Henning S, Tergau F, Paulus W: Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 2003,553(1):293-301. 10.1113/jphysiol.2003.049916PubMedCentralPubMed
86.
go back to reference Lamy JC, Ho C, Badel A, Arrigo RT, Boakye M: Modulation of Soleus H-reflex by spinal DC stimulation in humans. J Neurophysiol 2012. 10.1152/jn.10898.2011 Lamy JC, Ho C, Badel A, Arrigo RT, Boakye M: Modulation of Soleus H-reflex by spinal DC stimulation in humans. J Neurophysiol 2012. 10.1152/jn.10898.2011
87.
go back to reference Truini A, Vergari M, Biasiotta A, La Cesa S, Gabriele M, Di Stefano G, Cambieri C, Cruccu G, Inghilleri M, Priori A: Transcutaneous spinal direct current stimulation inhibits nociceptive spinal pathway conduction and increases pain tolerance in humans. Eur J Pain 2011,15(10):1023-1027. 10.1016/j.ejpain.2011.04.009PubMed Truini A, Vergari M, Biasiotta A, La Cesa S, Gabriele M, Di Stefano G, Cambieri C, Cruccu G, Inghilleri M, Priori A: Transcutaneous spinal direct current stimulation inhibits nociceptive spinal pathway conduction and increases pain tolerance in humans. Eur J Pain 2011,15(10):1023-1027. 10.1016/j.ejpain.2011.04.009PubMed
88.
go back to reference Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 2005,86(4):672-680. 10.1016/j.apmr.2004.08.004PubMed Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 2005,86(4):672-680. 10.1016/j.apmr.2004.08.004PubMed
89.
go back to reference Musienko P, Heutschi J, Friedli L, van den Brand R, Courtine G: Multi-system neurorehabilitative strategies to restore motor functions following severe spinal cord injury. Exp Neurol 2012,235(1):100-109. 10.1016/j.expneurol.2011.08.025PubMed Musienko P, Heutschi J, Friedli L, van den Brand R, Courtine G: Multi-system neurorehabilitative strategies to restore motor functions following severe spinal cord injury. Exp Neurol 2012,235(1):100-109. 10.1016/j.expneurol.2011.08.025PubMed
Metadata
Title
The physiological basis of neurorehabilitation - locomotor training after spinal cord injury
Authors
Michèle Hubli
Volker Dietz
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-5

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue