Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Inducible nitric oxide synthase is involved in the modulation of depressive behaviors induced by unpredictable chronic mild stress

Authors: Yun-Li Peng, Yu-Ning Liu, Lei Liu, Xia Wang, Chun-Lei Jiang, Yun-Xia Wang

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Experiences and inflammatory mediators are fundamental in the provocation of major depressive disorders (MDDs). We investigated the roles and mechanisms of inducible nitric oxide synthase (iNOS) in stress-induced depression.

Methods

We used a depressive-like state mouse model induced by unpredictable chronic mild stress (UCMS). Depressive-like behaviors were evaluated after 4 weeks of UCMS, in the presence and absence of the iNOS inhibitor N-(3-(aminomethyl)benzyl)acetamidine (1400 W) compared with the control group. Immunohistochemistry was used to check the loss of Nissl bodies in cerebral cortex neurons. The levels of iNOS mRNA expression in the cortex and nitrites in the plasma were measured with real-time reverse transcription PCR (RT-PCR) and Griess reagent respectively.

Results

Results showed that the 4-week UCMS significantly induced depressive-like behaviors, including decreased sucrose preference in a sucrose preference test, increased duration of immobility in a forced swim test, and decreased hole-searching time in a locomotor activity test. Meanwhile, in the locomotor activity test, UCMS had no effect on normal locomotor activities, such as resting time, active time and total travel distance. Furthermore, the levels of iNOS mRNA expression in the cortex and nitrites in the plasma of UCMS-exposed mice were significantly increased compared with that of the control group. Neurons of cerebral cortex in UCMS-exposed mice were shrunken with dark staining, together with loss of Nissl bodies. The above-mentioned stress-related depressive-like behaviors, increase of iNOS mRNA expression in the cortex and nitrites in the plasma, and neuron damage, could be abrogated remarkably by pretreating the mice with an iNOS inhibitor (1400 W). Moreover, neurons with abundant Nissl bodies were significantly increased in the 1400 W + UCMS group.

Conclusions

These results support the notion that stress-related NO (derived from iNOS) may contribute to depressive-like behaviors in a mouse model, potentially concurrent with neurodegenerative effects within the cerebral cortex.
Literature
1.
go back to reference Garciá-Bueno B, Caso JR, Leza JC: Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci Biobehav Rev 2008, 32:1136–1151.CrossRefPubMed Garciá-Bueno B, Caso JR, Leza JC: Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci Biobehav Rev 2008, 32:1136–1151.CrossRefPubMed
2.
go back to reference Lucas SM, Rothwell NJ, Gibson RM: The role of inflammation in CNS injury and disease. Br J Pharmacol 2006, 147:232–240.CrossRef Lucas SM, Rothwell NJ, Gibson RM: The role of inflammation in CNS injury and disease. Br J Pharmacol 2006, 147:232–240.CrossRef
3.
go back to reference WHO: Mental Health, Depression. WHO, Geneva; 2010. WHO: Mental Health, Depression. WHO, Geneva; 2010.
4.
go back to reference van Amsterdam JGC, Opperhuizen A: Nitric oxide and biopterin in depression and stress. Psychiatry Res 1999, 85:33–38.CrossRefPubMed van Amsterdam JGC, Opperhuizen A: Nitric oxide and biopterin in depression and stress. Psychiatry Res 1999, 85:33–38.CrossRefPubMed
5.
go back to reference Zhou L, Zhu DY: Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 2009, 20:223–230.CrossRefPubMed Zhou L, Zhu DY: Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 2009, 20:223–230.CrossRefPubMed
6.
go back to reference de Vente J, Hopkins D, Van Markerink IM, Emson PC, Schmidt HH, Steinbusch HW: Distribution of nitric oxide synthase and nitric oxide-receptive, cyclic GMP-producing structures in the rat brain. Neuroscience 1998, 87:207–241.CrossRefPubMed de Vente J, Hopkins D, Van Markerink IM, Emson PC, Schmidt HH, Steinbusch HW: Distribution of nitric oxide synthase and nitric oxide-receptive, cyclic GMP-producing structures in the rat brain. Neuroscience 1998, 87:207–241.CrossRefPubMed
7.
go back to reference Dhir A, Kulkarni SK: Involvement of nitric oxide (NO) signaling pathway in the antidepressant action of bupropion, a dopamine reuptake inhibitor. Eur J Pharmacol 2007, 568:177–185.CrossRefPubMed Dhir A, Kulkarni SK: Involvement of nitric oxide (NO) signaling pathway in the antidepressant action of bupropion, a dopamine reuptake inhibitor. Eur J Pharmacol 2007, 568:177–185.CrossRefPubMed
8.
go back to reference Heiberg IL, Wegener G, Rosenberg R: Reduction of cGMP and nitric oxide has antidepressant-like effects in the forced swimming test in rats. Behav Brain Res 2002, 134:479–484.CrossRefPubMed Heiberg IL, Wegener G, Rosenberg R: Reduction of cGMP and nitric oxide has antidepressant-like effects in the forced swimming test in rats. Behav Brain Res 2002, 134:479–484.CrossRefPubMed
9.
go back to reference Joca SR, Guimaraes FS: Inhibition of neuronal nitric oxide synthase in the rat hippocampus induces antidepressant-like effects. Psychopharmacology 2006, 185:298–305.CrossRefPubMed Joca SR, Guimaraes FS: Inhibition of neuronal nitric oxide synthase in the rat hippocampus induces antidepressant-like effects. Psychopharmacology 2006, 185:298–305.CrossRefPubMed
10.
go back to reference Volke V, Wegener G, Bourin M, Vasar E: Antidepressant- and anxiolytic-like effects of selective neuronal NOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole in mice. Behav Brain Res 2003, 140:141–147.CrossRefPubMed Volke V, Wegener G, Bourin M, Vasar E: Antidepressant- and anxiolytic-like effects of selective neuronal NOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole in mice. Behav Brain Res 2003, 140:141–147.CrossRefPubMed
11.
go back to reference Adler UC, Marques AH, Calil HM: Inflammatory aspects of depression. Inflamm Allergy Drug Targets 2008, 7:19–23.CrossRefPubMed Adler UC, Marques AH, Calil HM: Inflammatory aspects of depression. Inflamm Allergy Drug Targets 2008, 7:19–23.CrossRefPubMed
12.
go back to reference Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW: From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008, 9:46–56.CrossRefPubMedPubMedCentral Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW: From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008, 9:46–56.CrossRefPubMedPubMedCentral
13.
go back to reference Dantzer R, Capuron L, Irwin MR, Miller AH, Ollat H, Perry VH, Rousey S, Yirmiya R: Identification and treatment of symptoms associated with inflammation in medically ill patients. Psychoneuroendocrinology 2008, 33:18–29.CrossRefPubMed Dantzer R, Capuron L, Irwin MR, Miller AH, Ollat H, Perry VH, Rousey S, Yirmiya R: Identification and treatment of symptoms associated with inflammation in medically ill patients. Psychoneuroendocrinology 2008, 33:18–29.CrossRefPubMed
14.
go back to reference Das UN: Is depression a low-grade systemic inflammatory condition? Am J Clin Nutr 2007, 85:1665–1666.PubMed Das UN: Is depression a low-grade systemic inflammatory condition? Am J Clin Nutr 2007, 85:1665–1666.PubMed
15.
go back to reference Raison CL, Capuron L, Miller AH: Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 2006, 27:24–31.CrossRefPubMed Raison CL, Capuron L, Miller AH: Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 2006, 27:24–31.CrossRefPubMed
16.
go back to reference Kemeny ME, Schedlowski M: Understanding the interaction between psychosocial stress and immunerelated diseases: a stepwise progression. Brain Behav Immun 2007, 21:1009–1018.CrossRefPubMed Kemeny ME, Schedlowski M: Understanding the interaction between psychosocial stress and immunerelated diseases: a stepwise progression. Brain Behav Immun 2007, 21:1009–1018.CrossRefPubMed
17.
go back to reference Campbell S, MacQueen G: Role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 2004, 29:417–426.PubMedPubMedCentral Campbell S, MacQueen G: Role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 2004, 29:417–426.PubMedPubMedCentral
18.
go back to reference Grippo AJ, Moffitt JA, Johnson AK: Evaluation of baroreceptor reflex function in the chronic mild stress rodent model of depression. Psychosom Med 2008, 70:435–443.CrossRefPubMedPubMedCentral Grippo AJ, Moffitt JA, Johnson AK: Evaluation of baroreceptor reflex function in the chronic mild stress rodent model of depression. Psychosom Med 2008, 70:435–443.CrossRefPubMedPubMedCentral
19.
go back to reference Wang W, Zolty E, Falk S, Summer S, Zhou Z, Gengaro P, Faubel S, Alo N, Channon K, Schrier R: Endotoxemia-related acute kidney injury in transgenic mice with endothelial over expression of GTP cyclohydrolase-1. Am J Physiol Renal Physiol 2008, 294:571–576.CrossRef Wang W, Zolty E, Falk S, Summer S, Zhou Z, Gengaro P, Faubel S, Alo N, Channon K, Schrier R: Endotoxemia-related acute kidney injury in transgenic mice with endothelial over expression of GTP cyclohydrolase-1. Am J Physiol Renal Physiol 2008, 294:571–576.CrossRef
20.
go back to reference Grippo AJ, Cushing BS, Carter CS: Depression-like behavior and stressor-induced neuroendocrine activation in female prairie voles exposed to chronic social isolation. Psychosom Med 2007, 69:149–157.CrossRefPubMedPubMedCentral Grippo AJ, Cushing BS, Carter CS: Depression-like behavior and stressor-induced neuroendocrine activation in female prairie voles exposed to chronic social isolation. Psychosom Med 2007, 69:149–157.CrossRefPubMedPubMedCentral
21.
go back to reference Tiziana R, Daniela V, Natalia R, Cinzia G, Daniela B, Valeria C, Chiara C, Francesca C, Patrizia R, Sanzio C, Mariaelvina S, Daniela P: Chronic Δ9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: behavioral and biochemical correlates. Neuropsychopharmacology 2008, 33:2760–2771.CrossRef Tiziana R, Daniela V, Natalia R, Cinzia G, Daniela B, Valeria C, Chiara C, Francesca C, Patrizia R, Sanzio C, Mariaelvina S, Daniela P: Chronic Δ9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: behavioral and biochemical correlates. Neuropsychopharmacology 2008, 33:2760–2771.CrossRef
22.
go back to reference Engeland CG, Kavaliers M, Ossenkopp KP: Sex differences in the effects of muramyl dipeptide and lipopolysaccharide on locomotor activity and the development of behavioral tolerance in rats. Pharmacol Biochem Behav 2003, 74:433–447.CrossRefPubMed Engeland CG, Kavaliers M, Ossenkopp KP: Sex differences in the effects of muramyl dipeptide and lipopolysaccharide on locomotor activity and the development of behavioral tolerance in rats. Pharmacol Biochem Behav 2003, 74:433–447.CrossRefPubMed
23.
go back to reference Reneric JP, Bouvard M, Stinus L: In the rat forced swimming test, chronic but not subacute administration of dual 5-HT/NA antidepressant treatments may produce greater effects than selective drugs. Behav Brain Res 2002, 136:521–532.CrossRefPubMed Reneric JP, Bouvard M, Stinus L: In the rat forced swimming test, chronic but not subacute administration of dual 5-HT/NA antidepressant treatments may produce greater effects than selective drugs. Behav Brain Res 2002, 136:521–532.CrossRefPubMed
24.
go back to reference Santiago RM, Barbieiro J, Lima MMS, Dombrowski PA, Andreatini R, Vital MABF: Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson's disease are predominantly associated with serotonin and dopamine. Prog Neuropsychopharmacol Biol Psychiatry 2010, 34:1104–1114.CrossRefPubMed Santiago RM, Barbieiro J, Lima MMS, Dombrowski PA, Andreatini R, Vital MABF: Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson's disease are predominantly associated with serotonin and dopamine. Prog Neuropsychopharmacol Biol Psychiatry 2010, 34:1104–1114.CrossRefPubMed
25.
go back to reference Flodström M, Tyrberg B, Eizirik DL, Sandler S: Reduced sensitivity of inducible nitric oxide synthase-deficient mice to multiple low-dose streptozotocin-induced diabetes. Diabetes 1999, 48:706–713.CrossRefPubMed Flodström M, Tyrberg B, Eizirik DL, Sandler S: Reduced sensitivity of inducible nitric oxide synthase-deficient mice to multiple low-dose streptozotocin-induced diabetes. Diabetes 1999, 48:706–713.CrossRefPubMed
26.
go back to reference Stein-Behrens B, Mattson MP, Chang I, Yeh M, Sapolsky R: Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus. J Neurosci 1994, 74:5373–5380. Stein-Behrens B, Mattson MP, Chang I, Yeh M, Sapolsky R: Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus. J Neurosci 1994, 74:5373–5380.
27.
go back to reference Cai JM, Kang ZM, Liu K, Liu WW, Li RP, Zhang JH, Luo X, Sun XJ: Neuroprotective effects of hydrogen saline in neonatal hypoxia–ischemia rat model. Brain Res 2009, 1256:129–137.CrossRefPubMed Cai JM, Kang ZM, Liu K, Liu WW, Li RP, Zhang JH, Luo X, Sun XJ: Neuroprotective effects of hydrogen saline in neonatal hypoxia–ischemia rat model. Brain Res 2009, 1256:129–137.CrossRefPubMed
28.
go back to reference Bechtholt AJ, Smith K, Gaughan S, Lucki I: Sucrose intake and fasting glucose levels in 5-HT(1A) and 5-HT(1B) receptor mutant mice. Physiol Behav 2008, 93:659–665.CrossRefPubMed Bechtholt AJ, Smith K, Gaughan S, Lucki I: Sucrose intake and fasting glucose levels in 5-HT(1A) and 5-HT(1B) receptor mutant mice. Physiol Behav 2008, 93:659–665.CrossRefPubMed
29.
go back to reference Krishnan V, Han M-H, Graham DL, Berton O, Renthal W, Russo SJ, Laplant Q, Graham A, Lutter M, Lagace DC, Ghose S, Reister R, Tannous P, Green TA, Neve RL, Chakraverty S, Kumar A, Eisch AJ, Self DW, Lee FS, Tamminga CA, Cooper DC, Gershenfeld HK, Nestler EJ: Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 2007, 131:391–404.CrossRefPubMed Krishnan V, Han M-H, Graham DL, Berton O, Renthal W, Russo SJ, Laplant Q, Graham A, Lutter M, Lagace DC, Ghose S, Reister R, Tannous P, Green TA, Neve RL, Chakraverty S, Kumar A, Eisch AJ, Self DW, Lee FS, Tamminga CA, Cooper DC, Gershenfeld HK, Nestler EJ: Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 2007, 131:391–404.CrossRefPubMed
30.
go back to reference Petit-Demouliere B, Chenu F, Bourin M: Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology 2005, 177:245–255.CrossRefPubMed Petit-Demouliere B, Chenu F, Bourin M: Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology 2005, 177:245–255.CrossRefPubMed
31.
go back to reference Drossopoulou G, Antoniou K, Kitraki E, Papathanasiou G, Papalexi E, Dalla C, Papadopoulou-Daifoti Z: Sex differences in behavioral, neurochemical and neuroendocrine effects induced by the forced swim test in rats. Neuroscience 2004, 126:849–857.CrossRefPubMed Drossopoulou G, Antoniou K, Kitraki E, Papathanasiou G, Papalexi E, Dalla C, Papadopoulou-Daifoti Z: Sex differences in behavioral, neurochemical and neuroendocrine effects induced by the forced swim test in rats. Neuroscience 2004, 126:849–857.CrossRefPubMed
32.
go back to reference Porsolt RD, Le-Pichon M, Jalfre M: Depression: a new animal model sensitive to antidepressant treatments. Nature 1977, 266:730–732.CrossRefPubMed Porsolt RD, Le-Pichon M, Jalfre M: Depression: a new animal model sensitive to antidepressant treatments. Nature 1977, 266:730–732.CrossRefPubMed
33.
go back to reference Suzuki E, Yagi G, Nakaki T, Kanba S, Asai M: Elevated plasma nitrate levels in depressive states. J Affect Disord 2001, 63:221–224.CrossRefPubMed Suzuki E, Yagi G, Nakaki T, Kanba S, Asai M: Elevated plasma nitrate levels in depressive states. J Affect Disord 2001, 63:221–224.CrossRefPubMed
34.
go back to reference Angulo J, Peiró C, Sanchez-Ferrer CF, Gabancho S, Cuevas P, Gupta S, Tejada IS: Differential effects of serotonin reuptake inhibitors on erectile responses, NO-production, and neuronal NO synthase expression in rat corpus cavernosum tissue. Br J Pharmacol 2001, 134:1190–1194.CrossRefPubMedPubMedCentral Angulo J, Peiró C, Sanchez-Ferrer CF, Gabancho S, Cuevas P, Gupta S, Tejada IS: Differential effects of serotonin reuptake inhibitors on erectile responses, NO-production, and neuronal NO synthase expression in rat corpus cavernosum tissue. Br J Pharmacol 2001, 134:1190–1194.CrossRefPubMedPubMedCentral
35.
go back to reference Harvey BH, Retief R, Korff A, Wegener G: Increased hippocampal nitric oxide synthase activity and stress responsiveness after imipramine discontinuation: role of 5HT2A/C-receptors. Metab Brain Dis 2006, 21:211–220.CrossRefPubMed Harvey BH, Retief R, Korff A, Wegener G: Increased hippocampal nitric oxide synthase activity and stress responsiveness after imipramine discontinuation: role of 5HT2A/C-receptors. Metab Brain Dis 2006, 21:211–220.CrossRefPubMed
36.
go back to reference Zhou QG, Hu Y, Hua Y, Hu M, Luo CX, Han X, Zhu XJ, Wang B, Xu JS, Zhu DY: Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J Neurochem 2007, 103:12. Zhou QG, Hu Y, Hua Y, Hu M, Luo CX, Han X, Zhu XJ, Wang B, Xu JS, Zhu DY: Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J Neurochem 2007, 103:12.
37.
go back to reference Harkin A, Connor TJ, Walsh M, John NS, Kelly JP: Serotonergic mediation of the antidepressant-like effects of nitric oxide inhibitors. Neuropharmacology 2003, 44:1843–1854.CrossRef Harkin A, Connor TJ, Walsh M, John NS, Kelly JP: Serotonergic mediation of the antidepressant-like effects of nitric oxide inhibitors. Neuropharmacology 2003, 44:1843–1854.CrossRef
38.
go back to reference Mutlu O, Ulak G, Laugeray A, Belzung C: Effects of neuronal and inducible NOS inhibitor 1-[2-(trifluoromethyl) phenyl] imidazole (TRIM) in unpredictable chronic mild stress procedure in mice. Pharmacol Biochem Behav 2009, 92:82–87.CrossRefPubMed Mutlu O, Ulak G, Laugeray A, Belzung C: Effects of neuronal and inducible NOS inhibitor 1-[2-(trifluoromethyl) phenyl] imidazole (TRIM) in unpredictable chronic mild stress procedure in mice. Pharmacol Biochem Behav 2009, 92:82–87.CrossRefPubMed
39.
go back to reference Wang D, An SC, Zhang X: Prevention of chronic stress-induced depression-like behavior by inducible nitric oxide inhibitor. Neurosci Lett 2008, 433:59–64.CrossRefPubMed Wang D, An SC, Zhang X: Prevention of chronic stress-induced depression-like behavior by inducible nitric oxide inhibitor. Neurosci Lett 2008, 433:59–64.CrossRefPubMed
40.
go back to reference Fontella FU, Siqueira IR, Vasconcellos APS, Tabajara AS, Netto CA, Dalmaz C: Repeated restraint stress induces oxidative damage in rat hippocampus. Neurochem Res 2005, 30:105–111.CrossRefPubMed Fontella FU, Siqueira IR, Vasconcellos APS, Tabajara AS, Netto CA, Dalmaz C: Repeated restraint stress induces oxidative damage in rat hippocampus. Neurochem Res 2005, 30:105–111.CrossRefPubMed
41.
go back to reference Lucca G, Comim CM, Valvassori SS, Réus GZ, Vuolo F, Petronilho F, Dal-Pizzol F, Gavioli EC, Quevedo J: Effects of chronic mild stress on the oxidative parameters in the rat brain. Neurochem Int 2009, 54:358–362.CrossRefPubMed Lucca G, Comim CM, Valvassori SS, Réus GZ, Vuolo F, Petronilho F, Dal-Pizzol F, Gavioli EC, Quevedo J: Effects of chronic mild stress on the oxidative parameters in the rat brain. Neurochem Int 2009, 54:358–362.CrossRefPubMed
42.
go back to reference Munhoz CD, García-Bueno B, Madriga JL, Lepsch LB, Scavone C, Leza JC: Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Braz J Med Biol Res 2008, 41:1037–1046.CrossRefPubMed Munhoz CD, García-Bueno B, Madriga JL, Lepsch LB, Scavone C, Leza JC: Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Braz J Med Biol Res 2008, 41:1037–1046.CrossRefPubMed
44.
go back to reference Fu X, Zunich SM, O'Connor JC, Kavelaars A, Dantzer R, Kelly KW: Central administration of lipopolysaccharide induces depressive-like behavior in vivo and activates brain indoleamine 2,3 dioxygenase in murine organotypic hippocampal slice cultures. J Neuroinflammation 2010, 7:43–55.CrossRefPubMedPubMedCentral Fu X, Zunich SM, O'Connor JC, Kavelaars A, Dantzer R, Kelly KW: Central administration of lipopolysaccharide induces depressive-like behavior in vivo and activates brain indoleamine 2,3 dioxygenase in murine organotypic hippocampal slice cultures. J Neuroinflammation 2010, 7:43–55.CrossRefPubMedPubMedCentral
45.
go back to reference Spalletta G, Bossù P, Ciaramella A, Bria P, Caltagirone C, Robinson RG: The etiology of poststroke depression: a review of the literature and a new hypothesis involving inflammatory cytokines. Mol Psychiatry 2006, 11:984–991.CrossRefPubMed Spalletta G, Bossù P, Ciaramella A, Bria P, Caltagirone C, Robinson RG: The etiology of poststroke depression: a review of the literature and a new hypothesis involving inflammatory cytokines. Mol Psychiatry 2006, 11:984–991.CrossRefPubMed
46.
go back to reference Goshen I, Kreisel T, Ounallah-Saad H, Renbaum P, Zalzstein Y, Ben-Hur T, Levy-Lahad E, Yirmiya R: A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 2007, 32:1106–1115.CrossRefPubMed Goshen I, Kreisel T, Ounallah-Saad H, Renbaum P, Zalzstein Y, Ben-Hur T, Levy-Lahad E, Yirmiya R: A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 2007, 32:1106–1115.CrossRefPubMed
47.
go back to reference Tilleux S, Hermans E: Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 2007, 85:2059–2070.CrossRefPubMed Tilleux S, Hermans E: Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 2007, 85:2059–2070.CrossRefPubMed
48.
go back to reference Matute C, Domercq M, Sanchez-Gomez MV: Glutamate-mediated glial injury: mechanisms and clinical importance. Glia 2006, 53:212–224.CrossRefPubMed Matute C, Domercq M, Sanchez-Gomez MV: Glutamate-mediated glial injury: mechanisms and clinical importance. Glia 2006, 53:212–224.CrossRefPubMed
49.
go back to reference Anisman H, Merali Z, Hayley S: Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: comorbidity between depression and neurodegenerative disorders. Prog Neurobiol 2008, 85:1–74.CrossRefPubMed Anisman H, Merali Z, Hayley S: Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: comorbidity between depression and neurodegenerative disorders. Prog Neurobiol 2008, 85:1–74.CrossRefPubMed
50.
go back to reference Felger JC, Alagbe O, Hu F, Mook D, Freeman AA, Sanchez MM, Kalin NH, Ratti E, Nemeroff CB, Miller AH: Effects of interferon-alpha on rhesus monkeys: a non-human primate model of cytokine-induced depression. Biol Psychiatry 2007, 62:1324–1333.CrossRefPubMedPubMedCentral Felger JC, Alagbe O, Hu F, Mook D, Freeman AA, Sanchez MM, Kalin NH, Ratti E, Nemeroff CB, Miller AH: Effects of interferon-alpha on rhesus monkeys: a non-human primate model of cytokine-induced depression. Biol Psychiatry 2007, 62:1324–1333.CrossRefPubMedPubMedCentral
51.
go back to reference Hayley S, Poulter MO, Merali Z, Anisman H: The pathogenesis of clinical depression: stressor-and cytokine-induced alterations of neuroplasticity. Neuroscience 2005, 135:659–678.CrossRefPubMed Hayley S, Poulter MO, Merali Z, Anisman H: The pathogenesis of clinical depression: stressor-and cytokine-induced alterations of neuroplasticity. Neuroscience 2005, 135:659–678.CrossRefPubMed
52.
go back to reference Ford DE, Erlinger TP: Depression and C-reactive protein in US adults: data from the Third National Health and Nutrition Examination Survey. Arch Intern Med 2004, 164:1010–1014.CrossRefPubMed Ford DE, Erlinger TP: Depression and C-reactive protein in US adults: data from the Third National Health and Nutrition Examination Survey. Arch Intern Med 2004, 164:1010–1014.CrossRefPubMed
53.
go back to reference Miller AH, Maletic V, Raison CL: Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009, 65:732–741.CrossRefPubMedPubMedCentral Miller AH, Maletic V, Raison CL: Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009, 65:732–741.CrossRefPubMedPubMedCentral
54.
go back to reference Miller GE, Chen E, Sze J, Marin T, Arevalo JM, Doll R, Ma R, Cole SW: A functional genomic fingerprint of chronic stress in humans: blunted glucocorticoid and increased NF-kappaB signaling. Biol Psychiatry 2008, 64:266–272.CrossRefPubMedPubMedCentral Miller GE, Chen E, Sze J, Marin T, Arevalo JM, Doll R, Ma R, Cole SW: A functional genomic fingerprint of chronic stress in humans: blunted glucocorticoid and increased NF-kappaB signaling. Biol Psychiatry 2008, 64:266–272.CrossRefPubMedPubMedCentral
55.
go back to reference Michael H: Neuroendocrine function and chronic inflammatory stress. Exp Physiol 2002, 87:519–525.CrossRef Michael H: Neuroendocrine function and chronic inflammatory stress. Exp Physiol 2002, 87:519–525.CrossRef
Metadata
Title
Inducible nitric oxide synthase is involved in the modulation of depressive behaviors induced by unpredictable chronic mild stress
Authors
Yun-Li Peng
Yu-Ning Liu
Lei Liu
Xia Wang
Chun-Lei Jiang
Yun-Xia Wang
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-75

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue