Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Small interfering RNA-mediated suppression of Ccl2 in Müller cells attenuates microglial recruitment and photoreceptor death following retinal degeneration

Authors: Matt Rutar, Riccardo Natoli, Jan M Provis

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

The recruitment and activation of inflammatory cells is thought to exacerbate photoreceptor death in retinal degenerative conditions such as age-related macular degeneration (AMD). We investigated the role of Müller cell-derived chemokine (C-C motif) ligand (Ccl)2 expression on monocyte/microglia infiltration and photoreceptor death in light-mediated retinal degeneration, using targeted small interfering (si)RNA.

Methods

Adult Sprague–Dawley rats were injected intravitreally with 1 μg of either Ccl2 siRNA or scrambled siRNA, and were then exposed to 1000 lux of light for a period of 24 hours. The mice were given an overdose of barbiturate, and the retinas harvested and evaluated for the effects of bright-light exposure. Ccl2 expression was assessed by quantitative PCR, immunohistochemistry, and in situ hybridization. Monocytes/microglia were counted on retinal cryostat sections immunolabeled with the markers ED1 and ionized calcium binding adaptor (IBA)1, and photoreceptor apoptosis was assessed using terminal dUTP nick end labeling.

Results

Intravitreal injection of Ccl2 siRNA significantly reduced the expression of Ccl2 following light damage to 29% compared with controls. In retinas injected with Ccl2 siRNA, in situ hybridization and immunohistochemistry on retinal cryostat sections showed a substantial decrease in Ccl2 within Müller cells. Cell counts showed significantly fewer ED1-positive and IBA1-positive cells in the retinal vasculature and outer nuclear layer of Ccl2 siRNA-injected retinas, compared with controls. Moreover, there was significantly less photoreceptor apoptosis in Ccl2 siRNA-injected retinas compared with controls.

Conclusions

Our data indicate that Ccl2 expression by Müller cells promotes the infiltration of monocytes/microglia, thereby contributing to the neuroinflammatory response and photoreceptor death following retinal injury. Modulation of exaggerated chemokine responses using siRNA may have value in reducing inflammation-mediated cell death in retinal degenerative disease such as AMD.
Literature
1.
go back to reference Bauer J, Sminia T, Wouterlood FG, Dijkstra CD: Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. J Neurosci Res 1994, 38:365–375.PubMedCrossRef Bauer J, Sminia T, Wouterlood FG, Dijkstra CD: Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. J Neurosci Res 1994, 38:365–375.PubMedCrossRef
2.
go back to reference Gupta N, Brown KE, Milam AH: Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res 2003, 76:463–471.PubMedCrossRef Gupta N, Brown KE, Milam AH: Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res 2003, 76:463–471.PubMedCrossRef
3.
go back to reference Neumann H, Kotter MR, Franklin RJ: Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 2009, 132:288–295.PubMedCrossRef Neumann H, Kotter MR, Franklin RJ: Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 2009, 132:288–295.PubMedCrossRef
4.
go back to reference Penfold PL, Liew SC, Madigan MC, Provis JM: Modulation of major histocompatibility complex class II expression in retinas with age-related macular degeneration. Invest Ophthalmol Vis Sci 1997, 38:2125–2133.PubMed Penfold PL, Liew SC, Madigan MC, Provis JM: Modulation of major histocompatibility complex class II expression in retinas with age-related macular degeneration. Invest Ophthalmol Vis Sci 1997, 38:2125–2133.PubMed
5.
go back to reference Penfold PL, Provis JM, Liew SC: Human retinal microglia express phenotypic characteristics in common with dendritic antigen-presenting cells. J Neuroimmunol 1993, 45:183–191.PubMedCrossRef Penfold PL, Provis JM, Liew SC: Human retinal microglia express phenotypic characteristics in common with dendritic antigen-presenting cells. J Neuroimmunol 1993, 45:183–191.PubMedCrossRef
6.
go back to reference Mattiace LA, Davies P, Dickson DW: Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors. Am J Pathol 1990, 136:1101–1114.PubMedPubMedCentral Mattiace LA, Davies P, Dickson DW: Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors. Am J Pathol 1990, 136:1101–1114.PubMedPubMedCentral
7.
go back to reference Matsubara T, Pararajasegaram G, Wu GS, Rao NA: Retinal microglia differentially express phenotypic markers of antigen-presenting cells in vitro. Invest Ophthalmol Vis Sci 1999, 40:3186–3193.PubMed Matsubara T, Pararajasegaram G, Wu GS, Rao NA: Retinal microglia differentially express phenotypic markers of antigen-presenting cells in vitro. Invest Ophthalmol Vis Sci 1999, 40:3186–3193.PubMed
8.
go back to reference Nakajima K, Kohsaka S: Microglia: neuroprotective and neurotrophic cells in the central nervous system. Curr Drug Targets Cardiovasc Haematol Disord 2004, 4:65–84.PubMedCrossRef Nakajima K, Kohsaka S: Microglia: neuroprotective and neurotrophic cells in the central nervous system. Curr Drug Targets Cardiovasc Haematol Disord 2004, 4:65–84.PubMedCrossRef
9.
10.
11.
go back to reference Wirenfeldt M, Babcock AA, Vinters HV: Microglia - insights into immune system structure, function, and reactivity in the central nervous system. Histol Histopathol 2011, 26:519–530.PubMed Wirenfeldt M, Babcock AA, Vinters HV: Microglia - insights into immune system structure, function, and reactivity in the central nervous system. Histol Histopathol 2011, 26:519–530.PubMed
12.
go back to reference Ezzat MK, Hann CR, Vuk-Pavlovic S, Pulido JS: Immune cells in the human choroid. Br J Ophthalmol 2008, 92:976–980.PubMedCrossRef Ezzat MK, Hann CR, Vuk-Pavlovic S, Pulido JS: Immune cells in the human choroid. Br J Ophthalmol 2008, 92:976–980.PubMedCrossRef
13.
go back to reference Penfold PL, Killingsworth MC, Sarks SH: Senile macular degeneration. The involvement of giant cells in atrophy of the retinal pigment epithelium. Invest Ophthalmol Vis Sci 1986, 27:364–271.PubMed Penfold PL, Killingsworth MC, Sarks SH: Senile macular degeneration. The involvement of giant cells in atrophy of the retinal pigment epithelium. Invest Ophthalmol Vis Sci 1986, 27:364–271.PubMed
14.
go back to reference Wong J, Madigan M, Billson F, Penfold P: Quantification of leukocyte common antigen (CD45) expression in macular degeneration. Invest Ophthalmol Vis Sci 2001, 42:S227. Wong J, Madigan M, Billson F, Penfold P: Quantification of leukocyte common antigen (CD45) expression in macular degeneration. Invest Ophthalmol Vis Sci 2001, 42:S227.
15.
go back to reference Cherepanoff S, McMenamin P, Gillies MC, Kettle E, Sarks SH: Bruch's membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol 2009, 94:918–925.PubMedCrossRef Cherepanoff S, McMenamin P, Gillies MC, Kettle E, Sarks SH: Bruch's membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol 2009, 94:918–925.PubMedCrossRef
16.
go back to reference Lewis GP, Sethi CS, Carter KM, Charteris DG, Fisher SK: Microglial cell activation following retinal detachment: a comparison between species. Mol Vis 2005, 11:491–500.PubMed Lewis GP, Sethi CS, Carter KM, Charteris DG, Fisher SK: Microglial cell activation following retinal detachment: a comparison between species. Mol Vis 2005, 11:491–500.PubMed
17.
go back to reference Vrabec F: Activated human retinal microglia under pathological conditions. Albrecht Von Graefes Arch Klin Exp Ophthalmol 1975, 196:49–60.PubMedCrossRef Vrabec F: Activated human retinal microglia under pathological conditions. Albrecht Von Graefes Arch Klin Exp Ophthalmol 1975, 196:49–60.PubMedCrossRef
18.
go back to reference Yuan L, Neufeld AH: Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res 2001, 64:523–532.PubMedCrossRef Yuan L, Neufeld AH: Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res 2001, 64:523–532.PubMedCrossRef
19.
go back to reference Neufeld AH: Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. Arch Ophthalmol 1999, 117:1050–1056.PubMedCrossRef Neufeld AH: Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. Arch Ophthalmol 1999, 117:1050–1056.PubMedCrossRef
20.
go back to reference Zeng HY, Green WR, Tso MO: Microglial activation in human diabetic retinopathy. Arch Ophthalmol 2008, 126:227–232.PubMedCrossRef Zeng HY, Green WR, Tso MO: Microglial activation in human diabetic retinopathy. Arch Ophthalmol 2008, 126:227–232.PubMedCrossRef
21.
go back to reference Yang LP, Zhu XA, Tso MO: A possible mechanism of microglia-photoreceptor crosstalk. Mol Vis 2007, 13:2048–2057.PubMed Yang LP, Zhu XA, Tso MO: A possible mechanism of microglia-photoreceptor crosstalk. Mol Vis 2007, 13:2048–2057.PubMed
22.
go back to reference Roque RS, Rosales AA, Jingjing L, Agarwal N, Al-Ubaidi MR: Retina-derived microglial cells induce photoreceptor cell death in vitro. Brain Res 1999, 836:110–119.PubMedCrossRef Roque RS, Rosales AA, Jingjing L, Agarwal N, Al-Ubaidi MR: Retina-derived microglial cells induce photoreceptor cell death in vitro. Brain Res 1999, 836:110–119.PubMedCrossRef
23.
go back to reference Boje KM, Arora PK: Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 1992, 587:250–256.PubMedCrossRef Boje KM, Arora PK: Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 1992, 587:250–256.PubMedCrossRef
24.
go back to reference Chao CC, Hu S, Ehrlich L, Peterson PK: Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain Behav Immun 1995, 9:355–365.PubMedCrossRef Chao CC, Hu S, Ehrlich L, Peterson PK: Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain Behav Immun 1995, 9:355–365.PubMedCrossRef
25.
go back to reference McGuire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM: Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol 2001, 169:219–230.PubMedCrossRef McGuire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM: Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol 2001, 169:219–230.PubMedCrossRef
26.
go back to reference Sawada M, Kondo N, Suzumura A, Marunouchi T: Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res 1989, 491:394–397.PubMedCrossRef Sawada M, Kondo N, Suzumura A, Marunouchi T: Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res 1989, 491:394–397.PubMedCrossRef
28.
29.
go back to reference Garden GA, Moller T: Microglia biology in health and disease. J Neuroimmune Pharmacol 2006, 1:127–137.PubMedCrossRef Garden GA, Moller T: Microglia biology in health and disease. J Neuroimmune Pharmacol 2006, 1:127–137.PubMedCrossRef
30.
go back to reference Kataoka K, Nishiguchi KM, Kaneko H, van Rooijen N, Kachi S, Terasaki H: The roles of vitreal macrophages and circulating leukocytes in retinal neovascularization. Invest Ophthalmol Vis Sci 2011, 14:1431–1438.CrossRef Kataoka K, Nishiguchi KM, Kaneko H, van Rooijen N, Kachi S, Terasaki H: The roles of vitreal macrophages and circulating leukocytes in retinal neovascularization. Invest Ophthalmol Vis Sci 2011, 14:1431–1438.CrossRef
31.
go back to reference Hoppeler T, Hendrickson P, Dietrich C, Reme C: Morphology and time-course of defined photochemical lesions in the rabbit retina. Curr Eye Res 1988, 7:849–860.PubMedCrossRef Hoppeler T, Hendrickson P, Dietrich C, Reme C: Morphology and time-course of defined photochemical lesions in the rabbit retina. Curr Eye Res 1988, 7:849–860.PubMedCrossRef
32.
go back to reference Ni YQ, Xu GZ, Hu WZ, Shi L, Qin YW, Da CD: Neuroprotective effects of naloxone against light-induced photoreceptor degeneration through inhibiting retinal microglial activation. Invest Ophthalmol Vis Sci 2008, 49:2589–2598.PubMedCrossRef Ni YQ, Xu GZ, Hu WZ, Shi L, Qin YW, Da CD: Neuroprotective effects of naloxone against light-induced photoreceptor degeneration through inhibiting retinal microglial activation. Invest Ophthalmol Vis Sci 2008, 49:2589–2598.PubMedCrossRef
33.
go back to reference Chang CJ, Cherng CH, Liou WS, Liao CL: Minocycline partially inhibits caspase-3 activation and photoreceptor degeneration after photic injury. Ophthalmic Res 2005, 37:202–213.PubMedCrossRef Chang CJ, Cherng CH, Liou WS, Liao CL: Minocycline partially inhibits caspase-3 activation and photoreceptor degeneration after photic injury. Ophthalmic Res 2005, 37:202–213.PubMedCrossRef
34.
go back to reference Ibrahim AS, El-Shishtawy MM, Pena A Jr: Liou GI: genistein attenuates retinal inflammation associated with diabetes by targeting of microglial activation. Mol Vis 2010, 16:2033–2042.PubMedPubMedCentral Ibrahim AS, El-Shishtawy MM, Pena A Jr: Liou GI: genistein attenuates retinal inflammation associated with diabetes by targeting of microglial activation. Mol Vis 2010, 16:2033–2042.PubMedPubMedCentral
35.
go back to reference Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW: Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 2005, 54:1559–1565.PubMedCrossRef Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW: Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 2005, 54:1559–1565.PubMedCrossRef
36.
go back to reference Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ, Vetter ML: Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2 J mouse model of glaucoma. Invest Ophthalmol Vis Sci 2008, 49:1437–1446.PubMedCrossRef Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ, Vetter ML: Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2 J mouse model of glaucoma. Invest Ophthalmol Vis Sci 2008, 49:1437–1446.PubMedCrossRef
37.
go back to reference Neufeld AH: Pharmacologic neuroprotection with an inhibitor of nitric oxide synthase for the treatment of glaucoma. Brain Res Bull 2004, 62:455–459.PubMedCrossRef Neufeld AH: Pharmacologic neuroprotection with an inhibitor of nitric oxide synthase for the treatment of glaucoma. Brain Res Bull 2004, 62:455–459.PubMedCrossRef
38.
go back to reference Yang LP, Li Y, Zhu XA, Tso MO: Minocycline delayed photoreceptor death in rds mice through iNOS-dependent mechanism. Mol Vis 2007, 13:1073–1082.PubMedPubMedCentral Yang LP, Li Y, Zhu XA, Tso MO: Minocycline delayed photoreceptor death in rds mice through iNOS-dependent mechanism. Mol Vis 2007, 13:1073–1082.PubMedPubMedCentral
39.
go back to reference Karlstetter M, Ebert S, Langmann T: Microglia in the healthy and degenerating retina: insights from novel mouse models. Immunobiol 2010, 215:685–691.CrossRef Karlstetter M, Ebert S, Langmann T: Microglia in the healthy and degenerating retina: insights from novel mouse models. Immunobiol 2010, 215:685–691.CrossRef
40.
go back to reference Luster AD: Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 1998, 338:436–445.PubMedCrossRef Luster AD: Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 1998, 338:436–445.PubMedCrossRef
41.
go back to reference Oppenheim JJ, Zachariae CO, Mukaida N, Matsushima K: Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol 1991, 9:617–648.PubMedCrossRef Oppenheim JJ, Zachariae CO, Mukaida N, Matsushima K: Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol 1991, 9:617–648.PubMedCrossRef
42.
go back to reference Bajetto A, Bonavia R, Barbero S, Schettini G: Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J Neurochem 2002, 82:1311–1329.PubMedCrossRef Bajetto A, Bonavia R, Barbero S, Schettini G: Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J Neurochem 2002, 82:1311–1329.PubMedCrossRef
43.
go back to reference Ransohoff RM, Glabinski A, Tani M: Chemokines in immune-mediated inflammation of the central nervous system. Cytokine Growth Factor Rev 1996, 7:35–46.PubMedCrossRef Ransohoff RM, Glabinski A, Tani M: Chemokines in immune-mediated inflammation of the central nervous system. Cytokine Growth Factor Rev 1996, 7:35–46.PubMedCrossRef
44.
45.
go back to reference Matsushima K, Larsen CG, DuBois GC, Oppenheim JJ: Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med 1989, 169:1485–1490.PubMedCrossRef Matsushima K, Larsen CG, DuBois GC, Oppenheim JJ: Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med 1989, 169:1485–1490.PubMedCrossRef
46.
go back to reference Yoshimura T, Robinson EA, Tanaka S, Appella E, Kuratsu J, Leonard EJ: Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J Exp Med 1989, 169:1449–1459.PubMedCrossRef Yoshimura T, Robinson EA, Tanaka S, Appella E, Kuratsu J, Leonard EJ: Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J Exp Med 1989, 169:1449–1459.PubMedCrossRef
47.
go back to reference Nakazawa T, Hisatomi T, Nakazawa C, Noda K, Maruyama K, She H, Matsubara A, Miyahara S, Nakao S, Yin Y, et al.: Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis. Proc Natl Acad Sci USA 2007, 104:2425–2430.PubMedPubMedCentralCrossRef Nakazawa T, Hisatomi T, Nakazawa C, Noda K, Maruyama K, She H, Matsubara A, Miyahara S, Nakao S, Yin Y, et al.: Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis. Proc Natl Acad Sci USA 2007, 104:2425–2430.PubMedPubMedCentralCrossRef
48.
go back to reference Prat E, Baron P, Meda L, Scarpini E, Galimberti D, Ardolino G, Catania A, Scarlato G: The human astrocytoma cell line U373MG produces monocyte chemotactic protein (MCP)-1 upon stimulation with beta-amyloid protein. Neurosci Lett 2000, 283:177–180.PubMedCrossRef Prat E, Baron P, Meda L, Scarpini E, Galimberti D, Ardolino G, Catania A, Scarlato G: The human astrocytoma cell line U373MG produces monocyte chemotactic protein (MCP)-1 upon stimulation with beta-amyloid protein. Neurosci Lett 2000, 283:177–180.PubMedCrossRef
49.
go back to reference Johnstone M, Gearing AJ, Miller KM: A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. J Neuroimmunol 1999, 93:182–193.PubMedCrossRef Johnstone M, Gearing AJ, Miller KM: A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. J Neuroimmunol 1999, 93:182–193.PubMedCrossRef
50.
go back to reference Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN: Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol 1998, 84:238–249.PubMedCrossRef Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN: Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol 1998, 84:238–249.PubMedCrossRef
51.
go back to reference McManus C, Berman JW, Brett FM, Staunton H, Farrell M, Brosnan CF: MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J Neuroimmunol 1998, 86:20–29.PubMedCrossRef McManus C, Berman JW, Brett FM, Staunton H, Farrell M, Brosnan CF: MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J Neuroimmunol 1998, 86:20–29.PubMedCrossRef
52.
go back to reference Galimberti D, Venturelli E, Villa C, Fenoglio C, Clerici F, Marcone A, Benussi L, Cortini F, Scalabrini D, Perini L, et al.: MCP-1 A-2518 G polymorphism: effect on susceptibility for frontotemporal lobar degeneration and on cerebrospinal fluid MCP-1 levels. J Alzheimers Dis 2009, 17:125–133.PubMed Galimberti D, Venturelli E, Villa C, Fenoglio C, Clerici F, Marcone A, Benussi L, Cortini F, Scalabrini D, Perini L, et al.: MCP-1 A-2518 G polymorphism: effect on susceptibility for frontotemporal lobar degeneration and on cerebrospinal fluid MCP-1 levels. J Alzheimers Dis 2009, 17:125–133.PubMed
53.
go back to reference Glabinski AR, Balasingam V, Tani M, Kunkel SL, Strieter RM, Yong VW, Ransohoff RM: Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J Immunol 1996, 156:4363–4368.PubMed Glabinski AR, Balasingam V, Tani M, Kunkel SL, Strieter RM, Yong VW, Ransohoff RM: Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J Immunol 1996, 156:4363–4368.PubMed
54.
go back to reference Muessel MJ, Berman NE, Klein RM: Early and specific expression of monocyte chemoattractant protein-1 in the thalamus induced by cotrical injury. Brain Res 2000, 870:211–221.PubMedCrossRef Muessel MJ, Berman NE, Klein RM: Early and specific expression of monocyte chemoattractant protein-1 in the thalamus induced by cotrical injury. Brain Res 2000, 870:211–221.PubMedCrossRef
55.
go back to reference Rutar M, Natoli R, Valter K, Provis JM: Early focal expression of the chemokine Ccl2 by Müller cells during exposure to damage-inducing bright continuous light. Invest Ophthalmol Vis Sci 2011,52(5):2379–2388.PubMedPubMedCentralCrossRef Rutar M, Natoli R, Valter K, Provis JM: Early focal expression of the chemokine Ccl2 by Müller cells during exposure to damage-inducing bright continuous light. Invest Ophthalmol Vis Sci 2011,52(5):2379–2388.PubMedPubMedCentralCrossRef
56.
go back to reference Rutar M, Provis JM, Valter K: Brief exposure to damaging light causes focal recruitment of macrophages, and long-term destabilization of photoreceptors in the albino rat retina. Curr Eye Res 2010, 35:631–643.PubMedCrossRef Rutar M, Provis JM, Valter K: Brief exposure to damaging light causes focal recruitment of macrophages, and long-term destabilization of photoreceptors in the albino rat retina. Curr Eye Res 2010, 35:631–643.PubMedCrossRef
57.
go back to reference Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411:494–498.PubMedCrossRef Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411:494–498.PubMedCrossRef
58.
go back to reference Ameres SL, Martinez J, Schroeder R: Molecular basis for target RNA recognition and cleavage by human RISC. Cell 2007, 130:101–112.PubMedCrossRef Ameres SL, Martinez J, Schroeder R: Molecular basis for target RNA recognition and cleavage by human RISC. Cell 2007, 130:101–112.PubMedCrossRef
59.
go back to reference Gao H, Pennesi M, Shah K, Qiao X, Hariprasad SM, Mieler WF, Wu SM, Holz ER: Safety of intravitreal voriconazole: electroretinographic and histopathologic studies. Trans Am Ophthalmol Soc 2003, 101:183–189. discussion 189PubMed Gao H, Pennesi M, Shah K, Qiao X, Hariprasad SM, Mieler WF, Wu SM, Holz ER: Safety of intravitreal voriconazole: electroretinographic and histopathologic studies. Trans Am Ophthalmol Soc 2003, 101:183–189. discussion 189PubMed
60.
go back to reference Natoli R, Provis J, Valter K, Stone J: Gene regulation induced in the C57BL/6 J mouse retina by hyperoxia: a temporal microarray study. Mol Vis 2008, 14:1983–1994.PubMedPubMedCentral Natoli R, Provis J, Valter K, Stone J: Gene regulation induced in the C57BL/6 J mouse retina by hyperoxia: a temporal microarray study. Mol Vis 2008, 14:1983–1994.PubMedPubMedCentral
61.
go back to reference Cornish EE, Madigan MC, Natoli R, Hales A, Hendrickson AE, Provis JM: Gradients of cone differentiation and FGF expression during development of the foveal depression in macaque retina. Vis Neurosci 2005, 22:447–459.PubMedCrossRef Cornish EE, Madigan MC, Natoli R, Hales A, Hendrickson AE, Provis JM: Gradients of cone differentiation and FGF expression during development of the foveal depression in macaque retina. Vis Neurosci 2005, 22:447–459.PubMedCrossRef
62.
go back to reference Maslim J, Valter K, Egensperger R, et al.: Tissue oxygen during a critical developmental period controls the death and survival of photoreceptors. Invest Ophthalmol Vis Sci 1997, 38:1667–1677.PubMed Maslim J, Valter K, Egensperger R, et al.: Tissue oxygen during a critical developmental period controls the death and survival of photoreceptors. Invest Ophthalmol Vis Sci 1997, 38:1667–1677.PubMed
63.
go back to reference Ng TF, Streilein JW: Light-induced migration of retinal microglia into the subretinal space. Invest Ophthalmol Vis Sci 2001, 42:3301–3310.PubMed Ng TF, Streilein JW: Light-induced migration of retinal microglia into the subretinal space. Invest Ophthalmol Vis Sci 2001, 42:3301–3310.PubMed
64.
go back to reference Chen L, Yang P, Kijlsta A: Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm 2002, 10:27–39.PubMedCrossRef Chen L, Yang P, Kijlsta A: Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm 2002, 10:27–39.PubMedCrossRef
65.
go back to reference Davoust N, Vuaillat C, Androdias G, Nataf S: From bone marrow to microglia: barriers and avenues. Trends Immunol 2008, 29:227–234.PubMedCrossRef Davoust N, Vuaillat C, Androdias G, Nataf S: From bone marrow to microglia: barriers and avenues. Trends Immunol 2008, 29:227–234.PubMedCrossRef
66.
go back to reference Joly S, Francke M, Ulbricht E, Beck S, Seeliger M, Hirrlinger P, Hirrlinger J, Lang KS, Zinkernagel M, Odermatt B, et al.: Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions. Am J Pathol 2009, 174:2310–2323.PubMedPubMedCentralCrossRef Joly S, Francke M, Ulbricht E, Beck S, Seeliger M, Hirrlinger P, Hirrlinger J, Lang KS, Zinkernagel M, Odermatt B, et al.: Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions. Am J Pathol 2009, 174:2310–2323.PubMedPubMedCentralCrossRef
67.
go back to reference Zhang C, Shen JK, Lam TT, Zeng HY, Chiang SK, Yang F, Tso MO: Activation of microglia and chemokines in light-induced retinal degeneration. Mol Vis 2005, 11:887–895.PubMed Zhang C, Shen JK, Lam TT, Zeng HY, Chiang SK, Yang F, Tso MO: Activation of microglia and chemokines in light-induced retinal degeneration. Mol Vis 2005, 11:887–895.PubMed
68.
go back to reference Shi G, Maminishkis A, Banzon T, Jalickee S, Li R, Hammer J, Miller SS: Control of chemokine gradients by the retinal pigment epithelium. Invest Ophthalmol Vis Sci 2008, 49:4620–4630.PubMedPubMedCentralCrossRef Shi G, Maminishkis A, Banzon T, Jalickee S, Li R, Hammer J, Miller SS: Control of chemokine gradients by the retinal pigment epithelium. Invest Ophthalmol Vis Sci 2008, 49:4620–4630.PubMedPubMedCentralCrossRef
69.
go back to reference Elner SG, Elner VM, Bian ZM, Lukacs NW, Kurtz RM, Strieter RM, Kunkel SL: Human retinal pigment epithelial cell interleukin-8 and monocyte chemotactic protein-1 modulation by T-lymphocyte products. Invest Ophthalmol Vis Sci 1997, 38:446–455.PubMed Elner SG, Elner VM, Bian ZM, Lukacs NW, Kurtz RM, Strieter RM, Kunkel SL: Human retinal pigment epithelial cell interleukin-8 and monocyte chemotactic protein-1 modulation by T-lymphocyte products. Invest Ophthalmol Vis Sci 1997, 38:446–455.PubMed
70.
go back to reference Elner VM, Burnstine MA, Strieter RM, Kunkel SL, Elner SG: Cell-associated human retinal pigment epithelium interleukin-8 and monocyte chemotactic protein-1: immunochemical and in-situ hybridization analyses. Exp Eye Res 1997, 65:781–789.PubMedCrossRef Elner VM, Burnstine MA, Strieter RM, Kunkel SL, Elner SG: Cell-associated human retinal pigment epithelium interleukin-8 and monocyte chemotactic protein-1: immunochemical and in-situ hybridization analyses. Exp Eye Res 1997, 65:781–789.PubMedCrossRef
71.
go back to reference Bian ZM, Elner SG, Strieter RM, Kunkel SL, Lukacs NW, Elner VM: IL-4 potentiates IL-1beta- and TNF-alpha-stimulated IL-8 and MCP-1 protein production in human retinal pigment epithelial cells. Curr Eye Res 1999, 18:349–357.PubMedCrossRef Bian ZM, Elner SG, Strieter RM, Kunkel SL, Lukacs NW, Elner VM: IL-4 potentiates IL-1beta- and TNF-alpha-stimulated IL-8 and MCP-1 protein production in human retinal pigment epithelial cells. Curr Eye Res 1999, 18:349–357.PubMedCrossRef
72.
go back to reference Holtkamp GM, Kijlstra A, Peek R, de Vos AF: Retinal pigment epithelium-immune system interactions: cytokine production and cytokine-induced changes. Prog Retin Eye Res 2001, 20:29–48.PubMedCrossRef Holtkamp GM, Kijlstra A, Peek R, de Vos AF: Retinal pigment epithelium-immune system interactions: cytokine production and cytokine-induced changes. Prog Retin Eye Res 2001, 20:29–48.PubMedCrossRef
73.
go back to reference Kaneko H, Nishiguchi KM, Nakamura M, Kachi S, Terasaki H: Characteristics of bone marrow-derived microglia in the normal and injured retina. Invest Ophthalmol Vis Sci 2008, 49:4162–4168.PubMedCrossRef Kaneko H, Nishiguchi KM, Nakamura M, Kachi S, Terasaki H: Characteristics of bone marrow-derived microglia in the normal and injured retina. Invest Ophthalmol Vis Sci 2008, 49:4162–4168.PubMedCrossRef
74.
go back to reference Yoshimura T, Leonard EJ: Identification of high affinity receptors for human monocyte chemoattractant protein-1 on human monocytes. J Immunol 1990, 145:292–297.PubMed Yoshimura T, Leonard EJ: Identification of high affinity receptors for human monocyte chemoattractant protein-1 on human monocytes. J Immunol 1990, 145:292–297.PubMed
75.
go back to reference Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S: Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci 2007, 27:12396–12406.PubMedCrossRef Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S: Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci 2007, 27:12396–12406.PubMedCrossRef
76.
go back to reference Yang D, Elner SG, Chen X, Field MG, Petty HR, Elner VM: MCP-1-activated monocytes induce apoptosis in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2011, 52:6026–6034.PubMedPubMedCentralCrossRef Yang D, Elner SG, Chen X, Field MG, Petty HR, Elner VM: MCP-1-activated monocytes induce apoptosis in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2011, 52:6026–6034.PubMedPubMedCentralCrossRef
77.
go back to reference Elner VM, Elner SG, Standiford TJ, Lukacs NW, Strieter RM, Kunkel SL: Interleukin-7 (IL-7) induces retinal pigment epithelial cell MCP-1 and IL-8. Exp Eye Res 1996, 63:297–303.PubMedCrossRef Elner VM, Elner SG, Standiford TJ, Lukacs NW, Strieter RM, Kunkel SL: Interleukin-7 (IL-7) induces retinal pigment epithelial cell MCP-1 and IL-8. Exp Eye Res 1996, 63:297–303.PubMedCrossRef
78.
go back to reference Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH: Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med 2001, 194:1361–1373.PubMedPubMedCentralCrossRef Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH: Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med 2001, 194:1361–1373.PubMedPubMedCentralCrossRef
79.
go back to reference Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL, North R, Gerard C, Rollins BJ: Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 1998, 187:601–608.PubMedCrossRefPubMedCentral Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL, North R, Gerard C, Rollins BJ: Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 1998, 187:601–608.PubMedCrossRefPubMedCentral
80.
go back to reference Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM: Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 2001, 193:713–726.PubMedPubMedCentralCrossRef Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM: Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 2001, 193:713–726.PubMedPubMedCentralCrossRef
81.
go back to reference Thompson WL, Karpus WJ, Van Eldik LJ: MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. J Neuroinflammation 2008, 5:35.PubMedPubMedCentralCrossRef Thompson WL, Karpus WJ, Van Eldik LJ: MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. J Neuroinflammation 2008, 5:35.PubMedPubMedCentralCrossRef
82.
go back to reference Joly S, Samardzija M, Wenzel A, Thiersch M, Grimm C: Nonessential role of beta3 and beta5 integrin subunits for efficient clearance of cellular debris after light-induced photoreceptor degeneration. Invest Ophthalmol Vis Sci 2009, 50:1423–1432.PubMedCrossRef Joly S, Samardzija M, Wenzel A, Thiersch M, Grimm C: Nonessential role of beta3 and beta5 integrin subunits for efficient clearance of cellular debris after light-induced photoreceptor degeneration. Invest Ophthalmol Vis Sci 2009, 50:1423–1432.PubMedCrossRef
84.
go back to reference Wenzel A, Grimm C, Samardzija M, Remé CE: Molecular mechanisms of light induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Ret Eye Res 2005, 24:275–306.CrossRef Wenzel A, Grimm C, Samardzija M, Remé CE: Molecular mechanisms of light induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Ret Eye Res 2005, 24:275–306.CrossRef
85.
go back to reference Sullivan R, Penfold P, Pow DV: Neuronal migration and glial remodeling in degenerating retinas of aged rats and in nonneovascular AMD. Invest Ophthalmol Vis Sci 2003, 44:856–865.PubMedCrossRef Sullivan R, Penfold P, Pow DV: Neuronal migration and glial remodeling in degenerating retinas of aged rats and in nonneovascular AMD. Invest Ophthalmol Vis Sci 2003, 44:856–865.PubMedCrossRef
86.
go back to reference Marco-Gomariz MA, Hurtado-Montalban N, Vidal-Sanz M, Lund RD, Villegas-Perez MP: Phototoxic-induced photoreceptor degeneration causes retinal ganglion cell degeneration in pigmented rats. J Comp Neurol 2006, 498:163–179.PubMedCrossRef Marco-Gomariz MA, Hurtado-Montalban N, Vidal-Sanz M, Lund RD, Villegas-Perez MP: Phototoxic-induced photoreceptor degeneration causes retinal ganglion cell degeneration in pigmented rats. J Comp Neurol 2006, 498:163–179.PubMedCrossRef
87.
go back to reference Marc RE, Jones BW, Watt CB, Vazquez-Chona F, Vaughan DK, Organisciak DT: Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis 2008, 14:782–806.PubMedPubMedCentral Marc RE, Jones BW, Watt CB, Vazquez-Chona F, Vaughan DK, Organisciak DT: Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis 2008, 14:782–806.PubMedPubMedCentral
88.
go back to reference Rapaport DH, Stone J: The area centralis of the retina in the cat and other mammals: focal point for function and development of the visual system. Neuroscience 1984, 11:289–301.PubMedCrossRef Rapaport DH, Stone J: The area centralis of the retina in the cat and other mammals: focal point for function and development of the visual system. Neuroscience 1984, 11:289–301.PubMedCrossRef
89.
go back to reference Fukuda Y: A three-group classification of rat retinal ganglion cells: histological and physiological studies. Brain Res 1977, 119:327–344.PubMedCrossRef Fukuda Y: A three-group classification of rat retinal ganglion cells: histological and physiological studies. Brain Res 1977, 119:327–344.PubMedCrossRef
90.
go back to reference Rowe MH, Dreher B: Functional morphology of beta cells in the area centralis of the cat's retina: a model for the evolution of central retinal specializations. Brain Behav Evol 1982, 21:1–23.PubMedCrossRef Rowe MH, Dreher B: Functional morphology of beta cells in the area centralis of the cat's retina: a model for the evolution of central retinal specializations. Brain Behav Evol 1982, 21:1–23.PubMedCrossRef
91.
go back to reference Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW: Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2003, 44:3586–3592.PubMedCrossRef Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW: Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2003, 44:3586–3592.PubMedCrossRef
92.
go back to reference Combadiere C, Feumi C, Raoul W, Keller N, Rodero M, Pezard A, Lavalette S, Houssier M, Jonet L, Picard E, et al.: CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 2007, 117:2920–2928.PubMedPubMedCentralCrossRef Combadiere C, Feumi C, Raoul W, Keller N, Rodero M, Pezard A, Lavalette S, Houssier M, Jonet L, Picard E, et al.: CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 2007, 117:2920–2928.PubMedPubMedCentralCrossRef
93.
go back to reference Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J: Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2003, 44:3578–3585.PubMedCrossRef Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J: Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2003, 44:3578–3585.PubMedCrossRef
94.
go back to reference Newman AM, Gallo NB, Hancox LS, Miller NJ, Radeke CM, Maloney MA, Cooper JB, Hageman GS, Anderson DH, Johnson LV, Radeke MJ: Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks. Genome Med 2012, 4:16.PubMedPubMedCentralCrossRef Newman AM, Gallo NB, Hancox LS, Miller NJ, Radeke CM, Maloney MA, Cooper JB, Hageman GS, Anderson DH, Johnson LV, Radeke MJ: Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks. Genome Med 2012, 4:16.PubMedPubMedCentralCrossRef
95.
go back to reference Kramer M, Hasanreisoglu M, Feldman A, Siegel RA, Sonis P, Maharshak I, Monselise Y, Gurevich M, Weinberger D: Monocyte chemoattractant protein-1 in the aqueous humor of patients with age-related macular degeneration. Clin Experiment Ophthalmol 2012, 40:617–12.PubMedCrossRef Kramer M, Hasanreisoglu M, Feldman A, Siegel RA, Sonis P, Maharshak I, Monselise Y, Gurevich M, Weinberger D: Monocyte chemoattractant protein-1 in the aqueous humor of patients with age-related macular degeneration. Clin Experiment Ophthalmol 2012, 40:617–12.PubMedCrossRef
96.
go back to reference Jonas JB, Tao Y, Neumaier M, Findeisen P: Monocyte chemoattractant protein 1, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in exudative age-related macular degeneration. Arch Ophthalmol 2010, 128:1281–1286.PubMedCrossRef Jonas JB, Tao Y, Neumaier M, Findeisen P: Monocyte chemoattractant protein 1, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in exudative age-related macular degeneration. Arch Ophthalmol 2010, 128:1281–1286.PubMedCrossRef
97.
go back to reference Chen M, Muckersie E, Forrester JV, Xu H: Immune activation in retinal aging: a gene expression study. Invest Ophthalmol Vis Sci 2010, 51:5888–5896.PubMedCrossRef Chen M, Muckersie E, Forrester JV, Xu H: Immune activation in retinal aging: a gene expression study. Invest Ophthalmol Vis Sci 2010, 51:5888–5896.PubMedCrossRef
98.
go back to reference Luhmann UF, Robbie S, Munro PM, Barker SE, Duran Y, Luong V, Fitzke FW, Bainbridge JW, Ali RR, MacLaren RE: The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci 2009, 50:5934–5943.PubMedPubMedCentralCrossRef Luhmann UF, Robbie S, Munro PM, Barker SE, Duran Y, Luong V, Fitzke FW, Bainbridge JW, Ali RR, MacLaren RE: The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci 2009, 50:5934–5943.PubMedPubMedCentralCrossRef
99.
go back to reference Tsutsumi C, Sonoda KH, Egashira K, Qiao H, Hisatomi T, Nakao S, Ishibashi M, Charo IF, Sakamoto T, Murata T, Ishibashi T: The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization. J Leukoc Biol 2003, 74:25–32.PubMedCrossRef Tsutsumi C, Sonoda KH, Egashira K, Qiao H, Hisatomi T, Nakao S, Ishibashi M, Charo IF, Sakamoto T, Murata T, Ishibashi T: The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization. J Leukoc Biol 2003, 74:25–32.PubMedCrossRef
100.
go back to reference Ambati J, Anand A, Fernandez S, Sakurai E, Lynn BC, Kuziel WA, Rollins BJ, Ambati BK: An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 2003, 9:1390–1397.PubMedCrossRef Ambati J, Anand A, Fernandez S, Sakurai E, Lynn BC, Kuziel WA, Rollins BJ, Ambati BK: An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 2003, 9:1390–1397.PubMedCrossRef
101.
go back to reference Raoul W, Auvynet C, Camelo S, Guillonneau X, Feumi C, Combadiere C, Sennlaub F: CCL2/CCR2 and CX3CL1/CX3CR1 chemokine axes and their possible involvement in age-related macular degeneration. J Neuroinflammation 2010, 7:87.PubMedPubMedCentralCrossRef Raoul W, Auvynet C, Camelo S, Guillonneau X, Feumi C, Combadiere C, Sennlaub F: CCL2/CCR2 and CX3CL1/CX3CR1 chemokine axes and their possible involvement in age-related macular degeneration. J Neuroinflammation 2010, 7:87.PubMedPubMedCentralCrossRef
102.
go back to reference Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, et al.: Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004, 432:173–178.PubMedCrossRef Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, et al.: Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004, 432:173–178.PubMedCrossRef
103.
go back to reference Whitehead KA, Langer R, Anderson DG: Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009, 8:129–138.PubMedCrossRef Whitehead KA, Langer R, Anderson DG: Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009, 8:129–138.PubMedCrossRef
104.
go back to reference Shen J, Samul R, Silva RL, Akiyama H, Liu H, Saishin Y, Hackett SF, Zinnen S, Kossen K, Fosnaugh K, et al.: Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther 2006, 13:225–234.PubMedCrossRef Shen J, Samul R, Silva RL, Akiyama H, Liu H, Saishin Y, Hackett SF, Zinnen S, Kossen K, Fosnaugh K, et al.: Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther 2006, 13:225–234.PubMedCrossRef
105.
go back to reference Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM, Bennett J, Tolentino MJ: Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis 2003, 9:210–216.PubMed Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM, Bennett J, Tolentino MJ: Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis 2003, 9:210–216.PubMed
106.
go back to reference Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJ, Yamasaki S, Itaya M, Pan Y, et al.: Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 2008, 452:591–597.PubMedPubMedCentralCrossRef Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJ, Yamasaki S, Itaya M, Pan Y, et al.: Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 2008, 452:591–597.PubMedPubMedCentralCrossRef
Metadata
Title
Small interfering RNA-mediated suppression of Ccl2 in Müller cells attenuates microglial recruitment and photoreceptor death following retinal degeneration
Authors
Matt Rutar
Riccardo Natoli
Jan M Provis
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-221

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue