Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity

Authors: Shamsudheen Moidunny, Jonathan Vinet, Evelyn Wesseling, Johan Bijzet, Chu-Hsin Shieh, Sven CD van Ijzendoorn, Paola Bezzi, Hendrikus WGM Boddeke, Knut Biber

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF) have been widely reported. In the central nervous system (CNS), astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling.

Methods

Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A2B receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA) followed by Bonferroni post-hoc test was used for statistical analysis.

Results

We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A2B receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs: p38 and ERK1/2), and the nuclear transcription factor (NF)-κB. Moreover, LIF concentration in the supernatant in response to 5′-N-ethylcarboxamide (NECA) stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (Cg)A and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody.

Conclusions

Adenosine from glutamate-stressed neurons induces rapid LIF release in astrocytes. This rapid release of LIF promotes the survival of cortical neurons against excitotoxicity.
Literature
1.
go back to reference Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003, 374:1–20.CrossRefPubMedPubMedCentral Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003, 374:1–20.CrossRefPubMedPubMedCentral
2.
go back to reference Patterson PH: The emerging neuropoietic cytokine family: first CDF/LIF, CNTF and IL-6; next ONC, MGF, GCSF? Curr Opin Neurobiol 1992, 2:94–97.CrossRefPubMed Patterson PH: The emerging neuropoietic cytokine family: first CDF/LIF, CNTF and IL-6; next ONC, MGF, GCSF? Curr Opin Neurobiol 1992, 2:94–97.CrossRefPubMed
3.
go back to reference Patterson PH: Leukemia inhibitory factor, a cytokine at the interface between neurobiology and immunology. Proc Natl Acad Sci USA 1994, 91:7833–7835.CrossRefPubMedPubMedCentral Patterson PH: Leukemia inhibitory factor, a cytokine at the interface between neurobiology and immunology. Proc Natl Acad Sci USA 1994, 91:7833–7835.CrossRefPubMedPubMedCentral
4.
go back to reference Kurek JB, Bower JJ, Romanella M, Koentgen F, Murphy M, Austin L: The role of leukemia inhibitory factor in skeletal muscle regeneration. Muscle Nerve 1997, 20:815–822.CrossRefPubMed Kurek JB, Bower JJ, Romanella M, Koentgen F, Murphy M, Austin L: The role of leukemia inhibitory factor in skeletal muscle regeneration. Muscle Nerve 1997, 20:815–822.CrossRefPubMed
5.
go back to reference Kwon YW, Abbondanzo SJ, Stewart CL, Gurney ME: Leukemia inhibitory factor influences the timing of programmed synapses withdrawal from neonatal muscles. J Neurobiol 1995, 28:35–50.CrossRefPubMed Kwon YW, Abbondanzo SJ, Stewart CL, Gurney ME: Leukemia inhibitory factor influences the timing of programmed synapses withdrawal from neonatal muscles. J Neurobiol 1995, 28:35–50.CrossRefPubMed
6.
go back to reference Akita S, Webster J, Ren SG, Takino H, Said J, Zand O, Melmed S: Human and murine pituitary expression of leukemia inhibitory factor. Novel intrapituitary regulation of adrenocorticotropin hormone synthesis and secretion. J Clin Invest 1995, 95:1288–1298.CrossRefPubMedPubMedCentral Akita S, Webster J, Ren SG, Takino H, Said J, Zand O, Melmed S: Human and murine pituitary expression of leukemia inhibitory factor. Novel intrapituitary regulation of adrenocorticotropin hormone synthesis and secretion. J Clin Invest 1995, 95:1288–1298.CrossRefPubMedPubMedCentral
7.
go back to reference Chesnokova V, Auernhammer CJ, Melmed S: Murine leukemia inhibitory factor gene disruption attenuates the hypothalamo-pituitary-adrenal axis stress response. Endocrinology 1998, 139:2209–2216.PubMed Chesnokova V, Auernhammer CJ, Melmed S: Murine leukemia inhibitory factor gene disruption attenuates the hypothalamo-pituitary-adrenal axis stress response. Endocrinology 1998, 139:2209–2216.PubMed
8.
go back to reference Li M, Sendtner M, Smith A: Essential function of LIF receptor in motor neurons. Nature 1995, 378:724–727.CrossRefPubMed Li M, Sendtner M, Smith A: Essential function of LIF receptor in motor neurons. Nature 1995, 378:724–727.CrossRefPubMed
9.
go back to reference Murphy M, Reid K, Hilton DJ, Bartlett PF: Generation of sensory neurons is stimulated by leukemia inhibitory factor. Proc Natl Acad Sci USA 1991, 88:3498–3501.CrossRefPubMedPubMedCentral Murphy M, Reid K, Hilton DJ, Bartlett PF: Generation of sensory neurons is stimulated by leukemia inhibitory factor. Proc Natl Acad Sci USA 1991, 88:3498–3501.CrossRefPubMedPubMedCentral
10.
go back to reference Mayer M, Bhakoo K, Noble M: Ciliary neurotrophic factor and leukemia inhibitory factor promote the generation, maturation and survival of oligodendrocytes in vitro. Development 1994, 120:143–153.PubMed Mayer M, Bhakoo K, Noble M: Ciliary neurotrophic factor and leukemia inhibitory factor promote the generation, maturation and survival of oligodendrocytes in vitro. Development 1994, 120:143–153.PubMed
11.
go back to reference Bugga L, Gadient RA, Kwan K, Stewart CL, Patterson PH: Analysis of neuronal and glial phenotypes in brains of mice deficient in leukemia inhibitory factor. J Neurobiol 1998, 36:509–524.CrossRefPubMed Bugga L, Gadient RA, Kwan K, Stewart CL, Patterson PH: Analysis of neuronal and glial phenotypes in brains of mice deficient in leukemia inhibitory factor. J Neurobiol 1998, 36:509–524.CrossRefPubMed
12.
go back to reference Leibinger M, Muller A, Andreadaki A, Hauk TG, Kirsch M, Fischer D: Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor. J Neurosci 2009, 29:14334–14341.CrossRefPubMed Leibinger M, Muller A, Andreadaki A, Hauk TG, Kirsch M, Fischer D: Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor. J Neurosci 2009, 29:14334–14341.CrossRefPubMed
13.
go back to reference Moidunny S, Dias RB, Wesseling E, Sekino Y, Boddeke HW, Sebastiao AM, Biber K: Interleukin-6-type cytokines in neuroprotection and neuromodulation: oncostatin M, but not leukemia inhibitory factor, requires neuronal adenosine A1 receptor function. J Neurochem 2010, 114:1667–1677.CrossRefPubMed Moidunny S, Dias RB, Wesseling E, Sekino Y, Boddeke HW, Sebastiao AM, Biber K: Interleukin-6-type cytokines in neuroprotection and neuromodulation: oncostatin M, but not leukemia inhibitory factor, requires neuronal adenosine A1 receptor function. J Neurochem 2010, 114:1667–1677.CrossRefPubMed
14.
go back to reference Ueki Y, Wang J, Chollangi S, Ash JD: STAT3 activation in photoreceptors by leukemia inhibitory factor is associated with protection from light damage. J Neurochem 2008, 105:784–796.CrossRefPubMed Ueki Y, Wang J, Chollangi S, Ash JD: STAT3 activation in photoreceptors by leukemia inhibitory factor is associated with protection from light damage. J Neurochem 2008, 105:784–796.CrossRefPubMed
15.
go back to reference Barres BA, Schmid R, Sendnter M, Raff MC: Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 1993, 118:283–295.PubMed Barres BA, Schmid R, Sendnter M, Raff MC: Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 1993, 118:283–295.PubMed
16.
go back to reference Butzkueven H, Zhang JG, Soilu-Hanninen M, Hochrein H, Chionh F, Shipham KA, Emery B, Turnley AM, Petratos S, Ernst M, Bartlett PF, Kilpatrick TJ: LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival. Nat Med 2002, 8:613–619.CrossRefPubMed Butzkueven H, Zhang JG, Soilu-Hanninen M, Hochrein H, Chionh F, Shipham KA, Emery B, Turnley AM, Petratos S, Ernst M, Bartlett PF, Kilpatrick TJ: LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival. Nat Med 2002, 8:613–619.CrossRefPubMed
17.
go back to reference Slaets H, Hendriks JJ, Stinissen P, Kilpatrick TJ, Hellings N: Therapeutic potential of LIF in multiple sclerosis. Trends Mol Med 2010, 16:493–500.CrossRefPubMed Slaets H, Hendriks JJ, Stinissen P, Kilpatrick TJ, Hellings N: Therapeutic potential of LIF in multiple sclerosis. Trends Mol Med 2010, 16:493–500.CrossRefPubMed
18.
go back to reference Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD: Astrocytes promote myelination in response to electrical impulses. Neuron 2006, 49:823–832.CrossRefPubMedPubMedCentral Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD: Astrocytes promote myelination in response to electrical impulses. Neuron 2006, 49:823–832.CrossRefPubMedPubMedCentral
19.
go back to reference Murphy GM, Song Y, Ong E, Lee YL, Schmidt KG, Bocchini V, Eng LF: Leukemia inhibitory factor mRNA is expressed in cortical astrocyte cultures but not in an immortalized microglial cell line. Neurosci Lett 1995, 184:48–51.CrossRefPubMed Murphy GM, Song Y, Ong E, Lee YL, Schmidt KG, Bocchini V, Eng LF: Leukemia inhibitory factor mRNA is expressed in cortical astrocyte cultures but not in an immortalized microglial cell line. Neurosci Lett 1995, 184:48–51.CrossRefPubMed
20.
go back to reference Slevin M, Krupinski J, Mitsios N, Perikleous C, Cuadrado E, Montaner J, Sanfeliu C, Luque A, Kumar S, Kumar P, Gaffney J: Leukaemia inhibitory factor is over-expressed by ischaemic brain tissue concomitant with reduced plasma expression following acute stroke. Eur J Neurol 2008, 15:29–37.PubMed Slevin M, Krupinski J, Mitsios N, Perikleous C, Cuadrado E, Montaner J, Sanfeliu C, Luque A, Kumar S, Kumar P, Gaffney J: Leukaemia inhibitory factor is over-expressed by ischaemic brain tissue concomitant with reduced plasma expression following acute stroke. Eur J Neurol 2008, 15:29–37.PubMed
21.
go back to reference Suzuki S, Tanaka K, Nogawa S, Ito D, Dembo T, Kosakai A, Fukuuchi Y: Immunohistochemical detection of leukemia inhibitory factor after focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2000, 20:661–668.CrossRefPubMed Suzuki S, Tanaka K, Nogawa S, Ito D, Dembo T, Kosakai A, Fukuuchi Y: Immunohistochemical detection of leukemia inhibitory factor after focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2000, 20:661–668.CrossRefPubMed
22.
go back to reference Mashayekhi F, Salehi Z: Expression of leukemia inhibitory factor in the cerebrospinal fluid of patients with multiple sclerosis. J Clin Neurosci 2011, 18:951–954.CrossRefPubMed Mashayekhi F, Salehi Z: Expression of leukemia inhibitory factor in the cerebrospinal fluid of patients with multiple sclerosis. J Clin Neurosci 2011, 18:951–954.CrossRefPubMed
23.
go back to reference Soilu-Hanninen M, Broberg E, Roytta M, Mattila P, Rinne J, Hukkanen V: Expression of LIF and LIF receptor beta in Alzheimer’s and Parkinson’s diseases. Acta Neurol Scand 2010, 121:44–50.CrossRefPubMed Soilu-Hanninen M, Broberg E, Roytta M, Mattila P, Rinne J, Hukkanen V: Expression of LIF and LIF receptor beta in Alzheimer’s and Parkinson’s diseases. Acta Neurol Scand 2010, 121:44–50.CrossRefPubMed
24.
go back to reference Banner LR, Moayeri NN, Patterson PH: Leukemia inhibitory factor is expressed in astrocytes following cortical brain injury. Exp Neurol 1997, 147:1–9.CrossRefPubMed Banner LR, Moayeri NN, Patterson PH: Leukemia inhibitory factor is expressed in astrocytes following cortical brain injury. Exp Neurol 1997, 147:1–9.CrossRefPubMed
25.
go back to reference Yamakuni H, Kawaguchi N, Ohtani Y, Nakamura J, Katayama T, Nakagawa T, Minami M, Satoh M: ATP induces leukemia inhibitory factor mRNA in cultured rat astrocytes. J Neuroimmunol 2002, 129:43–50.CrossRefPubMed Yamakuni H, Kawaguchi N, Ohtani Y, Nakamura J, Katayama T, Nakagawa T, Minami M, Satoh M: ATP induces leukemia inhibitory factor mRNA in cultured rat astrocytes. J Neuroimmunol 2002, 129:43–50.CrossRefPubMed
26.
go back to reference Cunha RA, Vizi ES, Ribeiro JA, Sebastiao AM: Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal slices. J Neurochem 1996, 67:2180–2187.CrossRefPubMed Cunha RA, Vizi ES, Ribeiro JA, Sebastiao AM: Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal slices. J Neurochem 1996, 67:2180–2187.CrossRefPubMed
27.
go back to reference Mitchell JB, Lupica CR, Dunwiddie TV: Activity-dependent release of endogenous adenosine modulates synaptic responses in the rat hippocampus. J Neurosci 1993, 13:3439–3447.PubMed Mitchell JB, Lupica CR, Dunwiddie TV: Activity-dependent release of endogenous adenosine modulates synaptic responses in the rat hippocampus. J Neurosci 1993, 13:3439–3447.PubMed
28.
go back to reference Zimmermann H: Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 2000, 362:299–309.CrossRefPubMed Zimmermann H: Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 2000, 362:299–309.CrossRefPubMed
29.
go back to reference Berman RF, Fredholm BB, Aden U, O’Connor WT: Evidence for increased dorsal hippocampal adenosine release and metabolism during pharmacologically induced seizures in rats. Brain Res 2000, 872:44–53.CrossRefPubMed Berman RF, Fredholm BB, Aden U, O’Connor WT: Evidence for increased dorsal hippocampal adenosine release and metabolism during pharmacologically induced seizures in rats. Brain Res 2000, 872:44–53.CrossRefPubMed
30.
go back to reference Lynch JJ, Alexander KM, Jarvis MF, Kowaluk EA: Inhibition of adenosine kinase during oxygen-glucose deprivation in rat cortical neuronal cultures. Neurosci Lett 1998, 252:207–210.CrossRefPubMed Lynch JJ, Alexander KM, Jarvis MF, Kowaluk EA: Inhibition of adenosine kinase during oxygen-glucose deprivation in rat cortical neuronal cultures. Neurosci Lett 1998, 252:207–210.CrossRefPubMed
31.
go back to reference Parkinson FE, Xiong W: Stimulus- and cell-type-specific release of purines in cultured rat forebrain astrocytes and neurons. J Neurochem 2004, 88:1305–1312.CrossRefPubMed Parkinson FE, Xiong W: Stimulus- and cell-type-specific release of purines in cultured rat forebrain astrocytes and neurons. J Neurochem 2004, 88:1305–1312.CrossRefPubMed
32.
go back to reference Parkinson FE, Xiong W, Zamzow CR: Astrocytes and neurons: different roles in regulating adenosine levels. Neurol Res 2005, 27:153–160.CrossRefPubMed Parkinson FE, Xiong W, Zamzow CR: Astrocytes and neurons: different roles in regulating adenosine levels. Neurol Res 2005, 27:153–160.CrossRefPubMed
33.
go back to reference von Lubitz DK: Adenosine and cerebral ischemia: therapeutic future or death of a brave concept? Eur J Pharmacol 1999, 371:85–102.CrossRefPubMed von Lubitz DK: Adenosine and cerebral ischemia: therapeutic future or death of a brave concept? Eur J Pharmacol 1999, 371:85–102.CrossRefPubMed
35.
go back to reference Ciccarelli R, Di Iorio P, Bruno V, Battaglia G, D’Alimonte I, D’Onofrio M, Nicoletti F, Caciagli F: Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia 1999, 27:275–281.CrossRefPubMed Ciccarelli R, Di Iorio P, Bruno V, Battaglia G, D’Alimonte I, D’Onofrio M, Nicoletti F, Caciagli F: Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia 1999, 27:275–281.CrossRefPubMed
36.
go back to reference Fiebich BL, Biber K, Gyufko K, Berger M, Bauer J, van Calker D: Adenosine A2b receptors mediate an increase in interleukin (IL)-6 mRNA and IL-6 protein synthesis in human astroglioma cells. J Neurochem 1996, 66:1426–1431.CrossRefPubMed Fiebich BL, Biber K, Gyufko K, Berger M, Bauer J, van Calker D: Adenosine A2b receptors mediate an increase in interleukin (IL)-6 mRNA and IL-6 protein synthesis in human astroglioma cells. J Neurochem 1996, 66:1426–1431.CrossRefPubMed
37.
go back to reference Heese K, Fiebich BL, Bauer J, Otten U: Nerve growth factor (NGF) expression in rat microglia is induced by adenosine A2a-receptors. Neurosci Lett 1997, 231:83–86.CrossRefPubMed Heese K, Fiebich BL, Bauer J, Otten U: Nerve growth factor (NGF) expression in rat microglia is induced by adenosine A2a-receptors. Neurosci Lett 1997, 231:83–86.CrossRefPubMed
38.
go back to reference Schwaninger M, Neher M, Viegas E, Schneider A, Spranger M: Stimulation of interleukin-6 secretion and gene transcription in primary astrocytes by adenosine. J Neurochem 1997, 69:1145–1150.CrossRefPubMed Schwaninger M, Neher M, Viegas E, Schneider A, Spranger M: Stimulation of interleukin-6 secretion and gene transcription in primary astrocytes by adenosine. J Neurochem 1997, 69:1145–1150.CrossRefPubMed
39.
go back to reference Wittendorp MC, Boddeke HW, Biber K: Adenosine A3 receptor-induced CCL2 synthesis in cultured mouse astrocytes. Glia 2004, 46:410–418.CrossRefPubMed Wittendorp MC, Boddeke HW, Biber K: Adenosine A3 receptor-induced CCL2 synthesis in cultured mouse astrocytes. Glia 2004, 46:410–418.CrossRefPubMed
40.
go back to reference Matos M, Augusto E, Oliveira CR, Agostinho P: Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience 2008, 156:898–910.CrossRefPubMed Matos M, Augusto E, Oliveira CR, Agostinho P: Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience 2008, 156:898–910.CrossRefPubMed
42.
go back to reference Hamby ME, Uliasz TF, Hewett SJ, Hewett JA: Characterization of an improved procedure for the removal of microglia from confluent monolayers of primary astrocytes. J Neurosci Methods 2006, 150:128–137.CrossRefPubMed Hamby ME, Uliasz TF, Hewett SJ, Hewett JA: Characterization of an improved procedure for the removal of microglia from confluent monolayers of primary astrocytes. J Neurosci Methods 2006, 150:128–137.CrossRefPubMed
43.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25:402–408.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25:402–408.CrossRefPubMed
44.
go back to reference Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983, 65:55–63.CrossRefPubMed Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983, 65:55–63.CrossRefPubMed
45.
go back to reference Feoktistov I, Biaggioni I: Adenosine A2B receptors. Pharmacol Rev 1997, 49:381–402.PubMed Feoktistov I, Biaggioni I: Adenosine A2B receptors. Pharmacol Rev 1997, 49:381–402.PubMed
46.
go back to reference Fredholm BB, Irenius E, Kull B, Schulte G: Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 2001, 61:443–448.CrossRefPubMed Fredholm BB, Irenius E, Kull B, Schulte G: Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 2001, 61:443–448.CrossRefPubMed
47.
go back to reference Feng W, Song Y, Chen C, Lu ZZ, Zhang Y: Stimulation of adenosine A(2B) receptors induces interleukin-6 secretion in cardiac fibroblasts via the PKC-delta-P38 signalling pathway. Br J Pharmacol 2010, 159:1598–1607.CrossRefPubMed Feng W, Song Y, Chen C, Lu ZZ, Zhang Y: Stimulation of adenosine A(2B) receptors induces interleukin-6 secretion in cardiac fibroblasts via the PKC-delta-P38 signalling pathway. Br J Pharmacol 2010, 159:1598–1607.CrossRefPubMed
48.
go back to reference Fiebich BL, Akundi RS, Biber K, Hamke M, Schmidt C, Butcher RD, van Calker D, Willmroth F: IL-6 expression induced by adenosine A2b receptor stimulation in U373 MG cells depends on p38 mitogen activated kinase and protein kinase C. Neurochem Int 2005, 46:501–512.CrossRefPubMed Fiebich BL, Akundi RS, Biber K, Hamke M, Schmidt C, Butcher RD, van Calker D, Willmroth F: IL-6 expression induced by adenosine A2b receptor stimulation in U373 MG cells depends on p38 mitogen activated kinase and protein kinase C. Neurochem Int 2005, 46:501–512.CrossRefPubMed
49.
go back to reference Nagamoto-Combs K, Vaccariello SA, Zigmond RE: The levels of leukemia inhibitory factor mRNA in a Schwann cell line are regulated by multiple second messenger pathways. J Neurochem 1999, 72:1871–1881.CrossRefPubMed Nagamoto-Combs K, Vaccariello SA, Zigmond RE: The levels of leukemia inhibitory factor mRNA in a Schwann cell line are regulated by multiple second messenger pathways. J Neurochem 1999, 72:1871–1881.CrossRefPubMed
50.
51.
go back to reference Spooren A, Kooijman R, Lintermans B, Van Craenenbroeck K, Vermeulen L, Haegeman G, Gerlo S: Cooperation of NFκB and CREB to induce synergistic IL-6 expression in astrocytes. Cell Signal 2010, 22:871–881.CrossRefPubMed Spooren A, Kooijman R, Lintermans B, Van Craenenbroeck K, Vermeulen L, Haegeman G, Gerlo S: Cooperation of NFκB and CREB to induce synergistic IL-6 expression in astrocytes. Cell Signal 2010, 22:871–881.CrossRefPubMed
52.
go back to reference Klausner RD, Donaldson JG, Lippincott-Schwartz J: Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 1992, 116:1071–1080.CrossRefPubMed Klausner RD, Donaldson JG, Lippincott-Schwartz J: Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 1992, 116:1071–1080.CrossRefPubMed
53.
go back to reference Moller JC, Kruttgen A, Burmester R, Weis J, Oertel WH, Shooter EM: Release of interleukin-6 via the regulated secretory pathway in PC12 cells. Neurosci Lett 2006, 400:75–79.CrossRefPubMed Moller JC, Kruttgen A, Burmester R, Weis J, Oertel WH, Shooter EM: Release of interleukin-6 via the regulated secretory pathway in PC12 cells. Neurosci Lett 2006, 400:75–79.CrossRefPubMed
54.
go back to reference Specht H, Peterziel H, Bajohrs M, Gerdes HH, Krieglstein K, Unsicker K: Transforming growth factor beta2 is released from PC12 cells via the regulated pathway of secretion. Mol Cell Neurosci 2003, 22:75–86.CrossRefPubMed Specht H, Peterziel H, Bajohrs M, Gerdes HH, Krieglstein K, Unsicker K: Transforming growth factor beta2 is released from PC12 cells via the regulated pathway of secretion. Mol Cell Neurosci 2003, 22:75–86.CrossRefPubMed
55.
56.
go back to reference Deborde S, Perret E, Gravotta D, Deora A, Salvarezza S, Schreiner R, Rodriguez-Boulan E: Clathrin is a key regulator of basolateral polarity. Nature 2008, 452:719–723.CrossRefPubMedPubMedCentral Deborde S, Perret E, Gravotta D, Deora A, Salvarezza S, Schreiner R, Rodriguez-Boulan E: Clathrin is a key regulator of basolateral polarity. Nature 2008, 452:719–723.CrossRefPubMedPubMedCentral
57.
go back to reference van Ijzendoorn SC, Mostov KE, Hoekstra D: Role of rab proteins in epithelial membrane traffic. Int Rev Cytol 2003, 232:59–88.CrossRefPubMed van Ijzendoorn SC, Mostov KE, Hoekstra D: Role of rab proteins in epithelial membrane traffic. Int Rev Cytol 2003, 232:59–88.CrossRefPubMed
59.
go back to reference Aloisi F, Rosa S, Testa U, Bonsi P, Russo G, Peschle C, Levi G: Regulation of leukemia inhibitory factor synthesis in cultured human astrocytes. J Immunol 1994, 152:5022–5031.PubMed Aloisi F, Rosa S, Testa U, Bonsi P, Russo G, Peschle C, Levi G: Regulation of leukemia inhibitory factor synthesis in cultured human astrocytes. J Immunol 1994, 152:5022–5031.PubMed
60.
go back to reference Dallner C, Woods AG, Deller T, Kirsch M, Hofmann HD: CNTF and CNTF receptor alpha are constitutively expressed by astrocytes in the mouse brain. Glia 2002, 37:374–378.CrossRefPubMed Dallner C, Woods AG, Deller T, Kirsch M, Hofmann HD: CNTF and CNTF receptor alpha are constitutively expressed by astrocytes in the mouse brain. Glia 2002, 37:374–378.CrossRefPubMed
61.
go back to reference Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS: Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009, 461:282–286.CrossRefPubMedPubMedCentral Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS: Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009, 461:282–286.CrossRefPubMedPubMedCentral
62.
go back to reference Rees DA, Lewis BM, Lewis MD, Francis K, Scanlon MF, Ham J: Adenosine-induced IL-6 expression in pituitary folliculostellate cells is mediated via A2b adenosine receptors coupled to PKC and p38 MAPK. Br J Pharmacol 2003, 140:764–772.CrossRefPubMed Rees DA, Lewis BM, Lewis MD, Francis K, Scanlon MF, Ham J: Adenosine-induced IL-6 expression in pituitary folliculostellate cells is mediated via A2b adenosine receptors coupled to PKC and p38 MAPK. Br J Pharmacol 2003, 140:764–772.CrossRefPubMed
63.
go back to reference Ryzhov S, Zaynagetdinov R, Goldstein AE, Novitskiy SV, Blackburn MR, Biaggioni I, Feoktistov I: Effect of A2B adenosine receptor gene ablation on adenosine-dependent regulation of proinflammatory cytokines. J Pharmacol Exp Ther 2008, 324:694–700.CrossRefPubMed Ryzhov S, Zaynagetdinov R, Goldstein AE, Novitskiy SV, Blackburn MR, Biaggioni I, Feoktistov I: Effect of A2B adenosine receptor gene ablation on adenosine-dependent regulation of proinflammatory cytokines. J Pharmacol Exp Ther 2008, 324:694–700.CrossRefPubMed
64.
go back to reference Vazquez JF, Clement HW, Sommer O, Schulz E, van Calker D: Local stimulation of the adenosine A2B receptors induces an increased release of IL-6 in mouse striatum: an in vivo microdialysis study. J Neurochem 2008, 105:904–909.CrossRefPubMed Vazquez JF, Clement HW, Sommer O, Schulz E, van Calker D: Local stimulation of the adenosine A2B receptors induces an increased release of IL-6 in mouse striatum: an in vivo microdialysis study. J Neurochem 2008, 105:904–909.CrossRefPubMed
65.
go back to reference Kim MO, Kim MH, Lee SH, Suh HN, Lee YJ, Lee MY, Han HJ: 5'-N-ethylcarboxamide induces IL-6 expression via MAPKs and NF-κB activation through Akt, Ca(2+)/PKC, cAMP signaling pathways in mouse embryonic stem cells. J Cell Physiol 2009, 219:752–759.CrossRefPubMed Kim MO, Kim MH, Lee SH, Suh HN, Lee YJ, Lee MY, Han HJ: 5'-N-ethylcarboxamide induces IL-6 expression via MAPKs and NF-κB activation through Akt, Ca(2+)/PKC, cAMP signaling pathways in mouse embryonic stem cells. J Cell Physiol 2009, 219:752–759.CrossRefPubMed
66.
go back to reference Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T, Akira S: Transcription factors NF-IL6 and NF-κB synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci USA 1993, 90:10193–10197.CrossRefPubMedPubMedCentral Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T, Akira S: Transcription factors NF-IL6 and NF-κB synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci USA 1993, 90:10193–10197.CrossRefPubMedPubMedCentral
67.
go back to reference Stow JL, Low PC, Offenhauser C, Sangermani D: Cytokine secretion in macrophages and other cells: pathways and mediators. Immunobiology 2009, 214:601–612.CrossRefPubMed Stow JL, Low PC, Offenhauser C, Sangermani D: Cytokine secretion in macrophages and other cells: pathways and mediators. Immunobiology 2009, 214:601–612.CrossRefPubMed
68.
go back to reference Huse M, Lillemeier BF, Kuhns MS, Chen DS, Davis MM: T cells use two directionally distinct pathways for cytokine secretion. Nat Immunol 2006, 7:247–255.CrossRefPubMed Huse M, Lillemeier BF, Kuhns MS, Chen DS, Davis MM: T cells use two directionally distinct pathways for cytokine secretion. Nat Immunol 2006, 7:247–255.CrossRefPubMed
69.
go back to reference de Jong EK, Vinet J, Stanulovic VS, Meijer M, Wesseling E, Sjollema K, Boddeke HW, Biber K: Expression, transport, and axonal sorting of neuronal CCL21 in large dense-core vesicles. FASEB J 2008, 22:4136–4145.CrossRefPubMed de Jong EK, Vinet J, Stanulovic VS, Meijer M, Wesseling E, Sjollema K, Boddeke HW, Biber K: Expression, transport, and axonal sorting of neuronal CCL21 in large dense-core vesicles. FASEB J 2008, 22:4136–4145.CrossRefPubMed
70.
go back to reference Reefman E, Kay JG, Wood SM, Offenhauser C, Brown DL, Roy S, Stanley AC, Low PC, Manderson AP, Stow JL: Cytokine secretion is distinct from secretion of cytotoxic granules in NK cells. J Immunol 2010, 184:4852–4862.CrossRefPubMed Reefman E, Kay JG, Wood SM, Offenhauser C, Brown DL, Roy S, Stanley AC, Low PC, Manderson AP, Stow JL: Cytokine secretion is distinct from secretion of cytotoxic granules in NK cells. J Immunol 2010, 184:4852–4862.CrossRefPubMed
71.
go back to reference Manderson AP, Kay JG, Hammond LA, Brown DL, Stow JL: Subcompartments of the macrophage recycling endosome direct the differential secretion of IL-6 and TNFalpha. J Cell Biol 2007, 178:57–69.CrossRefPubMedPubMedCentral Manderson AP, Kay JG, Hammond LA, Brown DL, Stow JL: Subcompartments of the macrophage recycling endosome direct the differential secretion of IL-6 and TNFalpha. J Cell Biol 2007, 178:57–69.CrossRefPubMedPubMedCentral
72.
go back to reference Nickel W, Rabouille C: Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 2009, 10:148–155.CrossRefPubMed Nickel W, Rabouille C: Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 2009, 10:148–155.CrossRefPubMed
73.
go back to reference Cheema SS, Richards LJ, Murphy M, Bartlett PF: Leukaemia inhibitory factor rescues motoneurones from axotomy-induced cell death. Neuroreport 1994, 5:989–992.CrossRefPubMed Cheema SS, Richards LJ, Murphy M, Bartlett PF: Leukaemia inhibitory factor rescues motoneurones from axotomy-induced cell death. Neuroreport 1994, 5:989–992.CrossRefPubMed
74.
go back to reference Tham S, Dowsing B, Finkelstein D, Donato R, Cheema SS, Bartlett PF, Morrison WA: Leukemia inhibitory factor enhances the regeneration of transected rat sciatic nerve and the function of reinnervated muscle. J Neurosci Res 1997, 47:208–215.CrossRefPubMed Tham S, Dowsing B, Finkelstein D, Donato R, Cheema SS, Bartlett PF, Morrison WA: Leukemia inhibitory factor enhances the regeneration of transected rat sciatic nerve and the function of reinnervated muscle. J Neurosci Res 1997, 47:208–215.CrossRefPubMed
75.
go back to reference Nakagawa T, Schwartz JP: Expression of neurotrophic factors and cytokines and their receptors on astrocytesin vivo.In Advances in Molecular and Cell Biology: Non-Neuronal Cells of the Nervous System: Function and Dysfunction Volume 31. Elsevier, Amsterdam; 2003:561–573.CrossRef Nakagawa T, Schwartz JP: Expression of neurotrophic factors and cytokines and their receptors on astrocytesin vivo.In Advances in Molecular and Cell Biology: Non-Neuronal Cells of the Nervous System: Function and Dysfunction Volume 31. Elsevier, Amsterdam; 2003:561–573.CrossRef
76.
go back to reference Gribkoff VK, Bauman LA: Endogenous adenosine contributes to hypoxic synaptic depression in hippocampus from young and aged rats. J Neurophysiol 1992, 68:620–628.PubMed Gribkoff VK, Bauman LA: Endogenous adenosine contributes to hypoxic synaptic depression in hippocampus from young and aged rats. J Neurophysiol 1992, 68:620–628.PubMed
77.
go back to reference Fowler JC: Purine release and inhibition of synaptic transmission during hypoxia and hypoglycemia in rat hippocampal slices. Neurosci Lett 1993, 157:83–86.CrossRefPubMed Fowler JC: Purine release and inhibition of synaptic transmission during hypoxia and hypoglycemia in rat hippocampal slices. Neurosci Lett 1993, 157:83–86.CrossRefPubMed
78.
go back to reference Lloyd HG, Lindstrom K, Fredholm BB: Intracellular formation and release of adenosine from rat hippocampal slices evoked by electrical stimulation or energy depletion. Neurochem Int 1993, 23:173–185.CrossRefPubMed Lloyd HG, Lindstrom K, Fredholm BB: Intracellular formation and release of adenosine from rat hippocampal slices evoked by electrical stimulation or energy depletion. Neurochem Int 1993, 23:173–185.CrossRefPubMed
79.
go back to reference Latini S, Bordoni F, Corradetti R, Pepeu G, Pedata F: Effect of A2A adenosine receptor stimulation and antagonism on synaptic depression induced by in vitro ischaemia in rat hippocampal slices. Br J Pharmacol 1999, 128:1035–1044.CrossRefPubMedPubMedCentral Latini S, Bordoni F, Corradetti R, Pepeu G, Pedata F: Effect of A2A adenosine receptor stimulation and antagonism on synaptic depression induced by in vitro ischaemia in rat hippocampal slices. Br J Pharmacol 1999, 128:1035–1044.CrossRefPubMedPubMedCentral
80.
go back to reference Arvin B, Neville LF, Pan J, Roberts PJ: 2-chloroadenosine attenuates kainic acid-induced toxicity within the rat straitum: relationship to release of glutamate and Ca2+ influx. Br J Pharmacol 1989, 98:225–235.CrossRefPubMedPubMedCentral Arvin B, Neville LF, Pan J, Roberts PJ: 2-chloroadenosine attenuates kainic acid-induced toxicity within the rat straitum: relationship to release of glutamate and Ca2+ influx. Br J Pharmacol 1989, 98:225–235.CrossRefPubMedPubMedCentral
81.
go back to reference Lloyd HG, Perkins A, Spence I: Effect of magnesium on depression of the monosynaptic reflex induced by 2-chloroadenosine or hypoxia in the isolated spinal cord of neonatal rats. Neurosci Lett 1989, 101:175–181.CrossRefPubMed Lloyd HG, Perkins A, Spence I: Effect of magnesium on depression of the monosynaptic reflex induced by 2-chloroadenosine or hypoxia in the isolated spinal cord of neonatal rats. Neurosci Lett 1989, 101:175–181.CrossRefPubMed
82.
go back to reference Pingle SC, Jajoo S, Mukherjea D, Sniderhan LF, Jhaveri KA, Marcuzzi A, Rybak LP, Maggirwar SB, Ramkumar V: Activation of the adenosine A1 receptor inhibits HIV-1 tat-induced apoptosis by reducing nuclear factor-kappaB activation and inducible nitric-oxide synthase. Mol Pharmacol 2007, 72:856–867.CrossRefPubMed Pingle SC, Jajoo S, Mukherjea D, Sniderhan LF, Jhaveri KA, Marcuzzi A, Rybak LP, Maggirwar SB, Ramkumar V: Activation of the adenosine A1 receptor inhibits HIV-1 tat-induced apoptosis by reducing nuclear factor-kappaB activation and inducible nitric-oxide synthase. Mol Pharmacol 2007, 72:856–867.CrossRefPubMed
83.
go back to reference Dunwiddie TV, Masino SA: The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 2001, 24:31–55.CrossRefPubMed Dunwiddie TV, Masino SA: The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 2001, 24:31–55.CrossRefPubMed
84.
go back to reference Ramkumar V, Hallam DM, Nie Z: Adenosine, oxidative stress and cytoprotection. Jpn J Pharmacol 2001, 86:265–274.CrossRefPubMed Ramkumar V, Hallam DM, Nie Z: Adenosine, oxidative stress and cytoprotection. Jpn J Pharmacol 2001, 86:265–274.CrossRefPubMed
85.
go back to reference Kuno A, Critz SD, Cui L, Solodushko V, Yang XM, Krahn T, Albrecht B, Philipp S, Cohen MV, Downey JM: Protein kinase C protects preconditioned rabbit hearts by increasing sensitivity of adenosine A2b-dependent signaling during early reperfusion. J Mol Cell Cardiol 2007, 43:262–271.CrossRefPubMedPubMedCentral Kuno A, Critz SD, Cui L, Solodushko V, Yang XM, Krahn T, Albrecht B, Philipp S, Cohen MV, Downey JM: Protein kinase C protects preconditioned rabbit hearts by increasing sensitivity of adenosine A2b-dependent signaling during early reperfusion. J Mol Cell Cardiol 2007, 43:262–271.CrossRefPubMedPubMedCentral
86.
go back to reference Rosi S, McGann K, Hauss-Wegrzyniak B, Wenk GL: The influence of brain inflammation upon neuronal adenosine A2B receptors. J Neurochem 2003, 86:220–227.CrossRefPubMed Rosi S, McGann K, Hauss-Wegrzyniak B, Wenk GL: The influence of brain inflammation upon neuronal adenosine A2B receptors. J Neurochem 2003, 86:220–227.CrossRefPubMed
87.
go back to reference Yang D, Zhang Y, Nguyen HG, Koupenova M, Chauhan AK, Makitalo M, Jones MR, St Hilaire C, Seldin DC, Toselli P, et al.: The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest 2006, 116:1913–1923.CrossRefPubMedPubMedCentral Yang D, Zhang Y, Nguyen HG, Koupenova M, Chauhan AK, Makitalo M, Jones MR, St Hilaire C, Seldin DC, Toselli P, et al.: The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest 2006, 116:1913–1923.CrossRefPubMedPubMedCentral
Metadata
Title
Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity
Authors
Shamsudheen Moidunny
Jonathan Vinet
Evelyn Wesseling
Johan Bijzet
Chu-Hsin Shieh
Sven CD van Ijzendoorn
Paola Bezzi
Hendrikus WGM Boddeke
Knut Biber
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-198

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue