Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Efficient isolation of live microglia with preserved phenotypes from adult mouse brain

Authors: Maria Nikodemova, Jyoti J Watters

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Microglial activation plays a key role in the neuroinflammation associated with virtually all CNS disorders, although their role in normal CNS physiology is becoming increasingly appreciated. Neuroinflammation is often assessed by analyzing pro-inflammatory mediators in CNS tissue homogenates, under the assumption that microglia are the main source of these molecules. However, other cell types in the CNS can also synthesize inflammatory molecules. Hence, to enable direct analysis of microglial activities ex vivo, an efficient, reliable, and reproducible method of microglial isolation is needed.

Methods

After enzymatic digestion of brain tissues and myelin removal, CD11b+ cells were isolated using immunomagnetic separation, yielding highly purified microglia without astrocyte or neuronal contamination. We used three methods of myelin removal (30% Percoll, 0.9 mol/l sucrose and anti-myelin magnetic beads), and compared their effects on microglial viability and yield. To determine whether the isolation procedure itself activates microglia, we used flow cytometry to examine microglial properties in brain-tissue homogenates and isolated microglia from control and lipopolysaccharide (LPS) -treated mice.

Results

This method yielded a highly purified CD11b+ cell population with properties that reflected their in vivo phenotype. The viability and yield of isolated cells were significantly affected by the myelin removal method. Although the microglial phenotype was comparable in all methods used, the highest viability and number of CD11b+ cells was obtained with Percoll. Microglia isolated from LPS-treated mice displayed a pro-inflammatory phenotype as determined by upregulated levels of TNF-α, whereas microglia isolated from control mice did not.

Conclusions

Immunomagnetic separation is an efficient method to isolate microglia from the CNS, and is equally suitable for isolating quiescent and activated microglia. This technique allows evaluation of microglial activities ex vivo, which accurately reflects their activities in vivo. Microglia obtained by this method can be used for multiple downstream applications including qRT-PCR, ELISA, Western blotting, and flow cytometry to analyze microglial activities in any number of CNS pathologies or injuries.
Literature
1.
go back to reference Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314–1318.CrossRefPubMed Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314–1318.CrossRefPubMed
3.
go back to reference Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J: Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009, 29:3974–3980.CrossRefPubMed Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J: Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009, 29:3974–3980.CrossRefPubMed
5.
go back to reference Zhang SC, Goetz BD, Carre JL, Duncan ID: Reactive microglia in dysmyelination and demyelination. Glia 2001, 34:101–109.CrossRefPubMed Zhang SC, Goetz BD, Carre JL, Duncan ID: Reactive microglia in dysmyelination and demyelination. Glia 2001, 34:101–109.CrossRefPubMed
6.
go back to reference Gonzalez-Scarano F, Baltuch G: Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 1999, 22:219–240.CrossRefPubMed Gonzalez-Scarano F, Baltuch G: Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 1999, 22:219–240.CrossRefPubMed
7.
go back to reference Raivich G, Banati R: Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res Brain Res Rev 2004, 46:261–281.CrossRefPubMed Raivich G, Banati R: Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res Brain Res Rev 2004, 46:261–281.CrossRefPubMed
8.
go back to reference Narantuya D, Nagai A, Sheikh AM, Masuda J, Kobayashi S, Yamaguchi S, Kim SU: Human microglia transplanted in rat focal ischemia brain induce neuroprotection and behavioral improvement. PLoS One 2010, 5:e11746.CrossRefPubMedPubMedCentral Narantuya D, Nagai A, Sheikh AM, Masuda J, Kobayashi S, Yamaguchi S, Kim SU: Human microglia transplanted in rat focal ischemia brain induce neuroprotection and behavioral improvement. PLoS One 2010, 5:e11746.CrossRefPubMedPubMedCentral
9.
go back to reference Festoff BW, Ameenuddin S, Arnold PM, Wong A, Santacruz KS, Citron BA: Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J Neurochem 2006, 97:1314–1326.CrossRefPubMed Festoff BW, Ameenuddin S, Arnold PM, Wong A, Santacruz KS, Citron BA: Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J Neurochem 2006, 97:1314–1326.CrossRefPubMed
10.
go back to reference Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J: Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer's disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 2008, 28:11650–11661.CrossRefPubMed Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J: Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer's disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 2008, 28:11650–11661.CrossRefPubMed
11.
go back to reference Windelborn JA, Mitchell GS: Glial activation in the spinal ventral horn caudal to cervical injury. Respir Physiol Neurobiol 2012,180(1):61–68.CrossRefPubMed Windelborn JA, Mitchell GS: Glial activation in the spinal ventral horn caudal to cervical injury. Respir Physiol Neurobiol 2012,180(1):61–68.CrossRefPubMed
12.
go back to reference Wirths O, Breyhan H, Marcello A, Cotel MC, Bruck W, Bayer TA: Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer's disease. Neurobiol Aging 2011, 31:747–757.CrossRef Wirths O, Breyhan H, Marcello A, Cotel MC, Bruck W, Bayer TA: Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer's disease. Neurobiol Aging 2011, 31:747–757.CrossRef
13.
go back to reference Kooij G, Mizee MR, van Horssen J, Reijerkerk A, Witte ME, Drexhage JA, van der Pol SM, van Het Hof B, Scheffer G, Scheper R, et al.: Adenosine triphosphate-binding cassette transporters mediate chemokine (C-C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis. Brain 2011, 134:555–570.CrossRefPubMed Kooij G, Mizee MR, van Horssen J, Reijerkerk A, Witte ME, Drexhage JA, van der Pol SM, van Het Hof B, Scheffer G, Scheper R, et al.: Adenosine triphosphate-binding cassette transporters mediate chemokine (C-C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis. Brain 2011, 134:555–570.CrossRefPubMed
14.
go back to reference Gorina R, Font-Nieves M, Marquez-Kisinousky L, Santalucia T, Planas AM: Astrocyte TLR4 activation induces a pro-inflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia 2011, 59:242–255.CrossRefPubMed Gorina R, Font-Nieves M, Marquez-Kisinousky L, Santalucia T, Planas AM: Astrocyte TLR4 activation induces a pro-inflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia 2011, 59:242–255.CrossRefPubMed
15.
go back to reference Burkert K, Moodley K, Angel CE, Brooks A, Graham ES: Detailed analysis of inflammatory and neuromodulatory cytokine secretion from human NT2 astrocytes using multiplex bead array. Neurochem Int 2012, 60:573–580.CrossRefPubMed Burkert K, Moodley K, Angel CE, Brooks A, Graham ES: Detailed analysis of inflammatory and neuromodulatory cytokine secretion from human NT2 astrocytes using multiplex bead array. Neurochem Int 2012, 60:573–580.CrossRefPubMed
16.
go back to reference Crain JM, Nikodemova M, Watters JJ: Expression of P2 nucleotide receptors varies with age and sex in murine brain microglia. J Neuroinflammation 2009, 6:24.CrossRefPubMedPubMedCentral Crain JM, Nikodemova M, Watters JJ: Expression of P2 nucleotide receptors varies with age and sex in murine brain microglia. J Neuroinflammation 2009, 6:24.CrossRefPubMedPubMedCentral
17.
go back to reference Nikodemova M, Watters JJ: Outbred ICR/CD1 mice display more severe neuroinflammation mediated by microglial TLR4/CD14 activation than inbred C57Bl/6 mice. Neuroscience 2011, 190:67–74.CrossRefPubMedPubMedCentral Nikodemova M, Watters JJ: Outbred ICR/CD1 mice display more severe neuroinflammation mediated by microglial TLR4/CD14 activation than inbred C57Bl/6 mice. Neuroscience 2011, 190:67–74.CrossRefPubMedPubMedCentral
18.
go back to reference Marek R, Caruso M, Rostami A, Grinspan JB, Das Sarma J: Magnetic cell sorting: a fast and effective method of concurrent isolation of high purity viable astrocytes and microglia from neonatal mouse brain tissue. J Neurosci Methods 2008, 175:108–118.CrossRefPubMed Marek R, Caruso M, Rostami A, Grinspan JB, Das Sarma J: Magnetic cell sorting: a fast and effective method of concurrent isolation of high purity viable astrocytes and microglia from neonatal mouse brain tissue. J Neurosci Methods 2008, 175:108–118.CrossRefPubMed
19.
go back to reference de Haas AH, Boddeke HW, Brouwer N, Biber K: Optimized isolation enables ex vivo analysis of microglia from various central nervous system regions. Glia 2007, 55:1374–1384.CrossRefPubMed de Haas AH, Boddeke HW, Brouwer N, Biber K: Optimized isolation enables ex vivo analysis of microglia from various central nervous system regions. Glia 2007, 55:1374–1384.CrossRefPubMed
20.
go back to reference Stanley AC, Lacy P: Pathways for cytokine secretion. Physiology (Bethesda) 2011, 25:218–229.CrossRef Stanley AC, Lacy P: Pathways for cytokine secretion. Physiology (Bethesda) 2011, 25:218–229.CrossRef
21.
go back to reference Stow JL, Low PC, Offenhauser C, Sangermani D: Cytokine secretion in macrophages and other cells: pathways and mediators. Immunobiology 2009, 214:601–612.CrossRefPubMed Stow JL, Low PC, Offenhauser C, Sangermani D: Cytokine secretion in macrophages and other cells: pathways and mediators. Immunobiology 2009, 214:601–612.CrossRefPubMed
Metadata
Title
Efficient isolation of live microglia with preserved phenotypes from adult mouse brain
Authors
Maria Nikodemova
Jyoti J Watters
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-147

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue