Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2008

Open Access 01-12-2008 | Commentary

Perispinal etanercept: Potential as an Alzheimer therapeutic

Author: W Sue T Griffin

Published in: Journal of Neuroinflammation | Issue 1/2008

Login to get access

Abstract

Tumor necrosis factor-alpha (TNF) is one of a number of systemic and immunomodulating cytokines that generally act to promote acute-phase reactions but can drive degenerative changes when chronically elevated. Traditional focus on TNF has been directed at these inflammation-related functions. Of particular relevance to intersections between neuroinflammation and neurodegeneration is the ability of TNF to increase expression of interleukin-1 (IL-1), which in turn increases production of the precursors necessary for formation of amyloid plaques, neurofibrillary tangles, and Lewy bodies. More recent data have revealed that TNF, one of the few gliotransmitters, has strikingly acute effects on synaptic physiology. These complex influences on neural health suggest that manipulation of this cytokine might have important impacts on diseases characterized by glial activation, cytokine-mediated neuroinflammation, and synaptic dysfunction. Toward such manipulation in Alzheimer's disease, a six-month study was conducted with 15 probable-Alzheimer patients who were treated weekly with perispinal injection of Etanercept, an FDA-approved TNF inhibitor that is now widely used for treatment of rheumatoid arthritis and other systemic diseases associated with inflammation. The results demonstrated that perispinal administration of etanercept could provide sustained improvement in cognitive function for Alzheimer patients. Additionally, the authors were impressed by the striking rapidity with which these improvements occurred in the study patients. An example of this rapid improvement is presented in this issue as a case report by Tobinick and Gross. Such rapid gain of function inspires speculation about the role of gliotransmission or other equally rapid synaptic events in the relationship of TNF to Alzheimer-impacted neurophysiology. Because of the inability of large molecules such as etanercept to cross the blood brain barrier following conventional systemic administration, it is likely that the more direct drug delivery system pioneered by Tobinick also contributed to the effectiveness of the treatment. If so, this system could be useful in drug delivery to the brain in other neural disorders, as well as in animal research studies, many of which currently employ delivery strategies that inflict damage to neural cells and thus engender neuroinflammatory responses.
Literature
1.
go back to reference Tobinick E, Gross H: Rapid cognitive improvement in Alzheimer’s disease following perispinal etanercept administration. J Neuroinflammation. 2008, 5 (2): 3-10.1186/1742-2094-5-2. Tobinick E, Gross H: Rapid cognitive improvement in Alzheimer’s disease following perispinal etanercept administration. J Neuroinflammation. 2008, 5 (2): 3-10.1186/1742-2094-5-2.
2.
go back to reference Tobinick E, Vega CP: The cerebrospinal venous system: anatomy, physiology, and clinical implications. MedGenMed. 2006, 8 (1): 53.PubMed Tobinick E, Vega CP: The cerebrospinal venous system: anatomy, physiology, and clinical implications. MedGenMed. 2006, 8 (1): 53.PubMed
3.
go back to reference Tobinick E, Gross H, Weinberger A, Cohen H: TNF-alpha modulation for treatment of Alzheimer's disease: a 6-month pilot study. MedGenMed. 2006, 8 (2): 25.PubMedCentralPubMed Tobinick E, Gross H, Weinberger A, Cohen H: TNF-alpha modulation for treatment of Alzheimer's disease: a 6-month pilot study. MedGenMed. 2006, 8 (2): 25.PubMedCentralPubMed
4.
go back to reference Tobinick E: Perispinal etanercept for treatment of Alzheimer's disease. Curr Alzheimer Res. 2007, 4: 550-552. 10.2174/156720507783018217.CrossRefPubMed Tobinick E: Perispinal etanercept for treatment of Alzheimer's disease. Curr Alzheimer Res. 2007, 4: 550-552. 10.2174/156720507783018217.CrossRefPubMed
5.
go back to reference Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC: Control of synaptic strength by glial TNFalpha. Science. 2002, 295 (5563): 2282-2285. 10.1126/science.1067859.CrossRefPubMed Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC: Control of synaptic strength by glial TNFalpha. Science. 2002, 295 (5563): 2282-2285. 10.1126/science.1067859.CrossRefPubMed
6.
go back to reference Stellwagen D, Malenka RC: Synaptic scaling mediated by glial TNF-alpha. Nature. 2006, 440 (7087): 1054-1059. 10.1038/nature04671.CrossRefPubMed Stellwagen D, Malenka RC: Synaptic scaling mediated by glial TNF-alpha. Nature. 2006, 440 (7087): 1054-1059. 10.1038/nature04671.CrossRefPubMed
7.
go back to reference Turrigiano GG: More than a sidekick: glia and homeostatic synaptic plasticity. Trends Mol Med. 2006, 12 (10): 458-460. 10.1016/j.molmed.2006.08.002.CrossRefPubMed Turrigiano GG: More than a sidekick: glia and homeostatic synaptic plasticity. Trends Mol Med. 2006, 12 (10): 458-460. 10.1016/j.molmed.2006.08.002.CrossRefPubMed
8.
go back to reference Rowan MJ, Klyubin I, Wang Q, Hu NW, Anwyl R: Synaptic memory mechanisms: Alzheimer's disease amyloid beta-peptide-induced dysfunction. Biochem Soc Trans. 2007, 35 (Pt 5): 1219-1223.CrossRefPubMed Rowan MJ, Klyubin I, Wang Q, Hu NW, Anwyl R: Synaptic memory mechanisms: Alzheimer's disease amyloid beta-peptide-induced dysfunction. Biochem Soc Trans. 2007, 35 (Pt 5): 1219-1223.CrossRefPubMed
9.
go back to reference Wang Q, Wu J, Rowan MJ, Anwyl R: Beta-amyloid inhibition of long-term potentiation is mediated via tumor necrosis factor. Eur J Neurosci. 2005, 22 (11): 2827-2832. 10.1111/j.1460-9568.2005.04457.x.CrossRefPubMed Wang Q, Wu J, Rowan MJ, Anwyl R: Beta-amyloid inhibition of long-term potentiation is mediated via tumor necrosis factor. Eur J Neurosci. 2005, 22 (11): 2827-2832. 10.1111/j.1460-9568.2005.04457.x.CrossRefPubMed
10.
go back to reference Golan H, Levav T, Mendelsohn A, Huleihel M: Involvement of tumor necrosis factor alpha in hippocampal development and function. Cereb Cortex. 2004, 14 (1): 97-105. 10.1093/cercor/bhg108.CrossRefPubMed Golan H, Levav T, Mendelsohn A, Huleihel M: Involvement of tumor necrosis factor alpha in hippocampal development and function. Cereb Cortex. 2004, 14 (1): 97-105. 10.1093/cercor/bhg108.CrossRefPubMed
11.
go back to reference Aloe L, Properzi F, Probert L, Akassoglou K, Kassiotis G, Micera A, Fiore M: Learning abilities, NGF and BDNF brain levels in two lines of TNF-alpha transgenic mice, one characterized by neurological disorders, the other phenotypically normal. Brain Res. 1999, 840 (1-2): 125-137. 10.1016/S0006-8993(99)01748-5.CrossRefPubMed Aloe L, Properzi F, Probert L, Akassoglou K, Kassiotis G, Micera A, Fiore M: Learning abilities, NGF and BDNF brain levels in two lines of TNF-alpha transgenic mice, one characterized by neurological disorders, the other phenotypically normal. Brain Res. 1999, 840 (1-2): 125-137. 10.1016/S0006-8993(99)01748-5.CrossRefPubMed
12.
go back to reference Cunningham AJ, Murray CA, O'Neill LA, Lynch MA, O'Connor JJ: Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett. 1996, 203 (1): 17-20. 10.1016/0304-3940(95)12252-4.CrossRefPubMed Cunningham AJ, Murray CA, O'Neill LA, Lynch MA, O'Connor JJ: Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett. 1996, 203 (1): 17-20. 10.1016/0304-3940(95)12252-4.CrossRefPubMed
13.
go back to reference Ross FM, Allan SM, Rothwell NJ, Verkhratsky A: A dual role for interleukin-1 in LTP in mouse hippocampal slices. J Neuroimmunol. 2003, 144 (1-2): 61-67. 10.1016/j.jneuroim.2003.08.030.CrossRefPubMed Ross FM, Allan SM, Rothwell NJ, Verkhratsky A: A dual role for interleukin-1 in LTP in mouse hippocampal slices. J Neuroimmunol. 2003, 144 (1-2): 61-67. 10.1016/j.jneuroim.2003.08.030.CrossRefPubMed
14.
go back to reference Butovsky O, Koronyo-Hamaoui M, Kunis G, Ophir E, Landa G, Cohen H, Schwartz M: Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci U S A. 2006, 103 (31): 11784-11789. 10.1073/pnas.0604681103.PubMedCentralCrossRefPubMed Butovsky O, Koronyo-Hamaoui M, Kunis G, Ophir E, Landa G, Cohen H, Schwartz M: Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci U S A. 2006, 103 (31): 11784-11789. 10.1073/pnas.0604681103.PubMedCentralCrossRefPubMed
15.
go back to reference Clynes R, Maizes JS, Guinamard R, Ono M, Takai T, Ravetch JV: Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J Exp Med. 1999, 189 (1): 179-185. 10.1084/jem.189.1.179.PubMedCentralCrossRefPubMed Clynes R, Maizes JS, Guinamard R, Ono M, Takai T, Ravetch JV: Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J Exp Med. 1999, 189 (1): 179-185. 10.1084/jem.189.1.179.PubMedCentralCrossRefPubMed
16.
go back to reference Levites Y, Smithson LA, Price RW, Dakin RS, Yuan B, Sierks MR, Kim J, McGowan E, Reed DK, Rosenberry TL, Das P, Golde TE: Insights into the mechanisms of action of anti-Abeta antibodies in Alzheimer's disease mouse models. Faseb J. 2006, 20 (14): 2576-2578. 10.1096/fj.06-6463fje.CrossRefPubMed Levites Y, Smithson LA, Price RW, Dakin RS, Yuan B, Sierks MR, Kim J, McGowan E, Reed DK, Rosenberry TL, Das P, Golde TE: Insights into the mechanisms of action of anti-Abeta antibodies in Alzheimer's disease mouse models. Faseb J. 2006, 20 (14): 2576-2578. 10.1096/fj.06-6463fje.CrossRefPubMed
17.
go back to reference Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL, Araoz C: Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989, 86 (19): 7611-7615. 10.1073/pnas.86.19.7611.PubMedCentralCrossRefPubMed Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL, Araoz C: Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989, 86 (19): 7611-7615. 10.1073/pnas.86.19.7611.PubMedCentralCrossRefPubMed
18.
go back to reference Mrak RE, Griffin WS: Common inflammatory mechanisms in Lewy body disease and Alzheimer disease. J Neuropathol Exp Neurol. 2007, 66 (8): 683-686.CrossRefPubMed Mrak RE, Griffin WS: Common inflammatory mechanisms in Lewy body disease and Alzheimer disease. J Neuropathol Exp Neurol. 2007, 66 (8): 683-686.CrossRefPubMed
Metadata
Title
Perispinal etanercept: Potential as an Alzheimer therapeutic
Author
W Sue T Griffin
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2008
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-5-3

Other articles of this Issue 1/2008

Journal of Neuroinflammation 1/2008 Go to the issue