Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2005

Open Access 01-12-2005 | Research

Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription

Authors: Michiyo Tomita, Brita J Holman, Christopher P Santoro, Thomas J Santoro

Published in: Journal of Neuroinflammation | Issue 1/2005

Login to get access

Abstract

Background

In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2) is thought to play a pivotal role in the induction and perpetuation of inflammation in the central nervous system (CNS). The origin of MIP-2 in inflammatory disorders of the brain has not been fully defined but astrocytes appear to be a dominant source of this chemokine.
Curcumin is a spice principle in, and constitutes approximately 4 percent of, turmeric. Curcumin's immunomodulating and antioxidant activities suggest that it might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation. Relatively unexplored, but relevant to its potential therapeutic efficacy in neuroinflammatory syndromes is the effect of curcumin on chemokine production. To examine the possibility that curcumin may influence CNS inflammation by mechanisms distinct from its known anti-oxidant activities, we studied the effect of this spice principle on the synthesis of MIP-2 by astrocytes.

Methods

Primary astrocytes were prepared from neonatal brains of CBA/CaJ mice. The cells were stimulated with lipopolysaccharide in the presence or absence of various amount of curcumin or epigallocatechin gallate. MIP-2 mRNA was analyzed using semi-quantitative PCR and MIP-2 protein production in the culture supernatants was quantified by ELISA. Astrocytes were transfected with a MIP-2 promoter construct, pGL3-MIP-2, and stimulated with lipopolysaccharide in the presence or absence of curcumin.

Results

The induction of MIP-2 gene expression and the production of MIP-2 protein were inhibited by curcumin. Curcumin also inhibited lipopolysaccharide-induced transcription of the MIP-2 promoter reporter gene construct in primary astrocytes. However MIP-2 gene induction by lipopolysaccharide was not inhibited by another anti-oxidant, epigallocatechin gallate.

Conclusion

Our results indicate that curcumin potently inhibits MIP-2 production at the level of gene transcription and offer further support for its potential use in the treatment of inflammatory conditions of the CNS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sreejayan, Rao MN: Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol. 1994, 46: 1013-1016.CrossRefPubMed Sreejayan, Rao MN: Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol. 1994, 46: 1013-1016.CrossRefPubMed
2.
3.
go back to reference Kang BY, Chung SW, Chung W, Im S, Hwang SY, Kim TS: Inhibition of interleukin-12 production in lipopolysaccharide-activated macrophages by curcumin. Eur J Pharmacol. 1999, 384: 191-195. 10.1016/S0014-2999(99)00690-1.CrossRefPubMed Kang BY, Chung SW, Chung W, Im S, Hwang SY, Kim TS: Inhibition of interleukin-12 production in lipopolysaccharide-activated macrophages by curcumin. Eur J Pharmacol. 1999, 384: 191-195. 10.1016/S0014-2999(99)00690-1.CrossRefPubMed
4.
go back to reference Kang BY, Song YJ, Kim KM, Choe YK, Hwang SY, Kim TS: Curcumin inhibits Th1 cytokine profile in CD4+ T cells by suppressing interleukin-12 production in macrophages. Br J Pharmacol. 1999, 128: 380-384. 10.1038/sj.bjp.0702803.PubMedCentralCrossRefPubMed Kang BY, Song YJ, Kim KM, Choe YK, Hwang SY, Kim TS: Curcumin inhibits Th1 cytokine profile in CD4+ T cells by suppressing interleukin-12 production in macrophages. Br J Pharmacol. 1999, 128: 380-384. 10.1038/sj.bjp.0702803.PubMedCentralCrossRefPubMed
5.
go back to reference Huang MT, Smart RC, Wong CQ, Conney AH: Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1988, 48: 5941-5946.PubMed Huang MT, Smart RC, Wong CQ, Conney AH: Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1988, 48: 5941-5946.PubMed
6.
go back to reference Ambegaokar SS, Wu L, Alamshahi K, Lau J, Jazayeri L, Chan S, Khanna P, Hsieh E, Timiras PS: Curcumin inhibits dose-dependently and time-dependently neuroglial cell proliferation and growth. Neuro Endocrinol Lett. 2003, 24: 469-473.PubMed Ambegaokar SS, Wu L, Alamshahi K, Lau J, Jazayeri L, Chan S, Khanna P, Hsieh E, Timiras PS: Curcumin inhibits dose-dependently and time-dependently neuroglial cell proliferation and growth. Neuro Endocrinol Lett. 2003, 24: 469-473.PubMed
7.
go back to reference Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E, Byers HR: Curcumin is an in vivo inhibitor of angiogenesis. Mol Med. 1998, 4: 376-383.PubMedCentralPubMed Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E, Byers HR: Curcumin is an in vivo inhibitor of angiogenesis. Mol Med. 1998, 4: 376-383.PubMedCentralPubMed
8.
go back to reference Monsonego A, Weiner HL: Immunotherapeutic approaches to Alzheimer's disease. Science. 2003, 302: 834-838. 10.1126/science.1088469.CrossRefPubMed Monsonego A, Weiner HL: Immunotherapeutic approaches to Alzheimer's disease. Science. 2003, 302: 834-838. 10.1126/science.1088469.CrossRefPubMed
9.
go back to reference Nygardas PT, Maatta JA, Hinkkanen AE: Chemokine expression by central nervous system resident cells and infiltrating neutrophils during experimental autoimmune encephalomyelitis in the BALB/c mouse. Eur J Immunol. 2000, 30: 1911-1918. 10.1002/1521-4141(200007)30:7<1911::AID-IMMU1911>3.0.CO;2-E.CrossRefPubMed Nygardas PT, Maatta JA, Hinkkanen AE: Chemokine expression by central nervous system resident cells and infiltrating neutrophils during experimental autoimmune encephalomyelitis in the BALB/c mouse. Eur J Immunol. 2000, 30: 1911-1918. 10.1002/1521-4141(200007)30:7<1911::AID-IMMU1911>3.0.CO;2-E.CrossRefPubMed
10.
go back to reference Otto VI, Gloor SM, Frentzel S, Gilli U, Ammann E, Hein AE, Folkers G, Trentz O, Kossmann T, Morganti-Kossmann MC: The production of macrophage inflammatory protein-2 induced by soluble intercellular adhesion molecule-1 in mouse astrocytes is mediated by src tyrosine kinases and p42/44 mitogen-activated protein kinase. J Neurochem. 2002, 80: 824-834. 10.1046/j.0022-3042.2001.00748.x.CrossRefPubMed Otto VI, Gloor SM, Frentzel S, Gilli U, Ammann E, Hein AE, Folkers G, Trentz O, Kossmann T, Morganti-Kossmann MC: The production of macrophage inflammatory protein-2 induced by soluble intercellular adhesion molecule-1 in mouse astrocytes is mediated by src tyrosine kinases and p42/44 mitogen-activated protein kinase. J Neurochem. 2002, 80: 824-834. 10.1046/j.0022-3042.2001.00748.x.CrossRefPubMed
11.
go back to reference Diab A, Abdalla H, Li HL, Shi FD, Zhu J, Hojberg B, Lindquist L, Wretlind B, Bakhiet M, Link H: Neutralization of macrophage inflammatory protein 2 (MIP-2) and MIP-1alpha attenuates neutrophil recruitment in the central nervous system during experimental bacterial meningitis. Infect Immun. 1999, 67: 2590-2601.PubMedCentralPubMed Diab A, Abdalla H, Li HL, Shi FD, Zhu J, Hojberg B, Lindquist L, Wretlind B, Bakhiet M, Link H: Neutralization of macrophage inflammatory protein 2 (MIP-2) and MIP-1alpha attenuates neutrophil recruitment in the central nervous system during experimental bacterial meningitis. Infect Immun. 1999, 67: 2590-2601.PubMedCentralPubMed
12.
go back to reference Pousset F, Cremona S, Dantzer R, Kelley KW, Parnet P: IL-10 and IL-4 regulate type-I and type-II IL-1 receptors expression on IL-1 beta-activated mouse primary astrocytes. J Neurochem. 2001, 79: 726-736. 10.1046/j.1471-4159.2001.00569.x.CrossRefPubMed Pousset F, Cremona S, Dantzer R, Kelley KW, Parnet P: IL-10 and IL-4 regulate type-I and type-II IL-1 receptors expression on IL-1 beta-activated mouse primary astrocytes. J Neurochem. 2001, 79: 726-736. 10.1046/j.1471-4159.2001.00569.x.CrossRefPubMed
13.
go back to reference Santoro TJ, Portanova JP, Kotzin BL: The contribution of L3T4+ T cells to lymphoproliferation and autoantibody production in MRL-lpr/lpr mice. J Exp Med. 1988, 167: 1713-1718. 10.1084/jem.167.5.1713.CrossRefPubMed Santoro TJ, Portanova JP, Kotzin BL: The contribution of L3T4+ T cells to lymphoproliferation and autoantibody production in MRL-lpr/lpr mice. J Exp Med. 1988, 167: 1713-1718. 10.1084/jem.167.5.1713.CrossRefPubMed
14.
go back to reference Tomita M, Irwin KI, Xie ZJ, Santoro TJ: Tea pigments inhibit the production of type 1 (TH1) and type 2 (TH2) helper T cell cytokines in CD4(+) T cells. Phytother Res. 2002, 16: 36-42. 10.1002/ptr.834.CrossRefPubMed Tomita M, Irwin KI, Xie ZJ, Santoro TJ: Tea pigments inhibit the production of type 1 (TH1) and type 2 (TH2) helper T cell cytokines in CD4(+) T cells. Phytother Res. 2002, 16: 36-42. 10.1002/ptr.834.CrossRefPubMed
15.
go back to reference Santoro T, Maguire J, McBride OW, Avraham KB, Copeland NG, Jenkins NA, Kelly K: Chromosomal organization and transcriptional regulation of human GEM and localization of the human and mouse GEM loci encoding an inducible Ras-like protein. Genomics. 1995, 30: 558-564. 10.1006/geno.1995.1277.CrossRefPubMed Santoro T, Maguire J, McBride OW, Avraham KB, Copeland NG, Jenkins NA, Kelly K: Chromosomal organization and transcriptional regulation of human GEM and localization of the human and mouse GEM loci encoding an inducible Ras-like protein. Genomics. 1995, 30: 558-564. 10.1006/geno.1995.1277.CrossRefPubMed
16.
go back to reference Franzoso G, Biswas P, Poli G, Carlson LM, Brown KD, Tomita-Yamaguchi M, Fauci AS, Siebenlist UK: A family of serine proteases expressed exclusively in myelo-monocytic cells specifically processes the nuclear factor-kappa B subunit p65 in vitro and may impair human immunodeficiency virus replication in these cells. J Exp Med. 1994, 180: 1445-1456. 10.1084/jem.180.4.1445.CrossRefPubMed Franzoso G, Biswas P, Poli G, Carlson LM, Brown KD, Tomita-Yamaguchi M, Fauci AS, Siebenlist UK: A family of serine proteases expressed exclusively in myelo-monocytic cells specifically processes the nuclear factor-kappa B subunit p65 in vitro and may impair human immunodeficiency virus replication in these cells. J Exp Med. 1994, 180: 1445-1456. 10.1084/jem.180.4.1445.CrossRefPubMed
17.
go back to reference Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM: Curcumin Inhibits Formation of Amyloid b Oligomers and Fibrils, Binds Plaques, and Reduces Amyloid in Vivo. J Biol Chem. 2005, 280: 5892-5901. 10.1074/jbc.M404751200.CrossRefPubMed Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM: Curcumin Inhibits Formation of Amyloid b Oligomers and Fibrils, Binds Plaques, and Reduces Amyloid in Vivo. J Biol Chem. 2005, 280: 5892-5901. 10.1074/jbc.M404751200.CrossRefPubMed
18.
go back to reference Pan MH, Lin-Shiau SY, Lin JK: Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol. 2000, 60: 1665-1676. 10.1016/S0006-2952(00)00489-5.CrossRefPubMed Pan MH, Lin-Shiau SY, Lin JK: Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol. 2000, 60: 1665-1676. 10.1016/S0006-2952(00)00489-5.CrossRefPubMed
19.
go back to reference Das R, Mahabeleshwar GH, Kundu GC: Osteopontin stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. J Biol Chem. 2003, 278: 28593-28606. 10.1074/jbc.M303445200.CrossRefPubMed Das R, Mahabeleshwar GH, Kundu GC: Osteopontin stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. J Biol Chem. 2003, 278: 28593-28606. 10.1074/jbc.M303445200.CrossRefPubMed
20.
go back to reference Kim HY, Park EJ, Joe EH, Jou I: Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol. 2003, 171: 6072-6079.CrossRefPubMed Kim HY, Park EJ, Joe EH, Jou I: Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol. 2003, 171: 6072-6079.CrossRefPubMed
21.
go back to reference Bell MD, Taub DD, Perry VH: Overriding the brain's intrinsic resistance to leukocyte recruitment with intraparenchymal injections of recombinant chemokines. Neuroscience. 1996, 74: 283-292. 10.1016/0306-4522(96)00083-8.CrossRefPubMed Bell MD, Taub DD, Perry VH: Overriding the brain's intrinsic resistance to leukocyte recruitment with intraparenchymal injections of recombinant chemokines. Neuroscience. 1996, 74: 283-292. 10.1016/0306-4522(96)00083-8.CrossRefPubMed
22.
go back to reference Otto VI, Heinzel-Pleines UE, Gloor SM, Trentz O, Kossmann T, Morganti-Kossmann MC: sICAM-1 and TNF-alpha induce MIP-2 with distinct kinetics in astrocytes and brain microvascular endothelial cells. J Neurosci Res. 2000, 60: 733-742. 10.1002/1097-4547(20000615)60:6<733::AID-JNR5>3.0.CO;2-X.CrossRefPubMed Otto VI, Heinzel-Pleines UE, Gloor SM, Trentz O, Kossmann T, Morganti-Kossmann MC: sICAM-1 and TNF-alpha induce MIP-2 with distinct kinetics in astrocytes and brain microvascular endothelial cells. J Neurosci Res. 2000, 60: 733-742. 10.1002/1097-4547(20000615)60:6<733::AID-JNR5>3.0.CO;2-X.CrossRefPubMed
23.
go back to reference Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer SM, Pirmohamed M, Gescher AJ, Steward WP: Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004, 10: 6847-6854.CrossRefPubMed Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer SM, Pirmohamed M, Gescher AJ, Steward WP: Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004, 10: 6847-6854.CrossRefPubMed
24.
go back to reference Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM: The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001, 21: 8370-8377.PubMed Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM: The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001, 21: 8370-8377.PubMed
25.
go back to reference Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, Cole GM: Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging. 2001, 22: 993-1005. 10.1016/S0197-4580(01)00300-1.CrossRefPubMed Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, Cole GM: Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging. 2001, 22: 993-1005. 10.1016/S0197-4580(01)00300-1.CrossRefPubMed
Metadata
Title
Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription
Authors
Michiyo Tomita
Brita J Holman
Christopher P Santoro
Thomas J Santoro
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2005
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-2-8

Other articles of this Issue 1/2005

Journal of Neuroinflammation 1/2005 Go to the issue