Skip to main content
Top
Published in: BMC Medicine 1/2009

Open Access 01-12-2009 | Correspondence

Calculating the potential for within-flight transmission of influenza A (H1N1)

Authors: Bradley G Wagner, Brian J Coburn, Sally Blower

Published in: BMC Medicine | Issue 1/2009

Login to get access

Abstract

Background

Clearly air travel, by transporting infectious individuals from one geographic location to another, significantly affects the rate of spread of influenza A (H1N1). However, the possibility of within-flight transmission of H1N1 has not been evaluated; although it is known that smallpox, measles, tuberculosis, SARS and seasonal influenza can be transmitted during commercial flights. Here we present the first quantitative risk assessment to assess the potential for within-flight transmission of H1N1.

Methods

We model airborne transmission of infectious viral particles of H1N1 within a Boeing 747 using methodology from the field of quantitative microbial risk assessment.

Results

The risk of catching H1N1 will essentially be confined to passengers travelling in the same cabin as the source case. Not surprisingly, we find that the longer the flight the greater the number of infections that can be expected. We calculate that H1N1, even during long flights, poses a low to moderate within-flight transmission risk if the source case travels First Class. Specifically, 0-1 infections could occur during a 5 hour flight, 1-3 during an 11 hour flight and 2-5 during a 17 hour flight. However, within-flight transmission could be significant, particularly during long flights, if the source case travels in Economy Class. Specifically, two to five infections could occur during a 5 hour flight, 5-10 during an 11 hour flight and 7-17 during a 17 hour flight. If the aircraft is only partially loaded, under certain conditions more infections could occur in First Class than in Economy Class. During a 17 hour flight, a greater number of infections would occur in First Class than in Economy if the First Class Cabin is fully occupied, but Economy class is less than 30% full.

Conclusions

Our results provide insights into the potential utility of air travel restrictions on controlling influenza pandemics in the winter of 2009/2010. They show travel by one infectious individual, rather than causing a single outbreak of H1N1, could cause several simultaneous outbreaks. These results imply that, during a pandemic, quarantining passengers who travel in Economy on long-haul flights could potentially be an important control strategy. Notably, our results show that quarantining passengers who travel First Class would be unlikely to be an effective control strategy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mangili A, Gendreau MA: Transmission of infectious diseases during commercial air travel. Lancet. 2005, 365: 989-996. 10.1016/S0140-6736(05)71089-8.CrossRefPubMed Mangili A, Gendreau MA: Transmission of infectious diseases during commercial air travel. Lancet. 2005, 365: 989-996. 10.1016/S0140-6736(05)71089-8.CrossRefPubMed
2.
go back to reference Fabian P, McDevitt JJ, DeHaan WH, Fung RO, Cowling BJ, Chan KH, Leung GM, Milton DK: Influenza virus in human exhaled breath: an observational study. PLoS ONE. 2008, 3: e2691-10.1371/journal.pone.0002691.CrossRefPubMedPubMedCentral Fabian P, McDevitt JJ, DeHaan WH, Fung RO, Cowling BJ, Chan KH, Leung GM, Milton DK: Influenza virus in human exhaled breath: an observational study. PLoS ONE. 2008, 3: e2691-10.1371/journal.pone.0002691.CrossRefPubMedPubMedCentral
3.
go back to reference Lowen AC, Mubareka S, Tumpey T, Garcia-Sastre A, Palese P: The guinea pig as a transmission model for human influenza viruses. Proc Natl Acad Sci. 2006, 103: 9988-9992. 10.1073/pnas.0604157103.CrossRefPubMedPubMedCentral Lowen AC, Mubareka S, Tumpey T, Garcia-Sastre A, Palese P: The guinea pig as a transmission model for human influenza viruses. Proc Natl Acad Sci. 2006, 103: 9988-9992. 10.1073/pnas.0604157103.CrossRefPubMedPubMedCentral
4.
go back to reference Novel Swine-Origin Influenza A (H1N1) Investigation Team, Dawood FS, Jain S, Finelli L, Shaw M, Lindstrom S, Garten RJ, Gubareva LV, Bridges CB, Uyeki TM: Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med. 2009, 25: 2605-2615. 10.1056/NEJMoa0903810. Novel Swine-Origin Influenza A (H1N1) Investigation Team, Dawood FS, Jain S, Finelli L, Shaw M, Lindstrom S, Garten RJ, Gubareva LV, Bridges CB, Uyeki TM: Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med. 2009, 25: 2605-2615. 10.1056/NEJMoa0903810.
5.
go back to reference Munster VJ, de Wit E, van den Brand JMA, Herfst S, Schrauwen EJA, Bestebroer TM, van de Vijver D, Boucher CA, Koopmans M, Rimmelzwaan GF, et al: Pathogenesis and transmission of swine-origin 2009 A(H1N1) Influenza virus in ferrets. Science. 2009, 325: 481-483.PubMedPubMedCentral Munster VJ, de Wit E, van den Brand JMA, Herfst S, Schrauwen EJA, Bestebroer TM, van de Vijver D, Boucher CA, Koopmans M, Rimmelzwaan GF, et al: Pathogenesis and transmission of swine-origin 2009 A(H1N1) Influenza virus in ferrets. Science. 2009, 325: 481-483.PubMedPubMedCentral
6.
go back to reference Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, Griffin J, Baggaley RF, Jenkins HE, Lyons EJ, et al: Pandemic potential of a strain of influenza, A (H1N1): early findings. Science. 2009, 19: 1557-1561. 10.1126/science.1176062.CrossRef Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, Griffin J, Baggaley RF, Jenkins HE, Lyons EJ, et al: Pandemic potential of a strain of influenza, A (H1N1): early findings. Science. 2009, 19: 1557-1561. 10.1126/science.1176062.CrossRef
7.
go back to reference Moser MR, Bender TR, Margolis HS, Noble GR, Kendal AP, Ritter DG: An outbreak of influenza aboard a commercial airliner. Am J Epidemiol. 1979, 110: 1-6.PubMed Moser MR, Bender TR, Margolis HS, Noble GR, Kendal AP, Ritter DG: An outbreak of influenza aboard a commercial airliner. Am J Epidemiol. 1979, 110: 1-6.PubMed
8.
go back to reference Anderson RM, May RM: Infectious Diseases of Humans. 1991, Oxford: Oxford Science Publications Anderson RM, May RM: Infectious Diseases of Humans. 1991, Oxford: Oxford Science Publications
9.
go back to reference Riley EC, Murphy G, Riley RL: Airborne spread of measles in a suburban elementary school. Am J Epidemiol. 1978, 107: 421-432.PubMed Riley EC, Murphy G, Riley RL: Airborne spread of measles in a suburban elementary school. Am J Epidemiol. 1978, 107: 421-432.PubMed
10.
go back to reference Wells WF: On air-borne infection: II--Droplets and droplet nuclei. Am J Hyg. 1934, 20: 611-618. Wells WF: On air-borne infection: II--Droplets and droplet nuclei. Am J Hyg. 1934, 20: 611-618.
11.
go back to reference Liao CM, Chang CF, Liang HM: A probabilistic transmission dynamic model to assess indoor airborne infection risks. Risk Anal. 2005, 25: 1097-1107. 10.1111/j.1539-6924.2005.00663.x.CrossRefPubMed Liao CM, Chang CF, Liang HM: A probabilistic transmission dynamic model to assess indoor airborne infection risks. Risk Anal. 2005, 25: 1097-1107. 10.1111/j.1539-6924.2005.00663.x.CrossRefPubMed
12.
go back to reference Rudnick SN, Milton DK: Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air. 2003, 13: 237-245. 10.1034/j.1600-0668.2003.00189.x.CrossRefPubMed Rudnick SN, Milton DK: Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air. 2003, 13: 237-245. 10.1034/j.1600-0668.2003.00189.x.CrossRefPubMed
13.
go back to reference Ryan PB, Spengler JD, Halfpenny PF: Sequential box models for indoor air quality: Application to airliner cabin air quality. Atmospheric Environment. 1988, 22: 1031-1038. 10.1016/0004-6981(88)90333-2.CrossRef Ryan PB, Spengler JD, Halfpenny PF: Sequential box models for indoor air quality: Application to airliner cabin air quality. Atmospheric Environment. 1988, 22: 1031-1038. 10.1016/0004-6981(88)90333-2.CrossRef
15.
go back to reference Vander AJ, Sherman JH, Luciano DS: Human Physiology. 1994, New York: McGraw-Hill Vander AJ, Sherman JH, Luciano DS: Human Physiology. 1994, New York: McGraw-Hill
16.
go back to reference Khan K, Arino J, Hu W, Raposo P, Sears J, Calderon F, Heidebrecht C, Macdonald M, Liauw J, Chan A, Gardam M: Spread of a novel influenza A (H1N1) virus via global airline transportation. N Engl J Med. 2009, 361: 212-240. 10.1056/NEJMc0904559.CrossRefPubMed Khan K, Arino J, Hu W, Raposo P, Sears J, Calderon F, Heidebrecht C, Macdonald M, Liauw J, Chan A, Gardam M: Spread of a novel influenza A (H1N1) virus via global airline transportation. N Engl J Med. 2009, 361: 212-240. 10.1056/NEJMc0904559.CrossRefPubMed
17.
go back to reference Balcan D, Hu H, Goncalves B, Bajardi P, Poletto C, Ramasco JJ, Paolotti D, Perra N, Tizzoni M, Broeck Van den W, et al: Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility. BMC Med. 2009, 7: 45-10.1186/1741-7015-7-45.CrossRefPubMedPubMedCentral Balcan D, Hu H, Goncalves B, Bajardi P, Poletto C, Ramasco JJ, Paolotti D, Perra N, Tizzoni M, Broeck Van den W, et al: Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility. BMC Med. 2009, 7: 45-10.1186/1741-7015-7-45.CrossRefPubMedPubMedCentral
Metadata
Title
Calculating the potential for within-flight transmission of influenza A (H1N1)
Authors
Bradley G Wagner
Brian J Coburn
Sally Blower
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2009
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-7-81

Other articles of this Issue 1/2009

BMC Medicine 1/2009 Go to the issue