Skip to main content
Top
Published in: BMC Medicine 1/2014

Open Access 01-12-2014 | Research article

Performance of four computer-coded verbal autopsy methods for cause of death assignment compared with physician coding on 24,000 deaths in low- and middle-income countries

Authors: Nikita Desai, Lukasz Aleksandrowicz, Pierre Miasnikof, Ying Lu, Jordana Leitao, Peter Byass, Stephen Tollman, Paul Mee, Dewan Alam, Suresh Kumar Rathi, Abhishek Singh, Rajesh Kumar, Faujdar Ram, Prabhat Jha

Published in: BMC Medicine | Issue 1/2014

Login to get access

Abstract

Background

Physician-coded verbal autopsy (PCVA) is the most widely used method to determine causes of death (CODs) in countries where medical certification of death is uncommon. Computer-coded verbal autopsy (CCVA) methods have been proposed as a faster and cheaper alternative to PCVA, though they have not been widely compared to PCVA or to each other.

Methods

We compared the performance of open-source random forest, open-source tariff method, InterVA-4, and the King-Lu method to PCVA on five datasets comprising over 24,000 verbal autopsies from low- and middle-income countries. Metrics to assess performance were positive predictive value and partial chance-corrected concordance at the individual level, and cause-specific mortality fraction accuracy and cause-specific mortality fraction error at the population level.

Results

The positive predictive value for the most probable COD predicted by the four CCVA methods averaged about 43% to 44% across the datasets. The average positive predictive value improved for the top three most probable CODs, with greater improvements for open-source random forest (69%) and open-source tariff method (68%) than for InterVA-4 (62%). The average partial chance-corrected concordance for the most probable COD predicted by the open-source random forest, open-source tariff method and InterVA-4 were 41%, 40% and 41%, respectively, with better results for the top three most probable CODs. Performance generally improved with larger datasets. At the population level, the King-Lu method had the highest average cause-specific mortality fraction accuracy across all five datasets (91%), followed by InterVA-4 (72% across three datasets), open-source random forest (71%) and open-source tariff method (54%).

Conclusions

On an individual level, no single method was able to replicate the physician assignment of COD more than about half the time. At the population level, the King-Lu method was the best method to estimate cause-specific mortality fractions, though it does not assign individual CODs. Future testing should focus on combining different computer-coded verbal autopsy tools, paired with PCVA strengths. This includes using open-source tools applied to larger and varied datasets (especially those including a random sample of deaths drawn from the population), so as to establish the performance for age- and sex-specific CODs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jha P: Counting the dead is one of the world’s best investments to reduce premature mortality. Hypothesis. 2012, 10: e3.CrossRef Jha P: Counting the dead is one of the world’s best investments to reduce premature mortality. Hypothesis. 2012, 10: e3.CrossRef
2.
go back to reference Setel PW, Sankoh O, Rao C, Velkoff VA, Mathers C, Gonghuan Y, Hemed Y, Jha P, Lopez AD: Sample registration of vital events with verbal autopsy: a renewed commitment to measuring and monitoring vital statistics. Bull World Health Organ. 2005, 83: 611-617.PubMedPubMedCentral Setel PW, Sankoh O, Rao C, Velkoff VA, Mathers C, Gonghuan Y, Hemed Y, Jha P, Lopez AD: Sample registration of vital events with verbal autopsy: a renewed commitment to measuring and monitoring vital statistics. Bull World Health Organ. 2005, 83: 611-617.PubMedPubMedCentral
3.
go back to reference Fottrell E, Byass P: Verbal autopsy: methods in transition. Epidemiol Rev. 2010, 32: 38-55. 10.1093/epirev/mxq003.CrossRefPubMed Fottrell E, Byass P: Verbal autopsy: methods in transition. Epidemiol Rev. 2010, 32: 38-55. 10.1093/epirev/mxq003.CrossRefPubMed
4.
go back to reference Health and Demographic Surveillance Unit: Health and Demographic Surveillance System: Matlab. Volume 36: Registration of Health and Demographic Events 2003. 2005, Dhaka: ICDDR, B Health and Demographic Surveillance Unit: Health and Demographic Surveillance System: Matlab. Volume 36: Registration of Health and Demographic Events 2003. 2005, Dhaka: ICDDR, B
5.
go back to reference King G, Lu Y: Verbal autopsy methods with multiple causes of death. Statistical Science. 2008, 23: 78-91. 10.1214/07-STS247.CrossRef King G, Lu Y: Verbal autopsy methods with multiple causes of death. Statistical Science. 2008, 23: 78-91. 10.1214/07-STS247.CrossRef
6.
go back to reference Kahn K, Collinson MA, Gómez-Olivé FX, Mokoena O, Twine R, Mee P, Afolabi SA, Clark BD, Kabudula CW, Khosa A, Khoza S, Shabangu MG, Silaule B, Tibane JB, Wagner RG, Garenne ML, Clark SJ, Tollman SM: Profile: Agincourt health and socio-demographic surveillance system. Int J Epidemiol. 2012, 41: 988-1001. 10.1093/ije/dys115.CrossRefPubMedPubMedCentral Kahn K, Collinson MA, Gómez-Olivé FX, Mokoena O, Twine R, Mee P, Afolabi SA, Clark BD, Kabudula CW, Khosa A, Khoza S, Shabangu MG, Silaule B, Tibane JB, Wagner RG, Garenne ML, Clark SJ, Tollman SM: Profile: Agincourt health and socio-demographic surveillance system. Int J Epidemiol. 2012, 41: 988-1001. 10.1093/ije/dys115.CrossRefPubMedPubMedCentral
7.
go back to reference Murray CJ, Lopez AD, Black R, Ahuja R, Ali SM, Baqui A, Dandona L, Dantzer E, Das V, Dhingra U, Dutta A, Fawzi W, Flaxman AD, Gómez S, Hernández B, Joshi R, Kalter H, Kumar A, Kumar V, Lozano R, Lucero M, Mehta S, Neal B, Ohno SL, Prasad R, Praveen D, Premji Z, Ramírez-Villalobos D, Remolador H, Riley I, et al: Population Health Metrics Research Consortium gold standard verbal autopsy validation study: design, implementation, and development of analysis datasets. Popul Health Metr. 2011, 9: 27-10.1186/1478-7954-9-27.CrossRefPubMedPubMedCentral Murray CJ, Lopez AD, Black R, Ahuja R, Ali SM, Baqui A, Dandona L, Dantzer E, Das V, Dhingra U, Dutta A, Fawzi W, Flaxman AD, Gómez S, Hernández B, Joshi R, Kalter H, Kumar A, Kumar V, Lozano R, Lucero M, Mehta S, Neal B, Ohno SL, Prasad R, Praveen D, Premji Z, Ramírez-Villalobos D, Remolador H, Riley I, et al: Population Health Metrics Research Consortium gold standard verbal autopsy validation study: design, implementation, and development of analysis datasets. Popul Health Metr. 2011, 9: 27-10.1186/1478-7954-9-27.CrossRefPubMedPubMedCentral
9.
go back to reference Jha P, Gajalakshmi V, Gupta PC, Kumar R, Mony P, Dhingra N, Peto R: Prospective study of one million deaths in India: rationale, design, and validation results. PLoS Med. 2006, 3: e18-10.1371/journal.pmed.0030018.CrossRefPubMed Jha P, Gajalakshmi V, Gupta PC, Kumar R, Mony P, Dhingra N, Peto R: Prospective study of one million deaths in India: rationale, design, and validation results. PLoS Med. 2006, 3: e18-10.1371/journal.pmed.0030018.CrossRefPubMed
10.
go back to reference Bassani DG, Kumar R, Awasthi S, Morris SK, Paul VK, Shet A, Ram U, Gaffey MF, Black RE, Jha P, Million Death Study Collaborators: Causes of neonatal and child mortality in India: a nationally representative mortality survey. Lancet. 2010, 376: 1853-1860.CrossRefPubMed Bassani DG, Kumar R, Awasthi S, Morris SK, Paul VK, Shet A, Ram U, Gaffey MF, Black RE, Jha P, Million Death Study Collaborators: Causes of neonatal and child mortality in India: a nationally representative mortality survey. Lancet. 2010, 376: 1853-1860.CrossRefPubMed
11.
go back to reference Byass P, Chandramohan D, Clark SJ, D'Ambruoso L, Fottrell E, Graham WJ, Herbst AJ, Hodgson A, Hounton S, Kahn K, Krishnan A, Leitao J, Odhiambo F, Sankoh OA, Tollman SM: Strengthening standardised interpretation of verbal autopsy data: the new InterVA-4 tool. Glob Health Action. 2012, 5: 1-8. Available for download at http://www.interva.net.PubMed Byass P, Chandramohan D, Clark SJ, D'Ambruoso L, Fottrell E, Graham WJ, Herbst AJ, Hodgson A, Hounton S, Kahn K, Krishnan A, Leitao J, Odhiambo F, Sankoh OA, Tollman SM: Strengthening standardised interpretation of verbal autopsy data: the new InterVA-4 tool. Glob Health Action. 2012, 5: 1-8. Available for download at http://​www.​interva.​net.PubMed
12.
go back to reference Flaxman A, Vahdatpour A, Green S, James S, Murray C, for the Population Health Metrics Research Consortium (PHMRC): Random forests for verbal autopsy analysis: multisite validation study using clinical diagnostic gold standards. Popul Health Metr. 2011, 9: 29-10.1186/1478-7954-9-29.CrossRefPubMedPubMedCentral Flaxman A, Vahdatpour A, Green S, James S, Murray C, for the Population Health Metrics Research Consortium (PHMRC): Random forests for verbal autopsy analysis: multisite validation study using clinical diagnostic gold standards. Popul Health Metr. 2011, 9: 29-10.1186/1478-7954-9-29.CrossRefPubMedPubMedCentral
13.
go back to reference James S, Flaxman A, Murray C, and the Public Health Metrics Research Consortium: Performance of the tariff method: Validation of a simple additive algorithm for analysis of verbal autopsies. Popul Health Metr. 2011, 9: 31-10.1186/1478-7954-9-31.CrossRefPubMedPubMedCentral James S, Flaxman A, Murray C, and the Public Health Metrics Research Consortium: Performance of the tariff method: Validation of a simple additive algorithm for analysis of verbal autopsies. Popul Health Metr. 2011, 9: 31-10.1186/1478-7954-9-31.CrossRefPubMedPubMedCentral
15.
go back to reference Murray C, Lozano R, Flaxman AD, Vadhatpour A, Lopez AD: Robust metrics for assessing the performance of different verbal autopsy cause assignment methods in validation studies. Popul Health Metr. 2011, 9: 28-10.1186/1478-7954-9-28.CrossRefPubMedPubMedCentral Murray C, Lozano R, Flaxman AD, Vadhatpour A, Lopez AD: Robust metrics for assessing the performance of different verbal autopsy cause assignment methods in validation studies. Popul Health Metr. 2011, 9: 28-10.1186/1478-7954-9-28.CrossRefPubMedPubMedCentral
16.
go back to reference Leitao JC, Chandramohan D, Byass P, Jakob R, Bundhamcharoen K, Choprapowan C, de Savigny D, Fottrell E, França E, Frøen F, Gewaifel G, Hodgson A, Hounton S, Kahn K, Krishnan A, Kumar V, Masanja H, Nichols E, Notzon F, Rasooly MH, Sankoh O, Spiegel P, AbouZahr C, Amexo M, Kebede D, Alley WS, Marinho F, Ali M, Loyola E, Chikersal J, et al: Revising the WHO verbal autopsy instrument to facilitate routine cause-of-death monitoring. Glob Health Action. 2013, 6: 21518.PubMed Leitao JC, Chandramohan D, Byass P, Jakob R, Bundhamcharoen K, Choprapowan C, de Savigny D, Fottrell E, França E, Frøen F, Gewaifel G, Hodgson A, Hounton S, Kahn K, Krishnan A, Kumar V, Masanja H, Nichols E, Notzon F, Rasooly MH, Sankoh O, Spiegel P, AbouZahr C, Amexo M, Kebede D, Alley WS, Marinho F, Ali M, Loyola E, Chikersal J, et al: Revising the WHO verbal autopsy instrument to facilitate routine cause-of-death monitoring. Glob Health Action. 2013, 6: 21518.PubMed
17.
go back to reference Leitao J, Desai N, Aleksandrowicz L, Byass P, Miasnikof P, Tollman S, Alam D, Lu Y, Rathi SK, Singh A, Suraweera W, Ram F, Jha P: Comparison of physician-certified verbal autopsy with computer-coded verbal autopsy for cause of death assignment in hospitalized patients in low- and middle-income countries: systematic review. BMC Med. 2014, 12: 22.CrossRefPubMedPubMedCentral Leitao J, Desai N, Aleksandrowicz L, Byass P, Miasnikof P, Tollman S, Alam D, Lu Y, Rathi SK, Singh A, Suraweera W, Ram F, Jha P: Comparison of physician-certified verbal autopsy with computer-coded verbal autopsy for cause of death assignment in hospitalized patients in low- and middle-income countries: systematic review. BMC Med. 2014, 12: 22.CrossRefPubMedPubMedCentral
18.
go back to reference Flaxman A, Vahdatpour A, James S, Birnbaum J, Murray C, for the Population Health Metrics Research Consortium (PHMRC): Direct estimation of cause-specific mortality fractions from verbal autopsies: multisite validation study using clinical diagnostic gold standards. Popul Health Metr. 2011, 9: 35-10.1186/1478-7954-9-35.CrossRefPubMedPubMedCentral Flaxman A, Vahdatpour A, James S, Birnbaum J, Murray C, for the Population Health Metrics Research Consortium (PHMRC): Direct estimation of cause-specific mortality fractions from verbal autopsies: multisite validation study using clinical diagnostic gold standards. Popul Health Metr. 2011, 9: 35-10.1186/1478-7954-9-35.CrossRefPubMedPubMedCentral
19.
go back to reference World Health Organization (WHO): International Statistical Classifications of Diseases and Related Health Problems, Volume 1. 2008, Geneva, Switzerland: World Health Organization, 10 World Health Organization (WHO): International Statistical Classifications of Diseases and Related Health Problems, Volume 1. 2008, Geneva, Switzerland: World Health Organization, 10
20.
go back to reference Byass P: Usefulness of the Population Health Metrics Research Consortium Gold Standard Verbal Autopsy Data for General Verbal Autopsy Methods. BMC Med. 2014, 12: 23.CrossRefPubMedPubMedCentral Byass P: Usefulness of the Population Health Metrics Research Consortium Gold Standard Verbal Autopsy Data for General Verbal Autopsy Methods. BMC Med. 2014, 12: 23.CrossRefPubMedPubMedCentral
21.
go back to reference Anker M: The effect of misclassification error on reported cause-specific mortality fractions from verbal autopsy. Int J Epidemiol. 1997, 26: 1090-1096. 10.1093/ije/26.5.1090.CrossRefPubMed Anker M: The effect of misclassification error on reported cause-specific mortality fractions from verbal autopsy. Int J Epidemiol. 1997, 26: 1090-1096. 10.1093/ije/26.5.1090.CrossRefPubMed
22.
go back to reference Maude GH, Ross DA: The effect of different sensitivity, specificity and cause-specific mortality fractions on the estimation of differences in cause-specific mortality rates in children from studies using verbal autopsies. Int J Epidemiol. 1997, 26: 1097-1106. 10.1093/ije/26.5.1097.CrossRefPubMed Maude GH, Ross DA: The effect of different sensitivity, specificity and cause-specific mortality fractions on the estimation of differences in cause-specific mortality rates in children from studies using verbal autopsies. Int J Epidemiol. 1997, 26: 1097-1106. 10.1093/ije/26.5.1097.CrossRefPubMed
23.
go back to reference Aleksandrowicz L, Malhotra V, Dikshit R, Gupta PC, Kumar R, Sheth J, Rathi SK, Suraweera W, Miasnikofi P, Jotkar R, Sinha D, Awasthi S, Bhatia P, Jha P: Performance criteria for verbal autopsy‒based systems to estimate national causes of death: development and application to the Indian Million Death Study. BMC Med. 12: 21. Aleksandrowicz L, Malhotra V, Dikshit R, Gupta PC, Kumar R, Sheth J, Rathi SK, Suraweera W, Miasnikofi P, Jotkar R, Sinha D, Awasthi S, Bhatia P, Jha P: Performance criteria for verbal autopsy‒based systems to estimate national causes of death: development and application to the Indian Million Death Study. BMC Med. 12: 21.
Metadata
Title
Performance of four computer-coded verbal autopsy methods for cause of death assignment compared with physician coding on 24,000 deaths in low- and middle-income countries
Authors
Nikita Desai
Lukasz Aleksandrowicz
Pierre Miasnikof
Ying Lu
Jordana Leitao
Peter Byass
Stephen Tollman
Paul Mee
Dewan Alam
Suresh Kumar Rathi
Abhishek Singh
Rajesh Kumar
Faujdar Ram
Prabhat Jha
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2014
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-12-20

Other articles of this Issue 1/2014

BMC Medicine 1/2014 Go to the issue