Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2010

Open Access 01-12-2010 | Research article

Effect of oat bran on time to exhaustion, glycogen content and serum cytokine profile following exhaustive exercise

Authors: Felipe F Donatto, Jonato Prestes, Anelena B Frollini, Adrianne C Palanch, Rozangela Verlengia, Claudia Regina Cavaglieri

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2010

Login to get access

Abstract

The aim of this study was to evaluate the effect of oat bran supplementation on time to exhaustion, glycogen stores and cytokines in rats submitted to training. The animals were divided into 3 groups: sedentary control group (C), an exercise group that received a control chow (EX) and an exercise group that received a chow supplemented with oat bran (EX-O). Exercised groups were submitted to an eight weeks swimming training protocol. In the last training session, the animals performed exercise to exhaustion, (e.g. incapable to continue the exercise). After the euthanasia of the animals, blood, muscle and hepatic tissue were collected. Plasma cytokines and corticosterone were evaluated. Glycogen concentrations was measured in the soleus and gastrocnemius muscles, and liver. Glycogen synthetase-α gene expression was evaluated in the soleus muscle. Statistical analysis was performed using a factorial ANOVA. Time to exhaustion of the EX-O group was 20% higher (515 ± 3 minutes) when compared with EX group (425 ± 3 minutes) (p = 0.034). For hepatic glycogen, the EX-O group had a 67% higher concentrations when compared with EX (p = 0.022). In the soleus muscle, EX-O group presented a 59.4% higher glycogen concentrations when compared with EX group (p = 0.021). TNF-α was decreased, IL-6, IL-10 and corticosterone increased after exercise, and EX-O presented lower levels of IL-6, IL-10 and corticosterone levels in comparison with EX group. It was concluded that the chow rich in oat bran increase muscle and hepatic glycogen concentrations. The higher glycogen storage may improve endurance performance during training and competitions, and a lower post-exercise inflammatory response can accelerate recovery.
Appendix
Available only for authorised users
Literature
1.
go back to reference Christensen EH: Der Stoffwechsel und die Respiratorischen Funktionen bei schwerer ko¨rperlicher Arbeit. Scand Arch Physiol. 1932, 81: 160-CrossRef Christensen EH: Der Stoffwechsel und die Respiratorischen Funktionen bei schwerer ko¨rperlicher Arbeit. Scand Arch Physiol. 1932, 81: 160-CrossRef
2.
go back to reference Bergstrom J, Hultman E: A study of glycogen metabolism during exercise in man. Scand J Clin Invest. 1967, 19: 218-10.3109/00365516709090629.CrossRefPubMed Bergstrom J, Hultman E: A study of glycogen metabolism during exercise in man. Scand J Clin Invest. 1967, 19: 218-10.3109/00365516709090629.CrossRefPubMed
3.
go back to reference Tarnopolsky MA, Gibala M, Jeukendrup A, Phillips SM: Nutritional needs of elite endurance athletes. Part1: Carbohydrate and fluid requirements. European Journal of Sports Sciences. 2005, 5 (1): 3-14. 10.1080/17461390500076741.CrossRef Tarnopolsky MA, Gibala M, Jeukendrup A, Phillips SM: Nutritional needs of elite endurance athletes. Part1: Carbohydrate and fluid requirements. European Journal of Sports Sciences. 2005, 5 (1): 3-14. 10.1080/17461390500076741.CrossRef
4.
go back to reference American College of Sports Medicine and Dietitians Canada Joint Position Statement. Nutrition and Athletic Performance: Medicine Science and Sports Exercise. 2000, 32 (12): 2130-2145. 10.1097/00005768-200012000-00025.CrossRef American College of Sports Medicine and Dietitians Canada Joint Position Statement. Nutrition and Athletic Performance: Medicine Science and Sports Exercise. 2000, 32 (12): 2130-2145. 10.1097/00005768-200012000-00025.CrossRef
5.
go back to reference Burke LM, Kiens B, Ivy JL: Carbohydrate and fat for training and recovery. Journal of Sports Sciences. 2004, 22: 15-30. 10.1080/0264041031000140527.CrossRefPubMed Burke LM, Kiens B, Ivy JL: Carbohydrate and fat for training and recovery. Journal of Sports Sciences. 2004, 22: 15-30. 10.1080/0264041031000140527.CrossRefPubMed
6.
go back to reference Jeukendrup A: Carbohydrate intake during exercise and performance. Nutrition. 2004, 20: 669-677. 10.1016/j.nut.2004.04.017.CrossRefPubMed Jeukendrup A: Carbohydrate intake during exercise and performance. Nutrition. 2004, 20: 669-677. 10.1016/j.nut.2004.04.017.CrossRefPubMed
7.
go back to reference Nieman DC, Davis JM, Henson D, Walberg-Rankin AJ, Shute MCL, Dumke AC, Utter DM, Vinci JA, Carson A, Brown WJ, Lee SR, Mcanulty A, Mcanulty LS: Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. Journal of Applied Physiology. 2003, 94: 1917-1925.CrossRefPubMed Nieman DC, Davis JM, Henson D, Walberg-Rankin AJ, Shute MCL, Dumke AC, Utter DM, Vinci JA, Carson A, Brown WJ, Lee SR, Mcanulty A, Mcanulty LS: Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. Journal of Applied Physiology. 2003, 94: 1917-1925.CrossRefPubMed
8.
go back to reference Kjaer M: Hepatic glucose production during exercise. Advances in Experimental Medicine and Biology. 1998, 441: 117-27.CrossRefPubMed Kjaer M: Hepatic glucose production during exercise. Advances in Experimental Medicine and Biology. 1998, 441: 117-27.CrossRefPubMed
9.
go back to reference Mignini F, Traini E, Tomassoni D, Vitali M, Streccioni V: Leucocyte subset redistribution in a human model of physical stress. Clinical Experimental Hypertension. 2008, 30 (8): 720-31. 10.1080/07420520802572333.CrossRefPubMed Mignini F, Traini E, Tomassoni D, Vitali M, Streccioni V: Leucocyte subset redistribution in a human model of physical stress. Clinical Experimental Hypertension. 2008, 30 (8): 720-31. 10.1080/07420520802572333.CrossRefPubMed
10.
go back to reference Zarkovic M, Ignjatovic S, Dajak M, Ciric J, Beleslin B, Savic S, Stojkovic M, Bulat P, Trbojevic B: Cortisol response to ACTH stimulation correlates with interleukin 6 concentration in healthy humans. European Journal of Endocrinology. 2008, 159 (5): 649-52. 10.1530/EJE-08-0544.CrossRefPubMed Zarkovic M, Ignjatovic S, Dajak M, Ciric J, Beleslin B, Savic S, Stojkovic M, Bulat P, Trbojevic B: Cortisol response to ACTH stimulation correlates with interleukin 6 concentration in healthy humans. European Journal of Endocrinology. 2008, 159 (5): 649-52. 10.1530/EJE-08-0544.CrossRefPubMed
11.
go back to reference Rivier A: Release of cytokines by blood monocytes during strenuous exercise. International Journal of Sports Medicine. 1994, 15: 192-198. 10.1055/s-2007-1021046.CrossRefPubMed Rivier A: Release of cytokines by blood monocytes during strenuous exercise. International Journal of Sports Medicine. 1994, 15: 192-198. 10.1055/s-2007-1021046.CrossRefPubMed
12.
go back to reference Moldoveanu AI: Exercise elevates plasma levels but not gene expression of IL1 beta, IL-6, and TNF-alpha in blood mononuclear cells. Journal Applied Physiology. 2000, 89 (4): 1499-504. Moldoveanu AI: Exercise elevates plasma levels but not gene expression of IL1 beta, IL-6, and TNF-alpha in blood mononuclear cells. Journal Applied Physiology. 2000, 89 (4): 1499-504.
13.
go back to reference Prestes J, De Ferreira CK, Dias R, Frollini AB, Donatto FF, Cury-Boaventura MF, Guereschi MG, Pithon-Curi TC, Verlengia R, Palanch AC, Curi R, Cavaglieri CR: Lymphocyte and Cytokines after Short Periods of Exercise. International Journal of Sports Medicine. 2008, 29: 1010-1014. 10.1055/s-2008-1038737.CrossRefPubMed Prestes J, De Ferreira CK, Dias R, Frollini AB, Donatto FF, Cury-Boaventura MF, Guereschi MG, Pithon-Curi TC, Verlengia R, Palanch AC, Curi R, Cavaglieri CR: Lymphocyte and Cytokines after Short Periods of Exercise. International Journal of Sports Medicine. 2008, 29: 1010-1014. 10.1055/s-2008-1038737.CrossRefPubMed
14.
go back to reference Ostrowski K: Physical activity and plasma interleukin-6 in humans - effect of intensity of exercise. European Journal of Applied Physiology. 2000, 83: 512-515. 10.1007/s004210000312.CrossRefPubMed Ostrowski K: Physical activity and plasma interleukin-6 in humans - effect of intensity of exercise. European Journal of Applied Physiology. 2000, 83: 512-515. 10.1007/s004210000312.CrossRefPubMed
15.
go back to reference Pedersen BK, Steenberg A, Fischer C, Keller C, Keller P, Plomgaard P, Wolsk-Petersen E, Febbraio M: The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor?. Proceeds of Nutrition Society. 2004, 63: 263-267.CrossRef Pedersen BK, Steenberg A, Fischer C, Keller C, Keller P, Plomgaard P, Wolsk-Petersen E, Febbraio M: The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor?. Proceeds of Nutrition Society. 2004, 63: 263-267.CrossRef
16.
go back to reference Pedersen BK: The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochemistry. 2006, 42: 105-17. 10.1042/bse0420105.CrossRef Pedersen BK: The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochemistry. 2006, 42: 105-17. 10.1042/bse0420105.CrossRef
17.
go back to reference Cox AJ, Pyne DB, Saunders PU, Callister R, Gleeson M: Cytokine responses to treadmill running in healthy and illness-prone athletes. Medicine and Science in Sports and Exercise. 2007, 39 (11): 1918-1926. 10.1249/mss.0b013e318149f2aa.CrossRefPubMed Cox AJ, Pyne DB, Saunders PU, Callister R, Gleeson M: Cytokine responses to treadmill running in healthy and illness-prone athletes. Medicine and Science in Sports and Exercise. 2007, 39 (11): 1918-1926. 10.1249/mss.0b013e318149f2aa.CrossRefPubMed
18.
go back to reference Puglisi MA, Vaishnav U, Shrestha SW, Torres-Gonzalex M, Wood RJ, Volek JS, Fernandez ML: Raisins and additional walking have distinct effects on plasma lipids and inflammatory cytokines. Lipids in Health and Disease. 2008, 7: 1-14. 10.1186/1476-511X-7-1.CrossRef Puglisi MA, Vaishnav U, Shrestha SW, Torres-Gonzalex M, Wood RJ, Volek JS, Fernandez ML: Raisins and additional walking have distinct effects on plasma lipids and inflammatory cytokines. Lipids in Health and Disease. 2008, 7: 1-14. 10.1186/1476-511X-7-1.CrossRef
19.
go back to reference Caruso L, Menezes EW: Glycemic index of foods. Journal of Brazilian Society of Food and Nutrition. 2000, 19: 49-64. Caruso L, Menezes EW: Glycemic index of foods. Journal of Brazilian Society of Food and Nutrition. 2000, 19: 49-64.
20.
go back to reference Nieman DC, Pedersen BK: Nutrition and Exercise Immunology Boca Raton. 2000, FL: CRC Press Nieman DC, Pedersen BK: Nutrition and Exercise Immunology Boca Raton. 2000, FL: CRC Press
21.
go back to reference Davis JM, Murphy EA, Brown A, Carmichael M, Ghaffar A, Mayer EP: Effects of moderate exercise and oat β-glucan on innate immune function and susceptibility to respiratory infection. American Journal of Physiology Integrative and Comparative Physiology. 2004, 286: 366-372.CrossRef Davis JM, Murphy EA, Brown A, Carmichael M, Ghaffar A, Mayer EP: Effects of moderate exercise and oat β-glucan on innate immune function and susceptibility to respiratory infection. American Journal of Physiology Integrative and Comparative Physiology. 2004, 286: 366-372.CrossRef
22.
go back to reference Cavaglieri CR, Martins EF, Colleone VV, Rodrigues C, Vecchia MG, Curi R: Fibre-rich diets alter rat intestinal leukocytes metabolism. Journal of Nutrition and Biochemistry. 2000, 11: 555-561. 10.1016/S0955-2863(00)00118-2.CrossRef Cavaglieri CR, Martins EF, Colleone VV, Rodrigues C, Vecchia MG, Curi R: Fibre-rich diets alter rat intestinal leukocytes metabolism. Journal of Nutrition and Biochemistry. 2000, 11: 555-561. 10.1016/S0955-2863(00)00118-2.CrossRef
23.
go back to reference Sampaio-Barros MM: Effect of swimming session duration and repetition on metabolic markers in rats. Stress. 2003, 6 (2): 127-32. 10.1080/1025389031000110169.CrossRefPubMed Sampaio-Barros MM: Effect of swimming session duration and repetition on metabolic markers in rats. Stress. 2003, 6 (2): 127-32. 10.1080/1025389031000110169.CrossRefPubMed
24.
go back to reference Voltarelli FA, Gobatto CA, De Mello MA: Determination of anaerobic threshold in rats using the lactate minimum test. Braz J Med Biol Res. 2002, 35 (11): 1389-94. 10.1590/S0100-879X2002001100018.CrossRefPubMed Voltarelli FA, Gobatto CA, De Mello MA: Determination of anaerobic threshold in rats using the lactate minimum test. Braz J Med Biol Res. 2002, 35 (11): 1389-94. 10.1590/S0100-879X2002001100018.CrossRefPubMed
25.
go back to reference Dawson CA, Harvath SM: Swimming in small laboratory animals. Medicine and Science in Sports. 1970, 2: 51-78.PubMed Dawson CA, Harvath SM: Swimming in small laboratory animals. Medicine and Science in Sports. 1970, 2: 51-78.PubMed
26.
go back to reference Siu LO: Determination of glycogen in small tissue samples. Journal of Applied Physiology. 1970, 28 (2): 234-236. Siu LO: Determination of glycogen in small tissue samples. Journal of Applied Physiology. 1970, 28 (2): 234-236.
27.
go back to reference Sambrook J, Russell DW: Molecular cloning: A laboratory manual. 2001, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y, A8.21., 3 Sambrook J, Russell DW: Molecular cloning: A laboratory manual. 2001, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y, A8.21., 3
28.
go back to reference Innis MA, Gelfand DH: Optimization of PCRs. In PCR protocols: a guide to methods and applications. Edited by: Innis MA, Gelfand DH, Sninsky JJ, White TJ. 1990, Academic Press, San Diego, CA, 3-12. 1 Innis MA, Gelfand DH: Optimization of PCRs. In PCR protocols: a guide to methods and applications. Edited by: Innis MA, Gelfand DH, Sninsky JJ, White TJ. 1990, Academic Press, San Diego, CA, 3-12. 1
29.
30.
go back to reference Czop JK, Austen KF: A. B-glucan inhibitable receptor onhuman monocytes: its identity with the phagocytic receptor for particulate activators of the alternative complement pathway. J Immunol. 1985, 134: 2588-2593.PubMed Czop JK, Austen KF: A. B-glucan inhibitable receptor onhuman monocytes: its identity with the phagocytic receptor for particulate activators of the alternative complement pathway. J Immunol. 1985, 134: 2588-2593.PubMed
31.
go back to reference Vetivicka V, Thornton BP, Ross GD: Soluble _-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J Clin Invest. 1996, 98: 50-61. 10.1172/JCI118777.CrossRef Vetivicka V, Thornton BP, Ross GD: Soluble _-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J Clin Invest. 1996, 98: 50-61. 10.1172/JCI118777.CrossRef
32.
go back to reference Sakurai T, Hasimoto K, Suzuki I: Enhancement of murine alveolar macrophage functions by orally administered B-glucan. Int J Immnopharmacol. 1992, 14: 821-830. 10.1016/0192-0561(92)90080-5.CrossRef Sakurai T, Hasimoto K, Suzuki I: Enhancement of murine alveolar macrophage functions by orally administered B-glucan. Int J Immnopharmacol. 1992, 14: 821-830. 10.1016/0192-0561(92)90080-5.CrossRef
33.
go back to reference Suzuki I, Tanaka H, Kinoshita A, Oikawa S, Osawa M, Yadomae T: Effect of orally administered b-glucan on macrophage function in mice. Int J Immunopharmacol. 1990, 12: 675-684. 10.1016/0192-0561(90)90105-V.CrossRefPubMed Suzuki I, Tanaka H, Kinoshita A, Oikawa S, Osawa M, Yadomae T: Effect of orally administered b-glucan on macrophage function in mice. Int J Immunopharmacol. 1990, 12: 675-684. 10.1016/0192-0561(90)90105-V.CrossRefPubMed
34.
go back to reference Donatto F, Prestes J, Ferreira CK, Dias R, Frolini A, Leite G, Urtado C, Verlengia R, Palanch A, Perez S, Cavaglieri C: Effects of soluble fibers supplementation on immune system cells after exhausting exercise in trained rats. Rev Bras Med Esporte. 2008, 14 (6): 533-37. 10.1590/S1517-86922008000600011.CrossRef Donatto F, Prestes J, Ferreira CK, Dias R, Frolini A, Leite G, Urtado C, Verlengia R, Palanch A, Perez S, Cavaglieri C: Effects of soluble fibers supplementation on immune system cells after exhausting exercise in trained rats. Rev Bras Med Esporte. 2008, 14 (6): 533-37. 10.1590/S1517-86922008000600011.CrossRef
35.
go back to reference Pilegaard H, Keller C, Steensberg A, Helge JW, Pedersen BK, Saltin B, Neufer D: Influence of pre-exercise muscle glycogen concentrations on exercise-induced transcriptional regulation of metabolic genes. Journal Physiology. 2002, 54 (1): 261-271. 10.1113/jphysiol.2002.016832.CrossRef Pilegaard H, Keller C, Steensberg A, Helge JW, Pedersen BK, Saltin B, Neufer D: Influence of pre-exercise muscle glycogen concentrations on exercise-induced transcriptional regulation of metabolic genes. Journal Physiology. 2002, 54 (1): 261-271. 10.1113/jphysiol.2002.016832.CrossRef
36.
go back to reference Hays NP, Starling RD, Sullivan DH, Fluckey JD, Coker RH, Williams RH, Evans WJ: Effects of an ad libitum, high carbohydrate diet and aerobic exercise training on insulin action and muscle metabolism in older men and women. Journal of Gerontology A Biological Sciences. 2006, 61 (3): 299-304.CrossRef Hays NP, Starling RD, Sullivan DH, Fluckey JD, Coker RH, Williams RH, Evans WJ: Effects of an ad libitum, high carbohydrate diet and aerobic exercise training on insulin action and muscle metabolism in older men and women. Journal of Gerontology A Biological Sciences. 2006, 61 (3): 299-304.CrossRef
37.
go back to reference Febbraio MA, Keenan J, Angus DJ, Campbell SE, Garnham A: Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the glycemic index. Journal of Applied Physiology. 2000, 89: 1845-1851.PubMed Febbraio MA, Keenan J, Angus DJ, Campbell SE, Garnham A: Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the glycemic index. Journal of Applied Physiology. 2000, 89: 1845-1851.PubMed
38.
39.
go back to reference Jentjens R, Jeukendrup A: Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Medicine. 2003, 33 (2): 117-44. 10.2165/00007256-200333020-00004.CrossRefPubMed Jentjens R, Jeukendrup A: Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Medicine. 2003, 33 (2): 117-44. 10.2165/00007256-200333020-00004.CrossRefPubMed
40.
go back to reference Wee SL, Williams C, Tsintzas K, Boobis L: Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. Journal of Applied Physiology. 2005, 99: 707-714. 10.1152/japplphysiol.01261.2004.CrossRefPubMed Wee SL, Williams C, Tsintzas K, Boobis L: Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. Journal of Applied Physiology. 2005, 99: 707-714. 10.1152/japplphysiol.01261.2004.CrossRefPubMed
41.
go back to reference Goebel MU, Mills PJ: Acute psychological stress and exercise and changes in peripheral leukocyte adhesion molecule expression and density. Psychmestry Medicine. 2000, 62: 664-670.CrossRef Goebel MU, Mills PJ: Acute psychological stress and exercise and changes in peripheral leukocyte adhesion molecule expression and density. Psychmestry Medicine. 2000, 62: 664-670.CrossRef
42.
go back to reference Gleeson M, Nieman D, Pedersen BK: Exercise, nutrition and immune function. Journal of Sports Sciences. 2004, 22: 115-125. 10.1080/0264041031000140590.CrossRefPubMed Gleeson M, Nieman D, Pedersen BK: Exercise, nutrition and immune function. Journal of Sports Sciences. 2004, 22: 115-125. 10.1080/0264041031000140590.CrossRefPubMed
43.
go back to reference Keller C, Steensberg A, Pilegaard H, Osada T, Saltin B, Pedersen BK, Neufer PD: Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen concentrations. FASEB Journal. 2001, 15: 2748-2750.PubMed Keller C, Steensberg A, Pilegaard H, Osada T, Saltin B, Pedersen BK, Neufer PD: Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen concentrations. FASEB Journal. 2001, 15: 2748-2750.PubMed
44.
go back to reference Lancaster GI, Khan Q, Drysdale PT: Effect of prolonged exercise and carbohydrate ingestion on type 1 and type 2 lymphocyte distribution and intracellular cytokine production in humans. Journal of Applied Physiology. 2005, 98: 565-571. 10.1152/japplphysiol.00754.2004.CrossRefPubMed Lancaster GI, Khan Q, Drysdale PT: Effect of prolonged exercise and carbohydrate ingestion on type 1 and type 2 lymphocyte distribution and intracellular cytokine production in humans. Journal of Applied Physiology. 2005, 98: 565-571. 10.1152/japplphysiol.00754.2004.CrossRefPubMed
45.
go back to reference Pedersen BK, Febbraio M: Muscle-derived inteleukin-6 - A possible link between skeletal muscle, adipose tissue, liver and brain. Brain, Behavior, and Immunity. 2005, 19: 371-376. 10.1016/j.bbi.2005.04.008.CrossRefPubMed Pedersen BK, Febbraio M: Muscle-derived inteleukin-6 - A possible link between skeletal muscle, adipose tissue, liver and brain. Brain, Behavior, and Immunity. 2005, 19: 371-376. 10.1016/j.bbi.2005.04.008.CrossRefPubMed
46.
go back to reference Steenberg A, Febbraio M, van Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK: Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. Journal Physiology. 2001, 537: 633-639. 10.1111/j.1469-7793.2001.00633.x.CrossRef Steenberg A, Febbraio M, van Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK: Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. Journal Physiology. 2001, 537: 633-639. 10.1111/j.1469-7793.2001.00633.x.CrossRef
47.
go back to reference Ostrowski K, Rohde T, ASP S, Schjerling P, Pedersen BK: Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. Journal of Physiology. 1999, 515: 287-291. 10.1111/j.1469-7793.1999.287ad.x.PubMedCentralCrossRefPubMed Ostrowski K, Rohde T, ASP S, Schjerling P, Pedersen BK: Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. Journal of Physiology. 1999, 515: 287-291. 10.1111/j.1469-7793.1999.287ad.x.PubMedCentralCrossRefPubMed
48.
go back to reference Rosa Neto JC, Lira FS, Oyama L, Zanchi N, Yamashita A, Batista M, Oller C, Seelaender M: Exhaustive exercise causes an anti-inflammatory effect in skeletal muscle and a pro-inflammatory effect in adipose tissue in rats. Eur J Appl Physiol. 2009, 106: 697-704. 10.1007/s00421-009-1070-1.CrossRefPubMed Rosa Neto JC, Lira FS, Oyama L, Zanchi N, Yamashita A, Batista M, Oller C, Seelaender M: Exhaustive exercise causes an anti-inflammatory effect in skeletal muscle and a pro-inflammatory effect in adipose tissue in rats. Eur J Appl Physiol. 2009, 106: 697-704. 10.1007/s00421-009-1070-1.CrossRefPubMed
49.
go back to reference Lira F, Rosa Neto JC, Oyama L, Yamashita A, Batista M, Seelaender M: Endurance training induces depot-specific changes in IL-10/TNF-a ratio in rat adipose tissue. Cytokine. 2009, 45: 80-85. 10.1016/j.cyto.2008.10.018.CrossRefPubMed Lira F, Rosa Neto JC, Oyama L, Yamashita A, Batista M, Seelaender M: Endurance training induces depot-specific changes in IL-10/TNF-a ratio in rat adipose tissue. Cytokine. 2009, 45: 80-85. 10.1016/j.cyto.2008.10.018.CrossRefPubMed
Metadata
Title
Effect of oat bran on time to exhaustion, glycogen content and serum cytokine profile following exhaustive exercise
Authors
Felipe F Donatto
Jonato Prestes
Anelena B Frollini
Adrianne C Palanch
Rozangela Verlengia
Claudia Regina Cavaglieri
Publication date
01-12-2010
Publisher
BioMed Central
DOI
https://doi.org/10.1186/1550-2783-7-32

Other articles of this Issue 1/2010

Journal of the International Society of Sports Nutrition 1/2010 Go to the issue