Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2010

Open Access 01-12-2010 | Research article

The effects of theaflavin-enriched black tea extract on muscle soreness, oxidative stress, inflammation, and endocrine responses to acute anaerobic interval training: a randomized, double-blind, crossover study

Authors: Shawn M Arent, Meghan Senso, Devon L Golem, Kenneth H McKeever

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2010

Login to get access

Abstract

Background

Muscle soreness and decreased performance often follow a bout of high-intensity exercise. By reducing these effects, an athlete can train more frequently and increase long-term performance. The purpose of this study is to examine whether a high-potency, black tea extract (BTE) alters the delayed onset muscle soreness (DOMS), oxidative stress, inflammation, and cortisol (CORT) responses to high-intensity anaerobic exercise.

Methods

College-age males (N = 18) with 1+ yrs of weight training experience completed a double-blind, placebo-controlled, crossover study. Subjects consumed the BTE (1,760 mg BTE·d-1) or placebo (PLA) for 9 days. Each subject completed two testing sessions (T1 & T2), which occurred on day 7 of the intervention. T1 & T2 consisted of a 30 s Wingate Test plus eight 10 s intervals. Blood samples were obtained before, 0, 30 & 60 min following the interval sessions and were used to analyze the total to oxidized glutathione ratio (GSH:GSSG), 8-isoprostane (8-iso), CORT, and interleukin 6 (IL-6) secretion. DOMS was recorded at 24 & 48 h post-test using a visual analog scale while BTE or PLA continued to be administered. Significance was set at P < 0.05.

Results

Compared to PLA, BTE produced significantly higher average peak power (P = 0.013) and higher average mean power (P = 0.067) across nine WAnT intervals. BTE produced significantly lower DOMS compared to PLA at 24 h post test (P < 0.001) and 48 h post test (P < 0.001). Compared to PLA, BTE had a slightly higher GSH:GSSG ratio at baseline which became significantly higher at 30 and 60 min post test (P < 0.002). AUC analysis revealed BTE to elicit significantly lower GSSG secretion (P = 0.009), significantly higher GSH:GSSG ratio (P = 0.001), and lower CORT secretion (P = 0.078) than PLA. AUC analysis did not reveal a significant difference in total IL-6 response (P = 0.145) between conditions.

Conclusions

Consumption of theaflavin-enriched black tea extract led to improved recovery and a reduction in oxidative stress and DOMS responses to acute anaerobic intervals. An improved rate of recovery can benefit all individuals engaging in high intensity, anaerobic exercise as it facilitates increased frequency of exercise.
Appendix
Available only for authorised users
Literature
1.
go back to reference Clarkson PM, Hubal MJ: Exercise-induced muscle damage in humans. Am J Phys Med Rehab. 2002, 8: S52-S69. 10.1097/00002060-200211001-00007.CrossRef Clarkson PM, Hubal MJ: Exercise-induced muscle damage in humans. Am J Phys Med Rehab. 2002, 8: S52-S69. 10.1097/00002060-200211001-00007.CrossRef
2.
go back to reference Twist C, Eston R: The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur J Appl Physiol. 2005, 94: 652-658. 10.1007/s00421-005-1357-9.CrossRefPubMed Twist C, Eston R: The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur J Appl Physiol. 2005, 94: 652-658. 10.1007/s00421-005-1357-9.CrossRefPubMed
3.
go back to reference Howatson G, van Someren KA: The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008, 38: 483-503. 10.2165/00007256-200838060-00004.CrossRefPubMed Howatson G, van Someren KA: The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008, 38: 483-503. 10.2165/00007256-200838060-00004.CrossRefPubMed
4.
go back to reference Luczaj W, Skrzydlewska E: Antioxidative properties of black tea. Preventive Med. 2005, 40: 910-918. 10.1016/j.ypmed.2004.10.014.CrossRef Luczaj W, Skrzydlewska E: Antioxidative properties of black tea. Preventive Med. 2005, 40: 910-918. 10.1016/j.ypmed.2004.10.014.CrossRef
5.
go back to reference Tomita M, Irwin KI, Xie ZJ, Santoro TJ: Tea pigments inhibit the production of type 1 (TH1) and type 2 (TH2) helper T cell cytokines in CD4+ T cells. Phytother Res. 2002, 16: 36-42. 10.1002/ptr.834.CrossRefPubMed Tomita M, Irwin KI, Xie ZJ, Santoro TJ: Tea pigments inhibit the production of type 1 (TH1) and type 2 (TH2) helper T cell cytokines in CD4+ T cells. Phytother Res. 2002, 16: 36-42. 10.1002/ptr.834.CrossRefPubMed
6.
go back to reference Stangl V, Lorenz M, Stangl K: Review: The role of tea and tea flavonoids in cardiovascular health. Mol Nutr Food Res. 2006, 50: 218-228. 10.1002/mnfr.200500118.CrossRefPubMed Stangl V, Lorenz M, Stangl K: Review: The role of tea and tea flavonoids in cardiovascular health. Mol Nutr Food Res. 2006, 50: 218-228. 10.1002/mnfr.200500118.CrossRefPubMed
7.
go back to reference Higdon JV, Frei B: Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr. 2003, 43: 89-143. 10.1080/10408690390826464.CrossRefPubMed Higdon JV, Frei B: Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr. 2003, 43: 89-143. 10.1080/10408690390826464.CrossRefPubMed
8.
go back to reference Aneja R, Odoms K, Denenberg AG, Wong HR: Theaflavin, a black tea extract, is a novel anti-inflammatory compound. Crit Care Med. 2004, 32: 2097-2103. 10.1097/01.CCM.0000142661.73633.15.CrossRefPubMed Aneja R, Odoms K, Denenberg AG, Wong HR: Theaflavin, a black tea extract, is a novel anti-inflammatory compound. Crit Care Med. 2004, 32: 2097-2103. 10.1097/01.CCM.0000142661.73633.15.CrossRefPubMed
9.
go back to reference Malm C: Exercise-induced muscle damage and inflammation: fact or fiction?. Acta Physiol Scand. 2001, 171: 233-239. 10.1046/j.1365-201x.2001.00825.x.CrossRefPubMed Malm C: Exercise-induced muscle damage and inflammation: fact or fiction?. Acta Physiol Scand. 2001, 171: 233-239. 10.1046/j.1365-201x.2001.00825.x.CrossRefPubMed
10.
go back to reference Tidball JG: Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005, 288: 345-353.CrossRef Tidball JG: Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005, 288: 345-353.CrossRef
11.
go back to reference Powers SK, Jackson MJ: Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008, 88: 1243-1276. 10.1152/physrev.00031.2007.PubMedCentralCrossRefPubMed Powers SK, Jackson MJ: Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008, 88: 1243-1276. 10.1152/physrev.00031.2007.PubMedCentralCrossRefPubMed
12.
go back to reference Cooper CE, Vollaard NBJ, Choueiri T, Wilson MT: Exercise, free radicals and oxidative stress. Biochem Soc Trans. 2002, 30: 280-285. 10.1042/BST0300280.CrossRefPubMed Cooper CE, Vollaard NBJ, Choueiri T, Wilson MT: Exercise, free radicals and oxidative stress. Biochem Soc Trans. 2002, 30: 280-285. 10.1042/BST0300280.CrossRefPubMed
13.
go back to reference Yu JG, Carlsson L, Thornell LE: Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study. Histochem Cell Biol. 2004, 121: 219-227. 10.1007/s00418-004-0625-9.CrossRefPubMed Yu JG, Carlsson L, Thornell LE: Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study. Histochem Cell Biol. 2004, 121: 219-227. 10.1007/s00418-004-0625-9.CrossRefPubMed
14.
go back to reference Willoughby DS, McFarlin B, Bois C: Interleukin-6 expression after repeated bouts of eccentric exercise. Intl J Sports Med. 2003, 24: 15-21. 10.1055/s-2003-37197.CrossRef Willoughby DS, McFarlin B, Bois C: Interleukin-6 expression after repeated bouts of eccentric exercise. Intl J Sports Med. 2003, 24: 15-21. 10.1055/s-2003-37197.CrossRef
15.
go back to reference Febbraio MA, Pedersen BK: Muscle-derived interleukin 6: mechanisms for activation and possible biological roles. FASEBJ. 2002, 16: 1335-1347. 10.1096/fj.01-0876rev.CrossRef Febbraio MA, Pedersen BK: Muscle-derived interleukin 6: mechanisms for activation and possible biological roles. FASEBJ. 2002, 16: 1335-1347. 10.1096/fj.01-0876rev.CrossRef
16.
go back to reference Urso ML, Clarkson RM: Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003, 89: 41-54. 10.1016/S0300-483X(03)00151-3.CrossRef Urso ML, Clarkson RM: Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003, 89: 41-54. 10.1016/S0300-483X(03)00151-3.CrossRef
17.
go back to reference Clarkson PM, Thompson HS: Antioxidants: what role do they play in physical activity and health?. Am J Clin Nutr. 2000, 72: 637S-646S.PubMed Clarkson PM, Thompson HS: Antioxidants: what role do they play in physical activity and health?. Am J Clin Nutr. 2000, 72: 637S-646S.PubMed
18.
go back to reference Vassilakopoulos T, Karatza MH, Katsaounou P, Kollintza A, Zakynthinos S, Roussos C: Antioxidants attenuate the plasma cytokine response to exercise in humans. J Appl Physiol. 2003, 94: 1025-1032.CrossRefPubMed Vassilakopoulos T, Karatza MH, Katsaounou P, Kollintza A, Zakynthinos S, Roussos C: Antioxidants attenuate the plasma cytokine response to exercise in humans. J Appl Physiol. 2003, 94: 1025-1032.CrossRefPubMed
19.
go back to reference Huang MT, Liu Y, Ramji D, Lo CY, Ghai G, Dushenkov S, Ho CT: Inhibitory effects of black tea theaflavin derivatives on 12-O-tetradecanoylphorbol-12-acetate-induced inflammation and arachidonic acid metabolism in mouse ears. Mol Nutr Food Res. 2006, 50: 115-122. 10.1002/mnfr.200500101.CrossRefPubMed Huang MT, Liu Y, Ramji D, Lo CY, Ghai G, Dushenkov S, Ho CT: Inhibitory effects of black tea theaflavin derivatives on 12-O-tetradecanoylphorbol-12-acetate-induced inflammation and arachidonic acid metabolism in mouse ears. Mol Nutr Food Res. 2006, 50: 115-122. 10.1002/mnfr.200500101.CrossRefPubMed
20.
go back to reference Barfield JP, Sells PD, Rowe DA, Hannigan-Downs K: Practice effect on the Wingate anaerobic test. J Strength Cond Res. 2002, 16: 472-473. 10.1519/1533-4287(2002)016<0472:PEOTWA>2.0.CO;2.PubMed Barfield JP, Sells PD, Rowe DA, Hannigan-Downs K: Practice effect on the Wingate anaerobic test. J Strength Cond Res. 2002, 16: 472-473. 10.1519/1533-4287(2002)016<0472:PEOTWA>2.0.CO;2.PubMed
21.
go back to reference Üçok K, Gökbel H, Okudan N: The load for the Wingate test: according to the body weight or lean body mass. Eur J Gen Med. 2005, 2: 10-13. Üçok K, Gökbel H, Okudan N: The load for the Wingate test: according to the body weight or lean body mass. Eur J Gen Med. 2005, 2: 10-13.
22.
go back to reference Pedersen BK, Steensberg A, Fischer C: Exercise and cytokines with particular focus on muscle-derived IL-6. Exer Immun Rev. 2001, 7: 18-31. Pedersen BK, Steensberg A, Fischer C: Exercise and cytokines with particular focus on muscle-derived IL-6. Exer Immun Rev. 2001, 7: 18-31.
23.
go back to reference Murase T, Haramizu S, Shimotoyodome A, Tokimitsu I, Hase T: Green tea extract improves running endurance in mice by stimulating lipid utilization during exercise. Am J Physiol Regul Integr Comp Physiol. 2006, 290: R1550-R1556.CrossRefPubMed Murase T, Haramizu S, Shimotoyodome A, Tokimitsu I, Hase T: Green tea extract improves running endurance in mice by stimulating lipid utilization during exercise. Am J Physiol Regul Integr Comp Physiol. 2006, 290: R1550-R1556.CrossRefPubMed
24.
go back to reference Shimotoyodome A, Haramizu S, Inaba M, Murase T, Tokimitsu I: Exercise and green tea extract stimulate fat oxidation and prevent obesity in mice. Med Sci Sports Exerc. 2005, 37: 1884-1892. 10.1249/01.mss.0000178062.66981.a8.CrossRefPubMed Shimotoyodome A, Haramizu S, Inaba M, Murase T, Tokimitsu I: Exercise and green tea extract stimulate fat oxidation and prevent obesity in mice. Med Sci Sports Exerc. 2005, 37: 1884-1892. 10.1249/01.mss.0000178062.66981.a8.CrossRefPubMed
25.
go back to reference Call JA, Voelker KA, Wolff AV, McMillan RP, Evans NP, Hulver MW, Talmadge RJ, Grange RW: Endurance capacity in maturing mdx mice is markedly enhanced by combined voluntary wheel running and green tea extract. J Appl Physiol. 2008, 105: 923-932. 10.1152/japplphysiol.00028.2008.PubMedCentralCrossRefPubMed Call JA, Voelker KA, Wolff AV, McMillan RP, Evans NP, Hulver MW, Talmadge RJ, Grange RW: Endurance capacity in maturing mdx mice is markedly enhanced by combined voluntary wheel running and green tea extract. J Appl Physiol. 2008, 105: 923-932. 10.1152/japplphysiol.00028.2008.PubMedCentralCrossRefPubMed
26.
go back to reference Lorenz M, Urban J, Engelhardt U, Baumann G, Stangl K, Stangl V: Green and black tea are equally potent stimuli of NO production and vasodilation: new insights into tea. Basic Res Cardiol. 2009, 104: 100-110. 10.1007/s00395-008-0759-3.CrossRefPubMed Lorenz M, Urban J, Engelhardt U, Baumann G, Stangl K, Stangl V: Green and black tea are equally potent stimuli of NO production and vasodilation: new insights into tea. Basic Res Cardiol. 2009, 104: 100-110. 10.1007/s00395-008-0759-3.CrossRefPubMed
27.
go back to reference Leung LK, Su Y, Chen R, Zhang A, Huang U, Chen YZ: Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr. 2001, 131: 2248-2251.PubMed Leung LK, Su Y, Chen R, Zhang A, Huang U, Chen YZ: Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr. 2001, 131: 2248-2251.PubMed
28.
go back to reference Krishnamoorthy KK: The nutritional and therapeutic value of tea. Proceedings of the International Symposium on Tea Science: 1991; Shizuoka, Japan. Edited by: Yamanishi T. 1991, Shizuoka, Japan: Organizing Committee of ISTS, 6-11. Krishnamoorthy KK: The nutritional and therapeutic value of tea. Proceedings of the International Symposium on Tea Science: 1991; Shizuoka, Japan. Edited by: Yamanishi T. 1991, Shizuoka, Japan: Organizing Committee of ISTS, 6-11.
Metadata
Title
The effects of theaflavin-enriched black tea extract on muscle soreness, oxidative stress, inflammation, and endocrine responses to acute anaerobic interval training: a randomized, double-blind, crossover study
Authors
Shawn M Arent
Meghan Senso
Devon L Golem
Kenneth H McKeever
Publication date
01-12-2010
Publisher
BioMed Central
DOI
https://doi.org/10.1186/1550-2783-7-11

Other articles of this Issue 1/2010

Journal of the International Society of Sports Nutrition 1/2010 Go to the issue