Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2009

Open Access 01-12-2009 | Research article

Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals

Authors: Matthew B Cooke, Emma Rybalka, Andrew D Williams, Paul J Cribb, Alan Hayes

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2009

Login to get access

Abstract

Background

Eccentric exercise-induced damage leads to reductions in muscle force, increased soreness, and impaired muscle function. Creatine monohydrate's (Cr) ergogenic potential is well established; however few studies have directly examined the effects of Cr supplementation on recovery after damage. We examined the effects of Cr supplementation on muscle proteins and force recovery after eccentrically-induced muscle damage in healthy individuals.

Methods

Fourteen untrained male participants (22.1 ± 2.3 yrs, 173 ± 7.7 cm, 76.2 ± 9.3 kg) were randomly separated into 2 supplement groups: i) Cr and carbohydrate (Cr-CHO; n = 7); or ii) carbohydrate (CHO; n = 7). Participants consumed their supplement for a period of 5 days prior to, and 14 days following a resistance exercise session. Participants performed 4 sets of 10 eccentric-only repetitions at 120% of their maximum concentric 1-RM on the leg press, leg extension and leg flexion exercise machine. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) activity were assessed as relevant blood markers of muscle damage. Muscle strength was examined by voluntary isokinetic knee extension using a Cybex dynamometer. Data were analyzed using repeated measures ANOVA with an alpha of 0.05.

Results

The Cr-supplemented group had significantly greater isokinetic (10% higher) and isometric (21% higher) knee extension strength during recovery from exercise-induced muscle damage. Furthermore, plasma CK activity was significantly lower (by an average of 84%) after 48 hrs (P < 0.01), 72 hrs (P < 0.001), 96 hrs (P < 0.0001), and 7 days (P < 0.001) recovery in the Cr-supplemented group.

Conclusion

The major finding of this investigation was a significant improvement in the rate of recovery of knee extensor muscle function after Cr supplementation following injury.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kendall B, Eston R: Exercise-induced muscle damage and the potential protective role of estrogen. Sports Med. 2002, 32 (2): 103-123. 10.2165/00007256-200232020-00003.CrossRefPubMed Kendall B, Eston R: Exercise-induced muscle damage and the potential protective role of estrogen. Sports Med. 2002, 32 (2): 103-123. 10.2165/00007256-200232020-00003.CrossRefPubMed
2.
go back to reference Allen DG, Whitehead NP, Yeung EW: Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol. 2005, 567 (Pt 3): 723-735. 10.1113/jphysiol.2005.091694.PubMedCentralCrossRefPubMed Allen DG, Whitehead NP, Yeung EW: Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol. 2005, 567 (Pt 3): 723-735. 10.1113/jphysiol.2005.091694.PubMedCentralCrossRefPubMed
3.
go back to reference Belcastro AN, Shewchuk LD, Raj DA: Exercise-induced muscle injury: a calpain hypothesis. Mol Cell Biochem. 1998, 179 (1–2): 135-145. 10.1023/A:1006816123601.CrossRefPubMed Belcastro AN, Shewchuk LD, Raj DA: Exercise-induced muscle injury: a calpain hypothesis. Mol Cell Biochem. 1998, 179 (1–2): 135-145. 10.1023/A:1006816123601.CrossRefPubMed
4.
go back to reference Rawson ES, Volek JS: Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance. J Strength Cond Res. 2003, 17 (4): 822-831. 10.1519/1533-4287(2003)017<0822:EOCSAR>2.0.CO;2.PubMed Rawson ES, Volek JS: Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance. J Strength Cond Res. 2003, 17 (4): 822-831. 10.1519/1533-4287(2003)017<0822:EOCSAR>2.0.CO;2.PubMed
5.
go back to reference Santos RV, Bassit RA, Caperuto EC, Costa Rosa LF: The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30 km race. Life Sci. 2004, 75 (16): 1917-1924. 10.1016/j.lfs.2003.11.036.CrossRefPubMed Santos RV, Bassit RA, Caperuto EC, Costa Rosa LF: The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30 km race. Life Sci. 2004, 75 (16): 1917-1924. 10.1016/j.lfs.2003.11.036.CrossRefPubMed
6.
go back to reference Rawson ES, Conti MP, Miles MP: Creatine supplementation does not reduce muscle damage or enhance recovery from resistance exercise. J Strength Cond Res. 2007, 21 (4): 1208-1213. 10.1519/R-21076.1.PubMed Rawson ES, Conti MP, Miles MP: Creatine supplementation does not reduce muscle damage or enhance recovery from resistance exercise. J Strength Cond Res. 2007, 21 (4): 1208-1213. 10.1519/R-21076.1.PubMed
7.
go back to reference Rawson ES, Gunn B, Clarkson PM: The effects of creatine supplementation on exercise-induced muscle damage. J Strength Cond Res. 2001, 15 (2): 178-184. 10.1519/1533-4287(2001)015<0178:TEOCSO>2.0.CO;2.PubMed Rawson ES, Gunn B, Clarkson PM: The effects of creatine supplementation on exercise-induced muscle damage. J Strength Cond Res. 2001, 15 (2): 178-184. 10.1519/1533-4287(2001)015<0178:TEOCSO>2.0.CO;2.PubMed
8.
go back to reference Warren GL, Fennessy JM, Millard-Stafford ML: Strength loss after eccentric contractions is unaffected by creatine supplementation. J Appl Physiol. 2000, 89 (2): 557-562.PubMed Warren GL, Fennessy JM, Millard-Stafford ML: Strength loss after eccentric contractions is unaffected by creatine supplementation. J Appl Physiol. 2000, 89 (2): 557-562.PubMed
9.
go back to reference Nosaka K, Sakamoto K, Newton M, Sacco P: The repeated bout effect of reduced-load eccentric exercise on elbow flexor muscle damage. Eur J Appl Physiol. 2001, 85 (1–2): 34-40. 10.1007/s004210100430.CrossRefPubMed Nosaka K, Sakamoto K, Newton M, Sacco P: The repeated bout effect of reduced-load eccentric exercise on elbow flexor muscle damage. Eur J Appl Physiol. 2001, 85 (1–2): 34-40. 10.1007/s004210100430.CrossRefPubMed
10.
go back to reference Friden J, Lieber RL: Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol Scand. 2001, 171 (3): 321-326. 10.1046/j.1365-201x.2001.00834.x.CrossRefPubMed Friden J, Lieber RL: Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol Scand. 2001, 171 (3): 321-326. 10.1046/j.1365-201x.2001.00834.x.CrossRefPubMed
11.
go back to reference Kreider RB: Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem. 2003, 244 (1–2): 89-94. 10.1023/A:1022465203458.CrossRefPubMed Kreider RB: Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem. 2003, 244 (1–2): 89-94. 10.1023/A:1022465203458.CrossRefPubMed
12.
go back to reference Cribb PJ, Williams AD, Carey MF, Hayes A: The effect of whey isolate and resistance training on strength, body composition, and plasma glutamine. Int J Sport Nutr Exerc Metab. 2006, 16 (5): 494-509.PubMed Cribb PJ, Williams AD, Carey MF, Hayes A: The effect of whey isolate and resistance training on strength, body composition, and plasma glutamine. Int J Sport Nutr Exerc Metab. 2006, 16 (5): 494-509.PubMed
13.
go back to reference Baechle TR, Earle RW, National Strength & Conditioning Association (U.S.): Essentials of strength training and conditioning. 2000, Champaign, Ill.: Human Kinetics, 2 Baechle TR, Earle RW, National Strength & Conditioning Association (U.S.): Essentials of strength training and conditioning. 2000, Champaign, Ill.: Human Kinetics, 2
14.
go back to reference Brown SJ, Child RB, Donnelly AE, Saxton JM, Day SH: Changes in human skeletal muscle contractile function following stimulated eccentric exercise. Eur J Appl Physiol Occup Physiol. 1996, 72 (5–6): 515-521. 10.1007/BF00242284.CrossRefPubMed Brown SJ, Child RB, Donnelly AE, Saxton JM, Day SH: Changes in human skeletal muscle contractile function following stimulated eccentric exercise. Eur J Appl Physiol Occup Physiol. 1996, 72 (5–6): 515-521. 10.1007/BF00242284.CrossRefPubMed
15.
go back to reference Sorichter S, Mair J, Koller A, Muller E, Kremser C, Judmaier W, Haid C, Rama D, Calzolari C, Puschendorf B: Skeletal muscle troponin I release and magnetic resonance imaging signal intensity changes after eccentric exercise-induced skeletal muscle injury. Clin Chim Acta. 1997, 262 (1–2): 139-146. 10.1016/S0009-8981(97)06543-1.CrossRefPubMed Sorichter S, Mair J, Koller A, Muller E, Kremser C, Judmaier W, Haid C, Rama D, Calzolari C, Puschendorf B: Skeletal muscle troponin I release and magnetic resonance imaging signal intensity changes after eccentric exercise-induced skeletal muscle injury. Clin Chim Acta. 1997, 262 (1–2): 139-146. 10.1016/S0009-8981(97)06543-1.CrossRefPubMed
16.
go back to reference Byrne C, Eston R: Maximal-intensity isometric and dynamic exercise performance after eccentric muscle actions. J Sports Sci. 2002, 20 (12): 951-959. 10.1080/026404102321011706.CrossRefPubMed Byrne C, Eston R: Maximal-intensity isometric and dynamic exercise performance after eccentric muscle actions. J Sports Sci. 2002, 20 (12): 951-959. 10.1080/026404102321011706.CrossRefPubMed
17.
go back to reference Rinard J, Clarkson PM, Smith LL, Grossman M: Response of males and females to high-force eccentric exercise. J Sports Sci. 2000, 18 (4): 229-236. 10.1080/026404100364965.CrossRefPubMed Rinard J, Clarkson PM, Smith LL, Grossman M: Response of males and females to high-force eccentric exercise. J Sports Sci. 2000, 18 (4): 229-236. 10.1080/026404100364965.CrossRefPubMed
18.
go back to reference Horder M, Magid E, Pitkanen E, Harkonen M, Stromme JH, Theodorsen L, Gerhardt W, Waldenstrom J: Recommended method for the determination of creatine kinase in blood modified by the inclusion of EDTA. The Committee on Enzymes of the Scandinavian Society for Clinical Chemistry and Clinical Physiology (SCE). Scand J Clin Lab Invest. 1979, 39 (1): 1-5. 10.3109/00365517909104932.CrossRefPubMed Horder M, Magid E, Pitkanen E, Harkonen M, Stromme JH, Theodorsen L, Gerhardt W, Waldenstrom J: Recommended method for the determination of creatine kinase in blood modified by the inclusion of EDTA. The Committee on Enzymes of the Scandinavian Society for Clinical Chemistry and Clinical Physiology (SCE). Scand J Clin Lab Invest. 1979, 39 (1): 1-5. 10.3109/00365517909104932.CrossRefPubMed
19.
go back to reference Costill DL, Daniels J, Evans W, Fink W, Krahenbuhl G, Saltin B: Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol. 1976, 40 (2): 149-154.PubMed Costill DL, Daniels J, Evans W, Fink W, Krahenbuhl G, Saltin B: Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol. 1976, 40 (2): 149-154.PubMed
20.
go back to reference Byrne C, Twist C, Eston R: Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med. 2004, 34 (1): 49-69. 10.2165/00007256-200434010-00005.CrossRefPubMed Byrne C, Twist C, Eston R: Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med. 2004, 34 (1): 49-69. 10.2165/00007256-200434010-00005.CrossRefPubMed
21.
go back to reference Bemben MG, Lamont HS: Creatine supplementation and exercise performance: recent findings. Sports Med. 2005, 35 (2): 107-125. 10.2165/00007256-200535020-00002.CrossRefPubMed Bemben MG, Lamont HS: Creatine supplementation and exercise performance: recent findings. Sports Med. 2005, 35 (2): 107-125. 10.2165/00007256-200535020-00002.CrossRefPubMed
22.
go back to reference Willoughby DS, Rosene JM: Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med Sci Sports Exerc. 2003, 35 (6): 923-929. 10.1249/01.MSS.0000069746.05241.F0.CrossRefPubMed Willoughby DS, Rosene JM: Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med Sci Sports Exerc. 2003, 35 (6): 923-929. 10.1249/01.MSS.0000069746.05241.F0.CrossRefPubMed
23.
go back to reference Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M: Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol. 2006, 573 (Pt 2): 525-534. 10.1113/jphysiol.2006.107359.PubMedCentralCrossRefPubMed Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M: Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol. 2006, 573 (Pt 2): 525-534. 10.1113/jphysiol.2006.107359.PubMedCentralCrossRefPubMed
24.
go back to reference Parise G, Mihic S, MacLennan D, Yarasheski KE, Tarnopolsky MA: Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. J Appl Physiol. 2001, 91 (3): 1041-1047.PubMed Parise G, Mihic S, MacLennan D, Yarasheski KE, Tarnopolsky MA: Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. J Appl Physiol. 2001, 91 (3): 1041-1047.PubMed
25.
go back to reference Cribb PJ, Williams AD, Stathis CG, Carey MF, Hayes A: Effects of whey isolate, creatine, and resistance training on muscle hypertrophy. Med Sci Sports Exerc. 2007, 39 (2): 298-307. 10.1249/01.mss.0000247002.32589.ef.CrossRefPubMed Cribb PJ, Williams AD, Stathis CG, Carey MF, Hayes A: Effects of whey isolate, creatine, and resistance training on muscle hypertrophy. Med Sci Sports Exerc. 2007, 39 (2): 298-307. 10.1249/01.mss.0000247002.32589.ef.CrossRefPubMed
26.
go back to reference Deldicque L, Atherton P, Patel R, Theisen D, Nielens H, Rennie MJ, Francaux M: Effects of resistance exercise with and without creatine supplementation on gene expression and cell signaling in human skeletal muscle. J Appl Physiol. 2008, 104 (2): 371-378. 10.1152/japplphysiol.00873.2007.CrossRefPubMed Deldicque L, Atherton P, Patel R, Theisen D, Nielens H, Rennie MJ, Francaux M: Effects of resistance exercise with and without creatine supplementation on gene expression and cell signaling in human skeletal muscle. J Appl Physiol. 2008, 104 (2): 371-378. 10.1152/japplphysiol.00873.2007.CrossRefPubMed
27.
go back to reference Deldicque L, Louis M, Theisen D, Nielens H, Dehoux M, Thissen JP, Rennie MJ, Francaux M: Increased IGF mRNA in human skeletal muscle after creatine supplementation. Med Sci Sports Exerc. 2005, 37 (5): 731-736. 10.1249/01.MSS.0000162690.39830.27.CrossRefPubMed Deldicque L, Louis M, Theisen D, Nielens H, Dehoux M, Thissen JP, Rennie MJ, Francaux M: Increased IGF mRNA in human skeletal muscle after creatine supplementation. Med Sci Sports Exerc. 2005, 37 (5): 731-736. 10.1249/01.MSS.0000162690.39830.27.CrossRefPubMed
28.
go back to reference Rossi AM, Eppenberger HM, Volpe P, Cotrufo R, Wallimann T: Muscle-type MM creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+ uptake and regulate local ATP/ADP ratios. J Biol Chem. 1990, 265 (9): 5258-5266.PubMed Rossi AM, Eppenberger HM, Volpe P, Cotrufo R, Wallimann T: Muscle-type MM creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+ uptake and regulate local ATP/ADP ratios. J Biol Chem. 1990, 265 (9): 5258-5266.PubMed
29.
go back to reference Duke AM, Steele DS: Mechanisms of reduced SR Ca(2+) release induced by inorganic phosphate in rat skeletal muscle fibers. Am J Physiol Cell Physiol. 2001, 281 (2): C418-429.PubMed Duke AM, Steele DS: Mechanisms of reduced SR Ca(2+) release induced by inorganic phosphate in rat skeletal muscle fibers. Am J Physiol Cell Physiol. 2001, 281 (2): C418-429.PubMed
30.
go back to reference Duke AM, Steele DS: Effects of creatine phosphate on Ca2+ regulation by the sarcoplasmic reticulum in mechanically skinned rat skeletal muscle fibres. J Physiol. 1999, 517 (Pt 2): 447-458. 10.1111/j.1469-7793.1999.0447t.x.PubMedCentralCrossRefPubMed Duke AM, Steele DS: Effects of creatine phosphate on Ca2+ regulation by the sarcoplasmic reticulum in mechanically skinned rat skeletal muscle fibres. J Physiol. 1999, 517 (Pt 2): 447-458. 10.1111/j.1469-7793.1999.0447t.x.PubMedCentralCrossRefPubMed
31.
go back to reference Korge P, Byrd SK, Campbell KB: Functional coupling between sarcoplasmic-reticulum-bound creatine kinase and Ca(2+)-ATPase. Eur J Biochem. 1993, 213 (3): 973-980. 10.1111/j.1432-1033.1993.tb17842.x.CrossRefPubMed Korge P, Byrd SK, Campbell KB: Functional coupling between sarcoplasmic-reticulum-bound creatine kinase and Ca(2+)-ATPase. Eur J Biochem. 1993, 213 (3): 973-980. 10.1111/j.1432-1033.1993.tb17842.x.CrossRefPubMed
32.
go back to reference Gunst JJ, Langlois MR, Delanghe JR, De Buyzere ML, Leroux-Roels GG: Serum creatine kinase activity is not a reliable marker for muscle damage in conditions associated with low extracellular glutathione concentration. Clin Chem. 1998, 44 (5): 939-943.PubMed Gunst JJ, Langlois MR, Delanghe JR, De Buyzere ML, Leroux-Roels GG: Serum creatine kinase activity is not a reliable marker for muscle damage in conditions associated with low extracellular glutathione concentration. Clin Chem. 1998, 44 (5): 939-943.PubMed
33.
go back to reference Schwane JA, Buckley RT, Dipaolo DP, Atkinson MA, Shepherd JR: Plasma creatine kinase responses of 18- to 30-yr-old African-American men to eccentric exercise. Med Sci Sports Exerc. 2000, 32 (2): 370-378. 10.1097/00005768-200002000-00017.CrossRefPubMed Schwane JA, Buckley RT, Dipaolo DP, Atkinson MA, Shepherd JR: Plasma creatine kinase responses of 18- to 30-yr-old African-American men to eccentric exercise. Med Sci Sports Exerc. 2000, 32 (2): 370-378. 10.1097/00005768-200002000-00017.CrossRefPubMed
34.
go back to reference Lavender AP, Nosaka K: Changes in fluctuation of isometric force following eccentric and concentric exercise of the elbow flexors. Eur J Appl Physiol. 2006, 96 (3): 235-240. 10.1007/s00421-005-0069-5.CrossRefPubMed Lavender AP, Nosaka K: Changes in fluctuation of isometric force following eccentric and concentric exercise of the elbow flexors. Eur J Appl Physiol. 2006, 96 (3): 235-240. 10.1007/s00421-005-0069-5.CrossRefPubMed
35.
go back to reference Chen TC, Hsieh SS: Effects of a 7-day eccentric training period on muscle damage and inflammation. Med Sci Sports Exerc. 2001, 33 (10): 1732-1738. 10.1097/00005768-200110000-00018.CrossRefPubMed Chen TC, Hsieh SS: Effects of a 7-day eccentric training period on muscle damage and inflammation. Med Sci Sports Exerc. 2001, 33 (10): 1732-1738. 10.1097/00005768-200110000-00018.CrossRefPubMed
36.
go back to reference Gissel H, Clausen T: Excitation-induced Ca(2+) influx in rat soleus and EDL muscle: mechanisms and effects on cellular integrity. Am J Physiol Regul Integr Comp Physiol. 2000, 279 (3): R917-924.PubMed Gissel H, Clausen T: Excitation-induced Ca(2+) influx in rat soleus and EDL muscle: mechanisms and effects on cellular integrity. Am J Physiol Regul Integr Comp Physiol. 2000, 279 (3): R917-924.PubMed
37.
go back to reference Fowler WM, Chowdhury SR, Pearson CM, Gardner G, Bratton R: Changes in serum enzyme levels after exercise in trained and untrained subjects. J Appl Physiol. 1962, 17: 943-946.PubMed Fowler WM, Chowdhury SR, Pearson CM, Gardner G, Bratton R: Changes in serum enzyme levels after exercise in trained and untrained subjects. J Appl Physiol. 1962, 17: 943-946.PubMed
Metadata
Title
Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals
Authors
Matthew B Cooke
Emma Rybalka
Andrew D Williams
Paul J Cribb
Alan Hayes
Publication date
01-12-2009
Publisher
BioMed Central
DOI
https://doi.org/10.1186/1550-2783-6-13

Other articles of this Issue 1/2009

Journal of the International Society of Sports Nutrition 1/2009 Go to the issue