Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2007

Open Access 01-12-2007 | Research article

Effects of creatine loading on electromyographic fatigue threshold during cycle ergometry in college-aged women

Authors: Abbie E Smith, Ashley A Walter, Trent J Herda, Eric D Ryan, Jordan R Moon, Joel T Cramer, Jeffrey R Stout

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2007

Login to get access

Abstract

The purpose of this study was to examine the effects of 5 days of Creatine (Cr) loading on the electromyographic fatigue threshold (EMGFT) in college-aged women. Fifteen healthy college-aged women (mean ± SD = 22.3 ± 1.7 yrs) volunteered to participate in this double-blind, placebo-controlled study and were randomly placed into either placebo (PL – 10 g of flavored dextrose powder; n = 8) or creatine (Cr – 5 g di-creatine citrate plus 10 g of flavored dextrose powder; n = 7; Creatine Edge, FSI Nutrition) loading groups. Each group ingested one packet 4 times per day (total of 20 g/day) for 5 days. Prior to and following supplementation, each subject performed a discontinuous incremental cycle ergometer test to determine their EMGFT value, using bipolar surface electrodes placed on the longitudinal axis of the right vastus lateralis. Subjects completed a total of four, 60 second work bouts (ranging from 100–350 W). The EMG amplitude was averaged over 10 second intervals and plotted over the 60 second work bout. The resulting slopes from each successive work bouts were used to calculate EMGFT. A two-way ANOVA (group [Cr vs. PL] × time [pre vs. post]) resulted in a significant (p = 0.031) interaction. Furthermore, a dependent samples t-test showed a 14.5% ± 3.5% increase in EMGFT from pre- to post-supplementation with Cr (p = 0.009), but no change for the PL treatment (- 2.2 ± 5.8%; p = 0.732). In addition, a significant increase (1.0 ± 0.34 kg; p = 0.049) in weight (kg) was observed in the Cr group but no change for PL (-0.2 kg ± 0.2 kg). These findings suggest that 5 days of Cr loading in women may be an effective strategy for delaying the onset of neuromuscular fatigue during cycle ergometry.
Appendix
Available only for authorised users
Literature
1.
go back to reference Moritani T, Muro M, Nagata A: Intramuscular and surface electromyogram changes during muscle fatigue. J Appl Physiol. 1986, 60 (4): 1179-1185.PubMed Moritani T, Muro M, Nagata A: Intramuscular and surface electromyogram changes during muscle fatigue. J Appl Physiol. 1986, 60 (4): 1179-1185.PubMed
2.
go back to reference Moritani T, Takaishi T, Matsumoto T: Determination of maximal power output at neuromuscular fatigue threshold. J Appl Physiol. 1993, 74 (4): 1729-1734.PubMed Moritani T, Takaishi T, Matsumoto T: Determination of maximal power output at neuromuscular fatigue threshold. J Appl Physiol. 1993, 74 (4): 1729-1734.PubMed
3.
go back to reference Kamen G, Caldwell GE: Physiology and interpretation of the electromyogram. J Clin Neurophysiol. 1996, 13 (5): 366-384. 10.1097/00004691-199609000-00002.PubMed Kamen G, Caldwell GE: Physiology and interpretation of the electromyogram. J Clin Neurophysiol. 1996, 13 (5): 366-384. 10.1097/00004691-199609000-00002.PubMed
4.
go back to reference Fitts RH, Holloszy JO: Lactate and contractile force in frog muscle during development of fatigue and recovery. The American journal of physiology. 1976, 231 (2): 430-433.PubMed Fitts RH, Holloszy JO: Lactate and contractile force in frog muscle during development of fatigue and recovery. The American journal of physiology. 1976, 231 (2): 430-433.PubMed
5.
go back to reference McClaren DP, Gibson H, Parry-Billings M, Edwards RHT: A review of metabolic and physiological factors in fatigue. Exerc Sport Sci Rev. 1989, 17: 29-68. McClaren DP, Gibson H, Parry-Billings M, Edwards RHT: A review of metabolic and physiological factors in fatigue. Exerc Sport Sci Rev. 1989, 17: 29-68.
6.
go back to reference Green HJ: Cation pumps in skeletal muscle: potential role in muscle fatigue. Acta physiologica Scandinavica. 1998, 162 (3): 201-213. 10.1046/j.1365-201X.1998.0300f.x.PubMed Green HJ: Cation pumps in skeletal muscle: potential role in muscle fatigue. Acta physiologica Scandinavica. 1998, 162 (3): 201-213. 10.1046/j.1365-201X.1998.0300f.x.PubMed
7.
go back to reference McKenna MJ: The roles of ionic processes in muscular fatigue during intense exercise. Sports medicine (Auckland, NZ. 1992, 13 (2): 134-145. McKenna MJ: The roles of ionic processes in muscular fatigue during intense exercise. Sports medicine (Auckland, NZ. 1992, 13 (2): 134-145.
8.
go back to reference Maestu J, Cicchella A, Purge P, Ruosi S, Jurimae J, Jurimae T: Electromyographic and neuromuscular fatigue thresholds as concepts of fatigue. Journal of strength and conditioning research / National Strength & Conditioning Association. 2006, 20 (4): 824-828. Maestu J, Cicchella A, Purge P, Ruosi S, Jurimae J, Jurimae T: Electromyographic and neuromuscular fatigue thresholds as concepts of fatigue. Journal of strength and conditioning research / National Strength & Conditioning Association. 2006, 20 (4): 824-828.
9.
go back to reference Matsumoto T, Ito K, Moritani T: The relationship between anaerobic threshold and electromyographic fatigue threshold in college women. European journal of applied physiology and occupational physiology. 1991, 63 (1): 1-5. 10.1007/BF00760792.PubMed Matsumoto T, Ito K, Moritani T: The relationship between anaerobic threshold and electromyographic fatigue threshold in college women. European journal of applied physiology and occupational physiology. 1991, 63 (1): 1-5. 10.1007/BF00760792.PubMed
10.
go back to reference Pavlat DJ, Housh TJ, Johnson GO, Schmidt RJ, Eckerson JM: An examination of the electromyographic fatigue threshold test. European journal of applied physiology and occupational physiology. 1993, 67 (4): 305-308. 10.1007/BF00357627.PubMed Pavlat DJ, Housh TJ, Johnson GO, Schmidt RJ, Eckerson JM: An examination of the electromyographic fatigue threshold test. European journal of applied physiology and occupational physiology. 1993, 67 (4): 305-308. 10.1007/BF00357627.PubMed
11.
go back to reference Stout J, Eckerson J, Ebersole K, Moore G, Perry S, Housh T, Bull A, Cramer J, Batheja A: Effect of creatine loading on neuromuscular fatigue threshold. J Appl Physiol. 2000, 88 (1): 109-112.PubMed Stout J, Eckerson J, Ebersole K, Moore G, Perry S, Housh T, Bull A, Cramer J, Batheja A: Effect of creatine loading on neuromuscular fatigue threshold. J Appl Physiol. 2000, 88 (1): 109-112.PubMed
12.
go back to reference Hug F, Laplaud D, Savin B, Grelot L: Occurrence of electromyographic and ventilatory thresholds in professional road cyclists. European journal of applied physiology. 2003, 90 (5-6): 643-646. 10.1007/s00421-003-0949-5.PubMed Hug F, Laplaud D, Savin B, Grelot L: Occurrence of electromyographic and ventilatory thresholds in professional road cyclists. European journal of applied physiology. 2003, 90 (5-6): 643-646. 10.1007/s00421-003-0949-5.PubMed
13.
go back to reference Lucia A, Sanchez O, Carvajal A, Chicharro JL: Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography. British journal of sports medicine. 1999, 33 (3): 178-185.PubMedCentralPubMed Lucia A, Sanchez O, Carvajal A, Chicharro JL: Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography. British journal of sports medicine. 1999, 33 (3): 178-185.PubMedCentralPubMed
14.
go back to reference deVries HA, Moritani T, Nagata A, Magnussen K: The relation between critical power and neuromuscular fatigue as estimated from electromyographic data. Ergonomics. 1982, 25 (9): 783-791. 10.1080/00140138208925034.PubMed deVries HA, Moritani T, Nagata A, Magnussen K: The relation between critical power and neuromuscular fatigue as estimated from electromyographic data. Ergonomics. 1982, 25 (9): 783-791. 10.1080/00140138208925034.PubMed
15.
go back to reference Harris RC, Soderlund K, Hultman E: Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond). 1992, 83 (3): 367-374. Harris RC, Soderlund K, Hultman E: Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond). 1992, 83 (3): 367-374.
16.
go back to reference Volek JS, Kraemer WJ: Creatine Supplementation: its effect on human muscular performance and body composition. J Strength Cond Res. 1996, 10 (3): 200-210. 10.1519/1533-4287(1996)010<0200:CSIEOH>2.3.CO;2. Volek JS, Kraemer WJ: Creatine Supplementation: its effect on human muscular performance and body composition. J Strength Cond Res. 1996, 10 (3): 200-210. 10.1519/1533-4287(1996)010<0200:CSIEOH>2.3.CO;2.
17.
go back to reference Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK: Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996, 80 (3): 876-884.PubMed Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK: Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996, 80 (3): 876-884.PubMed
18.
go back to reference Greenhaff PL, Bodin K, Soderlund K, Hultman E: Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. The American journal of physiology. 1994, 266 (5 Pt 1): E725-30.PubMed Greenhaff PL, Bodin K, Soderlund K, Hultman E: Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. The American journal of physiology. 1994, 266 (5 Pt 1): E725-30.PubMed
19.
go back to reference Aoki MS, Gomes RV, Raso V: Creatine supplementation attenuates the adverse effect of endurance exercise on subsequent resistance exercise performance. Med Sci Sports Exerc. 2004, 36 (5): S334- Aoki MS, Gomes RV, Raso V: Creatine supplementation attenuates the adverse effect of endurance exercise on subsequent resistance exercise performance. Med Sci Sports Exerc. 2004, 36 (5): S334-
20.
go back to reference Nelson AG, Day R, Glickman-Weiss EL, Hegsted M, Kokkonen J, Sampson B: Creatine supplementation alters the response to a graded cycle ergometer test. European journal of applied physiology. 2000, 83 (1): 89-94. 10.1007/s004210000244.PubMed Nelson AG, Day R, Glickman-Weiss EL, Hegsted M, Kokkonen J, Sampson B: Creatine supplementation alters the response to a graded cycle ergometer test. European journal of applied physiology. 2000, 83 (1): 89-94. 10.1007/s004210000244.PubMed
21.
go back to reference McKenna MJ, Morton J, Selig SE, Snow RJ: Creatine supplementation increases muscle total creatine but not maximal intermittent exercise performance. J Appl Physiol. 1999, 87 (6): 2244-2252.PubMed McKenna MJ, Morton J, Selig SE, Snow RJ: Creatine supplementation increases muscle total creatine but not maximal intermittent exercise performance. J Appl Physiol. 1999, 87 (6): 2244-2252.PubMed
22.
go back to reference Stout JR, Eckerson JM, Housh TJ, Ebersole KT: The effects of creatine supplementation on anaerobic working capacity. J Strength Cond Res. 1999, 13 (2): 135-138. 10.1519/1533-4287(1999)013<0135:TEOCSO>2.0.CO;2. Stout JR, Eckerson JM, Housh TJ, Ebersole KT: The effects of creatine supplementation on anaerobic working capacity. J Strength Cond Res. 1999, 13 (2): 135-138. 10.1519/1533-4287(1999)013<0135:TEOCSO>2.0.CO;2.
23.
go back to reference Housh TJ, deVries HA, Johnson GO, Housh DJ, Evans SA, Stout JR, Evetovich TK, Bradway RM: Electromyographic fatigue thresholds of the superficial muscles of the quadriceps femoris. European journal of applied physiology and occupational physiology. 1995, 71 (2-3): 131-136. 10.1007/BF00854969.PubMed Housh TJ, deVries HA, Johnson GO, Housh DJ, Evans SA, Stout JR, Evetovich TK, Bradway RM: Electromyographic fatigue thresholds of the superficial muscles of the quadriceps femoris. European journal of applied physiology and occupational physiology. 1995, 71 (2-3): 131-136. 10.1007/BF00854969.PubMed
24.
go back to reference Cooke WH, Grandjean PW, Barnes WS: Effect of oral creatine supplementation on power output and fatigue during bicycle ergometry. J Appl Physiol. 1995, 78 (2): 670-673.PubMed Cooke WH, Grandjean PW, Barnes WS: Effect of oral creatine supplementation on power output and fatigue during bicycle ergometry. J Appl Physiol. 1995, 78 (2): 670-673.PubMed
25.
go back to reference Jacobs I, Bleue S, Goodman J: Creatine ingestion increases anaerobic capacity and maximum accumulated oxygen deficit. Canadian journal of applied physiology = Revue canadienne de physiologie appliquee. 1997, 22 (3): 231-243.PubMed Jacobs I, Bleue S, Goodman J: Creatine ingestion increases anaerobic capacity and maximum accumulated oxygen deficit. Canadian journal of applied physiology = Revue canadienne de physiologie appliquee. 1997, 22 (3): 231-243.PubMed
26.
go back to reference Birch R, Noble D, Greenhaff PL: The influence of dietary creatine supplementation on performance during repeated bouts of maximal isokinetic cycling in man. European journal of applied physiology and occupational physiology. 1994, 69 (3): 268-276. 10.1007/BF01094800.PubMed Birch R, Noble D, Greenhaff PL: The influence of dietary creatine supplementation on performance during repeated bouts of maximal isokinetic cycling in man. European journal of applied physiology and occupational physiology. 1994, 69 (3): 268-276. 10.1007/BF01094800.PubMed
27.
go back to reference Tarnopolsky MA, MacLennan DP: Creatine monohydrate supplementation enhances high-intensity exercise performance in males and females. International journal of sport nutrition and exercise metabolism. 2000, 10 (4): 452-463.PubMed Tarnopolsky MA, MacLennan DP: Creatine monohydrate supplementation enhances high-intensity exercise performance in males and females. International journal of sport nutrition and exercise metabolism. 2000, 10 (4): 452-463.PubMed
28.
go back to reference Vandenberghe K, Goris M, Van Hecke P, Van Leemputte M, Vangerven L, Hespel P: Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol. 1997, 83 (6): 2055-2063.PubMed Vandenberghe K, Goris M, Van Hecke P, Van Leemputte M, Vangerven L, Hespel P: Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol. 1997, 83 (6): 2055-2063.PubMed
29.
go back to reference Volek JS, Kraemer WJ, Bush JA, Boetes M, Incledon T, Clark KL, Lynch JM: Creatine supplementation enhances muscular performance during high-intensity resistance exercise. Journal of the American Dietetic Association. 1997, 97 (7): 765-770. 10.1016/S0002-8223(97)00189-2.PubMed Volek JS, Kraemer WJ, Bush JA, Boetes M, Incledon T, Clark KL, Lynch JM: Creatine supplementation enhances muscular performance during high-intensity resistance exercise. Journal of the American Dietetic Association. 1997, 97 (7): 765-770. 10.1016/S0002-8223(97)00189-2.PubMed
30.
go back to reference Earnest CP, Almada AL, Mitchell TL: Effects of creatine monohydrate ingestion on intermediate duration anaerobic treadmill running to exhaustion. J Strength Cond Res. 1997, 11 (4): 234-238. 10.1519/1533-4287(1997)011<0234:EOCMIO>2.3.CO;2. Earnest CP, Almada AL, Mitchell TL: Effects of creatine monohydrate ingestion on intermediate duration anaerobic treadmill running to exhaustion. J Strength Cond Res. 1997, 11 (4): 234-238. 10.1519/1533-4287(1997)011<0234:EOCMIO>2.3.CO;2.
31.
go back to reference Balsom PD, Ekblom B, Soderlund K, Sjodin B, Hultman E: Creatine supplementation and dynamic high-intensity exercise. Scand J Med Sci Sports. 1993, 149 (3): 143-149. Balsom PD, Ekblom B, Soderlund K, Sjodin B, Hultman E: Creatine supplementation and dynamic high-intensity exercise. Scand J Med Sci Sports. 1993, 149 (3): 143-149.
32.
go back to reference Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff PL: Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. The American journal of physiology. 1996, 271 (1 Pt 1): E31-7.PubMed Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff PL: Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. The American journal of physiology. 1996, 271 (1 Pt 1): E31-7.PubMed
33.
go back to reference Prevost MC, Nelson AG, Morris GS: Creatine supplementation enhances intermittent work performance. Research quarterly for exercise and sport. 1997, 68 (3): 233-240.PubMed Prevost MC, Nelson AG, Morris GS: Creatine supplementation enhances intermittent work performance. Research quarterly for exercise and sport. 1997, 68 (3): 233-240.PubMed
34.
go back to reference Eckerson JM, Stout JS, Moore GA, Stone NJ, Nishimura K, Tamura K: Effect of two and five days of creatine loading in anerobic working capacity in women. J Strength Cond Res. 2004, 18 (1): 168-173. 10.1519/1533-4287(2004)018<0168:EOTAFD>2.0.CO;2.PubMed Eckerson JM, Stout JS, Moore GA, Stone NJ, Nishimura K, Tamura K: Effect of two and five days of creatine loading in anerobic working capacity in women. J Strength Cond Res. 2004, 18 (1): 168-173. 10.1519/1533-4287(2004)018<0168:EOTAFD>2.0.CO;2.PubMed
35.
go back to reference Hultman E, Soderlund K, Timmons JA, Cederblad G, Greenhaff PL: Muscle creatine loading in men. J Appl Physiol. 1996, 81 (1): 232-237.PubMed Hultman E, Soderlund K, Timmons JA, Cederblad G, Greenhaff PL: Muscle creatine loading in men. J Appl Physiol. 1996, 81 (1): 232-237.PubMed
36.
go back to reference Taylor AD, Bronks R, Bryant AL: The relationship between electromyography and work intensity revisited: a brief review with references to lacticacidosis and hyperammonia. Electromyography and clinical neurophysiology. 1997, 37 (7): 387-398.PubMed Taylor AD, Bronks R, Bryant AL: The relationship between electromyography and work intensity revisited: a brief review with references to lacticacidosis and hyperammonia. Electromyography and clinical neurophysiology. 1997, 37 (7): 387-398.PubMed
37.
go back to reference Wasserman K, Whipp BJ, Koyl SN, Beaver WL: Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973, 35 (2): 236-243.PubMed Wasserman K, Whipp BJ, Koyl SN, Beaver WL: Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973, 35 (2): 236-243.PubMed
38.
go back to reference Wasserman K, Koike A: Is the anaerobic threshold truly anaerobic?. Chest. 1992, 101 (5 Suppl): 211S-218S. 10.1378/chest.101.5.211S.PubMed Wasserman K, Koike A: Is the anaerobic threshold truly anaerobic?. Chest. 1992, 101 (5 Suppl): 211S-218S. 10.1378/chest.101.5.211S.PubMed
39.
go back to reference Sirotic AC, Coutts AJ: Physiological and performance test correlates of prolonged, high-intensity, intermittent running performance in moderately trained women team sport athletes. Journal of strength and conditioning research / National Strength & Conditioning Association. 2007, 21 (1): 138-144. Sirotic AC, Coutts AJ: Physiological and performance test correlates of prolonged, high-intensity, intermittent running performance in moderately trained women team sport athletes. Journal of strength and conditioning research / National Strength & Conditioning Association. 2007, 21 (1): 138-144.
40.
go back to reference Brenner M, Rankin JW, Sebolt D: The effect of creatine supplementation during resistance training in women. J Strength Cond Res. 2000, 14 (2): 207-213. 10.1519/1533-4287(2000)014<0207:TEOCSD>2.0.CO;2. Brenner M, Rankin JW, Sebolt D: The effect of creatine supplementation during resistance training in women. J Strength Cond Res. 2000, 14 (2): 207-213. 10.1519/1533-4287(2000)014<0207:TEOCSD>2.0.CO;2.
41.
go back to reference Ledford A, Branch JD: Creatine supplementation does not increase peak power production and work capacity during repetitive Wingate testing in women. J Strength Cond Res. 1999, 13 (4): 394-399. 10.1519/1533-4287(1999)013<0394:CSDNIP>2.0.CO;2. Ledford A, Branch JD: Creatine supplementation does not increase peak power production and work capacity during repetitive Wingate testing in women. J Strength Cond Res. 1999, 13 (4): 394-399. 10.1519/1533-4287(1999)013<0394:CSDNIP>2.0.CO;2.
42.
go back to reference Bessman SP, Geiger PJ: Transport of energy in muscle: the phosphorylcreatine shuttle. Science (New York, NY. 1981, 211 (4481): 448-452. Bessman SP, Geiger PJ: Transport of energy in muscle: the phosphorylcreatine shuttle. Science (New York, NY. 1981, 211 (4481): 448-452.
43.
go back to reference Nelson A, Day R, Glickman-Weiss E, Hegstad M, Sampson B: Creatine supplementation raises anaerobic threshold. FASEB J. 1997, 11 (A): 589- Nelson A, Day R, Glickman-Weiss E, Hegstad M, Sampson B: Creatine supplementation raises anaerobic threshold. FASEB J. 1997, 11 (A): 589-
Metadata
Title
Effects of creatine loading on electromyographic fatigue threshold during cycle ergometry in college-aged women
Authors
Abbie E Smith
Ashley A Walter
Trent J Herda
Eric D Ryan
Jordan R Moon
Joel T Cramer
Jeffrey R Stout
Publication date
01-12-2007
Publisher
BioMed Central
DOI
https://doi.org/10.1186/1550-2783-4-20

Other articles of this Issue 1/2007

Journal of the International Society of Sports Nutrition 1/2007 Go to the issue