Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2013

Open Access 01-12-2013 | Research

Atlas-based analysis of cardiac shape and function: correction of regional shape bias due to imaging protocol for population studies

Authors: Pau Medrano-Gracia, Brett R Cowan, David A Bluemke, J Paul Finn, Alan H Kadish, Daniel C Lee, Joao AC Lima, Avan Suinesiaputra, Alistair A Young

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2013

Login to get access

Abstract

Background

Cardiovascular imaging studies generate a wealth of data which is typically used only for individual study endpoints. By pooling data from multiple sources, quantitative comparisons can be made of regional wall motion abnormalities between different cohorts, enabling reuse of valuable data. Atlas-based analysis provides precise quantification of shape and motion differences between disease groups and normal subjects. However, subtle shape differences may arise due to differences in imaging protocol between studies.

Methods

A mathematical model describing regional wall motion and shape was used to establish a coordinate system registered to the cardiac anatomy. The atlas was applied to data contributed to the Cardiac Atlas Project from two independent studies which used different imaging protocols: steady state free precession (SSFP) and gradient recalled echo (GRE) cardiovascular magnetic resonance (CMR). Shape bias due to imaging protocol was corrected using an atlas-based transformation which was generated from a set of 46 volunteers who were imaged with both protocols.

Results

Shape bias between GRE and SSFP was regionally variable, and was effectively removed using the atlas-based transformation. Global mass and volume bias was also corrected by this method. Regional shape differences between cohorts were more statistically significant after removing regional artifacts due to imaging protocol bias.

Conclusions

Bias arising from imaging protocol can be both global and regional in nature, and is effectively corrected using an atlas-based transformation, enabling direct comparison of regional wall motion abnormalities between cohorts acquired in separate studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pitcher A, Ashby D, Elliott P, Petersen SE: Cardiovascular MRI in clinical trials: expanded applications through novel surrogate endpoints. Heart. 2011, 97: 1286-92. 10.1136/hrt.2011.225904.PubMedCentralCrossRefPubMed Pitcher A, Ashby D, Elliott P, Petersen SE: Cardiovascular MRI in clinical trials: expanded applications through novel surrogate endpoints. Heart. 2011, 97: 1286-92. 10.1136/hrt.2011.225904.PubMedCentralCrossRefPubMed
2.
go back to reference Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P: Multi-Ethnic Study of Atherosclerosis: objectives and design. Am J Epidemiol. 2002, 156: 871-10.1093/aje/kwf113.CrossRefPubMed Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P: Multi-Ethnic Study of Atherosclerosis: objectives and design. Am J Epidemiol. 2002, 156: 871-10.1093/aje/kwf113.CrossRefPubMed
3.
go back to reference Petersen SE, Matthews PM, Bamberg F, Bluemke DA, Francis JM, Friedrich MG, Leeson P, Nagel E, Plein S, Rademakers FE: Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank - rationale, challenges and approaches. J Cardiovasc Magn Reson. 2013, 15: 46-10.1186/1532-429X-15-46.PubMedCentralCrossRefPubMed Petersen SE, Matthews PM, Bamberg F, Bluemke DA, Francis JM, Friedrich MG, Leeson P, Nagel E, Plein S, Rademakers FE: Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank - rationale, challenges and approaches. J Cardiovasc Magn Reson. 2013, 15: 46-10.1186/1532-429X-15-46.PubMedCentralCrossRefPubMed
4.
go back to reference Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, Hsu JT, Miller MI, Van Zijl P, Albert M: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. Neuroimage. 2009, 46: 486-99. 10.1016/j.neuroimage.2009.01.002.PubMedCentralCrossRefPubMed Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, Hsu JT, Miller MI, Van Zijl P, Albert M: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. Neuroimage. 2009, 46: 486-99. 10.1016/j.neuroimage.2009.01.002.PubMedCentralCrossRefPubMed
5.
go back to reference Thompson PM, Mega MS, Woods RP, Zoumalan CI, Lindshield CJ, Blanton RE, Moussai J, Holmes CJ, Cummings JL, Toga AW: Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cereb Cortex. 2001, 11: 1-16. 10.1093/cercor/11.1.1.CrossRefPubMed Thompson PM, Mega MS, Woods RP, Zoumalan CI, Lindshield CJ, Blanton RE, Moussai J, Holmes CJ, Cummings JL, Toga AW: Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cereb Cortex. 2001, 11: 1-16. 10.1093/cercor/11.1.1.CrossRefPubMed
6.
go back to reference Young AA, Frangi AF: Computational cardiac atlases: from patient to population and back. Exp Physiol. 2009, 94: 578-96. 10.1113/expphysiol.2008.044081.CrossRefPubMed Young AA, Frangi AF: Computational cardiac atlases: from patient to population and back. Exp Physiol. 2009, 94: 578-96. 10.1113/expphysiol.2008.044081.CrossRefPubMed
7.
go back to reference Lewandowski AJ, Augustine D, Lamata P, Davis EF, Lazdam M, Francis J, McCormick K, Wilkinson AR, Singhal A, Lucas A: Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013, 127: 197-206. 10.1161/CIRCULATIONAHA.112.126920.CrossRefPubMed Lewandowski AJ, Augustine D, Lamata P, Davis EF, Lazdam M, Francis J, McCormick K, Wilkinson AR, Singhal A, Lucas A: Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013, 127: 197-206. 10.1161/CIRCULATIONAHA.112.126920.CrossRefPubMed
8.
go back to reference Fonseca CG, Backhaus M, Bluemke DA, Britten R, Chung JD, Cowan BR, Dinov I, Finn JP, Hunter PJ, Kadish AH: The cardiac Atlas project – an imaging database for computational modeling and statistical Atlases of the heart. Bioinformatics. 2011, 27: 2288-95. 10.1093/bioinformatics/btr360.PubMedCentralCrossRefPubMed Fonseca CG, Backhaus M, Bluemke DA, Britten R, Chung JD, Cowan BR, Dinov I, Finn JP, Hunter PJ, Kadish AH: The cardiac Atlas project – an imaging database for computational modeling and statistical Atlases of the heart. Bioinformatics. 2011, 27: 2288-95. 10.1093/bioinformatics/btr360.PubMedCentralCrossRefPubMed
9.
go back to reference Kadish AH, Bello D, Finn JP, Bonow RO, Schaechter A, Subacius H, Albert C, Daubert JP, Fonseca CG, Goldberger JJ: Rationale and design for the defibrillators to reduce risk by magnetic resonance imaging evaluation (DETERMINE) trial. J Cardiovasc Electrophysiol. 2009, 20: 982-87. 10.1111/j.1540-8167.2009.01503.x.PubMedCentralCrossRefPubMed Kadish AH, Bello D, Finn JP, Bonow RO, Schaechter A, Subacius H, Albert C, Daubert JP, Fonseca CG, Goldberger JJ: Rationale and design for the defibrillators to reduce risk by magnetic resonance imaging evaluation (DETERMINE) trial. J Cardiovasc Electrophysiol. 2009, 20: 982-87. 10.1111/j.1540-8167.2009.01503.x.PubMedCentralCrossRefPubMed
10.
go back to reference Malayeri AA, Johnson WC, Macedo R, Bathon J, Lima JAC, Bluemke DA: Cardiac cine MRI: quantification of the relationship between fast gradient echo and steady-state free precession for determination of myocardial mass and volumes. J Magn Reson Imaging. 2008, 28: 60-10.1002/jmri.21405.PubMedCentralCrossRefPubMed Malayeri AA, Johnson WC, Macedo R, Bathon J, Lima JAC, Bluemke DA: Cardiac cine MRI: quantification of the relationship between fast gradient echo and steady-state free precession for determination of myocardial mass and volumes. J Magn Reson Imaging. 2008, 28: 60-10.1002/jmri.21405.PubMedCentralCrossRefPubMed
11.
go back to reference Young AA, Cowan BR, Thrupp SF, Hedley WJ, Dell’Italia LJ: Left ventricular mass and volume: fast calculation with guide-point modeling on MR images. Radiology. 2000, 216: 597-CrossRefPubMed Young AA, Cowan BR, Thrupp SF, Hedley WJ, Dell’Italia LJ: Left ventricular mass and volume: fast calculation with guide-point modeling on MR images. Radiology. 2000, 216: 597-CrossRefPubMed
12.
go back to reference Li B, Liu Y, Occleshaw CJ, Cowan BR, Young AA: In-line automated tracking for ventricular function with magnetic resonance imaging. JACC Cardiovasc Imaging. 2010, 3: 860-66. 10.1016/j.jcmg.2010.04.013.CrossRefPubMed Li B, Liu Y, Occleshaw CJ, Cowan BR, Young AA: In-line automated tracking for ventricular function with magnetic resonance imaging. JACC Cardiovasc Imaging. 2010, 3: 860-66. 10.1016/j.jcmg.2010.04.013.CrossRefPubMed
13.
go back to reference Young AA, Crossman DJ, Ruygrok PN, Cannell MB: Mapping system for coregistration of cardiac MRI and ex vivo tissue sampling. J Magn Reson Imaging. 2011, 34: 1065-71. 10.1002/jmri.22714.CrossRefPubMed Young AA, Crossman DJ, Ruygrok PN, Cannell MB: Mapping system for coregistration of cardiac MRI and ex vivo tissue sampling. J Magn Reson Imaging. 2011, 34: 1065-71. 10.1002/jmri.22714.CrossRefPubMed
14.
go back to reference Anderson T, Darling DA: A test of goodness of fit. J Am Stat Assoc. 1954, 49: 765-69. 10.1080/01621459.1954.10501232.CrossRef Anderson T, Darling DA: A test of goodness of fit. J Am Stat Assoc. 1954, 49: 765-69. 10.1080/01621459.1954.10501232.CrossRef
15.
go back to reference Aldrich J: RA Fisher and the making of maximum likelihood 1912–1922. Statistical Science. 1997, 12: 162-76.CrossRef Aldrich J: RA Fisher and the making of maximum likelihood 1912–1922. Statistical Science. 1997, 12: 162-76.CrossRef
16.
go back to reference Ortiz-Pérez JT, Rodríguez J, Meyers SN, Lee DC, Davidson C, Wu E: Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc Imaging. 2008, 1: 282-93. 10.1016/j.jcmg.2008.01.014.CrossRefPubMed Ortiz-Pérez JT, Rodríguez J, Meyers SN, Lee DC, Davidson C, Wu E: Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc Imaging. 2008, 1: 282-93. 10.1016/j.jcmg.2008.01.014.CrossRefPubMed
17.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002, 105: 539-42. 10.1161/hc0402.102975.CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002, 105: 539-42. 10.1161/hc0402.102975.CrossRefPubMed
18.
go back to reference Dryden I, Mardia K: Statistical analysis of shape. 1998, Chichester: Wiley Dryden I, Mardia K: Statistical analysis of shape. 1998, Chichester: Wiley
19.
go back to reference Miller M, Banerjee A, Christensen G, Joshi S, Khaneja N, Grenander U, Matejic L: Statistical methods in computational anatomy. Stat Methods Med Res. 1997, 6: 267-99. 10.1191/096228097673360480.CrossRefPubMed Miller M, Banerjee A, Christensen G, Joshi S, Khaneja N, Grenander U, Matejic L: Statistical methods in computational anatomy. Stat Methods Med Res. 1997, 6: 267-99. 10.1191/096228097673360480.CrossRefPubMed
20.
go back to reference Joshi S, Davis B, Jomier M, Gerig G: Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage. 2004, 23: S151-60.CrossRefPubMed Joshi S, Davis B, Jomier M, Gerig G: Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage. 2004, 23: S151-60.CrossRefPubMed
21.
go back to reference Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL: Unbiased average age-appropriate atlases for pediatric studies. Neuroimage. 2011, 54: 313-27. 10.1016/j.neuroimage.2010.07.033.PubMedCentralCrossRefPubMed Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL: Unbiased average age-appropriate atlases for pediatric studies. Neuroimage. 2011, 54: 313-27. 10.1016/j.neuroimage.2010.07.033.PubMedCentralCrossRefPubMed
22.
go back to reference Liao S, Jia H, Wu G, Shen D: A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences. Neuroimage. 2012, 59: 1275-89.PubMedCentralCrossRefPubMed Liao S, Jia H, Wu G, Shen D: A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences. Neuroimage. 2012, 59: 1275-89.PubMedCentralCrossRefPubMed
23.
go back to reference Tobon-Gomez C, Sukno FM, Bijnens BH, Huguet M, Frangi AF: Realistic simulation of cardiac magnetic resonance studies modeling anatomical variability, trabeculae, and papillary muscles. Magn Reson Med. 2011, 65: 280-88. 10.1002/mrm.22621.CrossRefPubMed Tobon-Gomez C, Sukno FM, Bijnens BH, Huguet M, Frangi AF: Realistic simulation of cardiac magnetic resonance studies modeling anatomical variability, trabeculae, and papillary muscles. Magn Reson Med. 2011, 65: 280-88. 10.1002/mrm.22621.CrossRefPubMed
Metadata
Title
Atlas-based analysis of cardiac shape and function: correction of regional shape bias due to imaging protocol for population studies
Authors
Pau Medrano-Gracia
Brett R Cowan
David A Bluemke
J Paul Finn
Alan H Kadish
Daniel C Lee
Joao AC Lima
Avan Suinesiaputra
Alistair A Young
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2013
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/1532-429X-15-80

Other articles of this Issue 1/2013

Journal of Cardiovascular Magnetic Resonance 1/2013 Go to the issue