Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2010

Open Access 01-12-2010 | Research

Assessment of mitral bioprostheses using cardiovascular magnetic resonance

Authors: Florian von Knobelsdorff-Brenkenhoff, André Rudolph, Ralf Wassmuth, Jeanette Schulz-Menger

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2010

Login to get access

Abstract

Background

The orifice area of mitral bioprostheses provides important information regarding their hemodynamic performance. It is usually calculated by transthoracic echocardiography (TTE), however, accurate and reproducible determination may be challenging. Cardiovascular magnetic resonance (CMR) has been proven as an accurate alternative for assessing aortic bioprostheses. However, whether CMR can be similarly applied for bioprostheses in the mitral position, particularly in the presence of frequently coincident arrhythmias, is unclear. The aim of the study is to test the feasibility of CMR to evaluate the orifice area of mitral bioprostheses.

Methods

CMR planimetry was performed in 18 consecutive patients with mitral bioprostheses (n = 13 Hancock®, n = 4 Labcore®, n = 1 Perimount®; mean time since implantation 4.5 ± 3.9 years) in an imaging plane perpendicular to the transprosthetic flow using steady-state free-precession cine imaging under breath-hold conditions on a 1.5T MR system. CMR results were compared with pressure half-time derived orifice areas obtained by TTE.

Results

Six subjects were in sinus rhythm, 11 in atrial fibrillation, and 1 exhibited frequent ventricular extrasystoles. CMR image quality was rated as good in 10, moderate in 6, and significantly impaired in 2 subjects. In one prosthetic type (Perimount®), strong stent artifacts occurred. Orifice areas by CMR (mean 2.1 ± 0.3 cm2) and TTE (mean 2.1 ± 0.3 cm2) correlated significantly (r = 0.94; p < 0.001). Bland-Altman analysis showed a 95% confidence interval from -0.16 to 0.28 cm2 (mean difference 0.06 ± 0.11 cm2; range -0.1 to 0.3 cm2). Intra- and inter-observer variabilities of CMR planimetry were 4.5 ± 2.9% and 7.9 ± 5.2%.

Conclusions

The assessment of mitral bioprostheses using CMR is feasible even in those with arrhythmias, providing orifice areas with close agreement to echocardiography and low observer dependency. Larger samples with a greater variety of prosthetic types and more cases of prosthetic dysfunction are required to confirm these preliminary results.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zoghbi WA, Chambers JB, Dumesnil JG, Foster E, Gottdiener JS, Grayburn PA, Khandheria BK, Levine RA, Marx GR, Miller FA, Nakatani S, Quiñones MA, Rakowski H, Rodriguez LL, Swaminathan M, Waggoner AD, Weissman NJ, Zabalgoitia M, American Society of Echocardiography's Guidelines and Standards Committee; Task Force on Prosthetic Valves; American College of Cardiology Cardiovascular Imaging Committee; Cardiac Imaging Committee of the American Heart Association; European Association of Echocardiography; European Society of Cardiology; Japanese Society of Echocardiography; Canadian Society of Echocardiography; American College of Cardiology Foundation; American Heart Association; European Association of Echocardiography; European Society of Cardiology; Japanese Society of Echocardiography; Canadian Society of Echocardiography : Recommendations for evaluation of prosthetic valves with echocardiography and doppler ultrasound: a report From the American Society of Echocardiography's Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2009, 22: 975-1014. 10.1016/j.echo.2009.07.013. quiz 1082-1014CrossRefPubMed Zoghbi WA, Chambers JB, Dumesnil JG, Foster E, Gottdiener JS, Grayburn PA, Khandheria BK, Levine RA, Marx GR, Miller FA, Nakatani S, Quiñones MA, Rakowski H, Rodriguez LL, Swaminathan M, Waggoner AD, Weissman NJ, Zabalgoitia M, American Society of Echocardiography's Guidelines and Standards Committee; Task Force on Prosthetic Valves; American College of Cardiology Cardiovascular Imaging Committee; Cardiac Imaging Committee of the American Heart Association; European Association of Echocardiography; European Society of Cardiology; Japanese Society of Echocardiography; Canadian Society of Echocardiography; American College of Cardiology Foundation; American Heart Association; European Association of Echocardiography; European Society of Cardiology; Japanese Society of Echocardiography; Canadian Society of Echocardiography : Recommendations for evaluation of prosthetic valves with echocardiography and doppler ultrasound: a report From the American Society of Echocardiography's Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2009, 22: 975-1014. 10.1016/j.echo.2009.07.013. quiz 1082-1014CrossRefPubMed
2.
go back to reference Pflederer T, Flachskampf FA: Echocardiographic follow-up after heart valve replacement. Heart (British Cardiac Society). 96: 75-85. Pflederer T, Flachskampf FA: Echocardiographic follow-up after heart valve replacement. Heart (British Cardiac Society). 96: 75-85.
3.
go back to reference von Knobelsdorff-Brenkenhoff F, Rudolph A, Wassmuth R, Bohl S, Buschmann EE, Abdel-Aty H, Dietz R, Schulz-Menger J: Feasibility of cardiovascular magnetic resonance to assess the orifice area of aortic bioprostheses. Circ Cardiovasc Imaging. 2009, 2: 397-404. 10.1161/CIRCIMAGING.108.840967. 392 p following 404CrossRefPubMed von Knobelsdorff-Brenkenhoff F, Rudolph A, Wassmuth R, Bohl S, Buschmann EE, Abdel-Aty H, Dietz R, Schulz-Menger J: Feasibility of cardiovascular magnetic resonance to assess the orifice area of aortic bioprostheses. Circ Cardiovasc Imaging. 2009, 2: 397-404. 10.1161/CIRCIMAGING.108.840967. 392 p following 404CrossRefPubMed
4.
go back to reference Djavidani B, Debl K, Lenhart M, Seitz J, Paetzel C, Schmid FX, Nitz WR, Feuerbach S, Riegger G, Luchner A: Planimetry of mitral valve stenosis by magnetic resonance imaging. Journal of the American College of Cardiology. 2005, 45: 2048-2053. 10.1016/j.jacc.2005.03.036.CrossRefPubMed Djavidani B, Debl K, Lenhart M, Seitz J, Paetzel C, Schmid FX, Nitz WR, Feuerbach S, Riegger G, Luchner A: Planimetry of mitral valve stenosis by magnetic resonance imaging. Journal of the American College of Cardiology. 2005, 45: 2048-2053. 10.1016/j.jacc.2005.03.036.CrossRefPubMed
5.
go back to reference Lin SJ, Brown PA, Watkins MP, Williams TA, Lehr KA, Liu W, Lanza GM, Wickline SA, Caruthers SD: Quantification of stenotic mitral valve area with magnetic resonance imaging and comparison with Doppler ultrasound. Journal of the American College of Cardiology. 2004, 44: 133-137. 10.1016/j.jacc.2004.03.038.CrossRefPubMed Lin SJ, Brown PA, Watkins MP, Williams TA, Lehr KA, Liu W, Lanza GM, Wickline SA, Caruthers SD: Quantification of stenotic mitral valve area with magnetic resonance imaging and comparison with Doppler ultrasound. Journal of the American College of Cardiology. 2004, 44: 133-137. 10.1016/j.jacc.2004.03.038.CrossRefPubMed
6.
go back to reference Dill T: Contraindications to magnetic resonance imaging: non-invasive imaging. Heart (British Cardiac Society). 2008, 94: 943-948.CrossRef Dill T: Contraindications to magnetic resonance imaging: non-invasive imaging. Heart (British Cardiac Society). 2008, 94: 943-948.CrossRef
7.
go back to reference Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, Iung B, Otto CM, Pellikka PA, Quinones M: Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 2009, 22: 1-23. 10.1016/j.echo.2008.11.029. quiz 101-102CrossRefPubMed Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, Iung B, Otto CM, Pellikka PA, Quinones M: Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 2009, 22: 1-23. 10.1016/j.echo.2008.11.029. quiz 101-102CrossRefPubMed
8.
go back to reference Hatle L, Angelsen B, Tromsdal A: Noninvasive assessment of atrioventricular pressure half-time by Doppler ultrasound. Circulation. 1979, 60: 1096-1104.CrossRefPubMed Hatle L, Angelsen B, Tromsdal A: Noninvasive assessment of atrioventricular pressure half-time by Doppler ultrasound. Circulation. 1979, 60: 1096-1104.CrossRefPubMed
9.
go back to reference Faletra F, Pezzano A, Fusco R, Mantero A, Corno R, Crivellaro W, De Chiara F, Vitali E, Gordini V, Magnani P, Pezzano A: Measurement of mitral valve area in mitral stenosis: four echocardiographic methods compared with direct measurement of anatomic orifices. Journal of the American College of Cardiology. 1996, 28: 1190-1197. 10.1016/S0735-1097(96)00326-9.CrossRefPubMed Faletra F, Pezzano A, Fusco R, Mantero A, Corno R, Crivellaro W, De Chiara F, Vitali E, Gordini V, Magnani P, Pezzano A: Measurement of mitral valve area in mitral stenosis: four echocardiographic methods compared with direct measurement of anatomic orifices. Journal of the American College of Cardiology. 1996, 28: 1190-1197. 10.1016/S0735-1097(96)00326-9.CrossRefPubMed
10.
go back to reference Bonow RO, Carabello BA, Chatterjee K, de Leon AC, Faxon DP, Freed MD, Gaasch WH, Lytle BW, Nishimura RA, O'Gara PT, O'Rourke RA, Otto CM, Shah PM, Shanewise JS, American College of Cardiology/American Heart Association Task Force on Practice Guidelines: 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Journal of the American College of Cardiology. 2008, 52: e1-142. 10.1016/j.jacc.2008.05.007.CrossRefPubMed Bonow RO, Carabello BA, Chatterjee K, de Leon AC, Faxon DP, Freed MD, Gaasch WH, Lytle BW, Nishimura RA, O'Gara PT, O'Rourke RA, Otto CM, Shah PM, Shanewise JS, American College of Cardiology/American Heart Association Task Force on Practice Guidelines: 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Journal of the American College of Cardiology. 2008, 52: e1-142. 10.1016/j.jacc.2008.05.007.CrossRefPubMed
11.
go back to reference Fuster V, Rydén LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, Halperin JL, Le Heuzey JY, Kay GN, Lowe JE, Olsson SB, Prystowsky EN, Tamargo JL, Wann S, Smith SC, Jacobs AK, Adams CD, Anderson JL, Antman EM, Halperin JL, Hunt SA, Nishimura R, Ornato JP, Page RL, Riegel B, Priori SG, Blanc JJ, Budaj A, Camm AJ, Dean V, Deckers JW, Despres C, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Tamargo JL, Zamorano JL, American College of Cardiology/American Heart Association Task Force on Practice Guidelines; European Society of Cardiology Committee for Practice Guidelines; European Heart Rhythm Association; Heart Rhythm Society: ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation. 2006, 114: e257-354. 10.1161/CIRCULATIONAHA.106.177292.CrossRefPubMed Fuster V, Rydén LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, Halperin JL, Le Heuzey JY, Kay GN, Lowe JE, Olsson SB, Prystowsky EN, Tamargo JL, Wann S, Smith SC, Jacobs AK, Adams CD, Anderson JL, Antman EM, Halperin JL, Hunt SA, Nishimura R, Ornato JP, Page RL, Riegel B, Priori SG, Blanc JJ, Budaj A, Camm AJ, Dean V, Deckers JW, Despres C, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Tamargo JL, Zamorano JL, American College of Cardiology/American Heart Association Task Force on Practice Guidelines; European Society of Cardiology Committee for Practice Guidelines; European Heart Rhythm Association; Heart Rhythm Society: ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation. 2006, 114: e257-354. 10.1161/CIRCULATIONAHA.106.177292.CrossRefPubMed
12.
go back to reference Friedrich M, Schulz-Menger J, Dietz R: Magnetic resonance to assess the aortic valve area in aortic stenosis. Journal of the American College of Cardiology. 2004, 43: 2148-10.1016/j.jacc.2004.03.010. author reply 2148-2149CrossRefPubMed Friedrich M, Schulz-Menger J, Dietz R: Magnetic resonance to assess the aortic valve area in aortic stenosis. Journal of the American College of Cardiology. 2004, 43: 2148-10.1016/j.jacc.2004.03.010. author reply 2148-2149CrossRefPubMed
13.
go back to reference Hildebrand LB, Buonocore MH: Fully refocused gradient recalled echo (FRGRE): factors affecting flow and motion sensitivity in cardiac MRI. J Cardiovasc Magn Reson. 2002, 4: 211-222. 10.1081/JCMR-120003947.CrossRefPubMed Hildebrand LB, Buonocore MH: Fully refocused gradient recalled echo (FRGRE): factors affecting flow and motion sensitivity in cardiac MRI. J Cardiovasc Magn Reson. 2002, 4: 211-222. 10.1081/JCMR-120003947.CrossRefPubMed
14.
go back to reference Schlosser T, Malyar N, Jochims M, Breuckmann F, Hunold P, Bruder O, Erbel R, Barkhausen J: Quantification of aortic valve stenosis in MRI-comparison of steady-state free precession and fast low-angle shot sequences. European radiology. 2007, 17: 1284-1290. 10.1007/s00330-006-0437-5.CrossRefPubMed Schlosser T, Malyar N, Jochims M, Breuckmann F, Hunold P, Bruder O, Erbel R, Barkhausen J: Quantification of aortic valve stenosis in MRI-comparison of steady-state free precession and fast low-angle shot sequences. European radiology. 2007, 17: 1284-1290. 10.1007/s00330-006-0437-5.CrossRefPubMed
15.
go back to reference Klarich KW, Rihal CS, Nishimura RA: Variability between methods of calculating mitral valve area: simultaneous Doppler echocardiographic and cardiac catheterization studies conducted before and after percutaneous mitral valvuloplasty. J Am Soc Echocardiogr. 1996, 9: 684-690. 10.1016/S0894-7317(96)90065-6.CrossRefPubMed Klarich KW, Rihal CS, Nishimura RA: Variability between methods of calculating mitral valve area: simultaneous Doppler echocardiographic and cardiac catheterization studies conducted before and after percutaneous mitral valvuloplasty. J Am Soc Echocardiogr. 1996, 9: 684-690. 10.1016/S0894-7317(96)90065-6.CrossRefPubMed
16.
go back to reference Bleiziffer S, Eichinger WB, Hettich I, Guenzinger R, Ruzicka D, Bauernschmitt R, Lange R: Prediction of valve prosthesis-patient mismatch prior to aortic valve replacement: which is the best method?. Heart (British Cardiac Society). 2007, 93: 615-620.CrossRef Bleiziffer S, Eichinger WB, Hettich I, Guenzinger R, Ruzicka D, Bauernschmitt R, Lange R: Prediction of valve prosthesis-patient mismatch prior to aortic valve replacement: which is the best method?. Heart (British Cardiac Society). 2007, 93: 615-620.CrossRef
17.
go back to reference Binder TM, Rosenhek R, Porenta G, Maurer G, Baumgartner H: Improved assessment of mitral valve stenosis by volumetric real-time three-dimensional echocardiography. Journal of the American College of Cardiology. 2000, 36: 1355-1361. 10.1016/S0735-1097(00)00852-4.CrossRefPubMed Binder TM, Rosenhek R, Porenta G, Maurer G, Baumgartner H: Improved assessment of mitral valve stenosis by volumetric real-time three-dimensional echocardiography. Journal of the American College of Cardiology. 2000, 36: 1355-1361. 10.1016/S0735-1097(00)00852-4.CrossRefPubMed
18.
go back to reference Messika-Zeitoun D, Iung B, Brochet E, Himbert D, Serfaty JM, Laissy JP, Vahanian A: Evaluation of mitral stenosis in 2008. Archives of cardiovascular diseases. 2008, 101: 653-663. 10.1016/j.acvd.2008.06.016.CrossRefPubMed Messika-Zeitoun D, Iung B, Brochet E, Himbert D, Serfaty JM, Laissy JP, Vahanian A: Evaluation of mitral stenosis in 2008. Archives of cardiovascular diseases. 2008, 101: 653-663. 10.1016/j.acvd.2008.06.016.CrossRefPubMed
19.
go back to reference Zamorano J, Cordeiro P, Sugeng L, Perez de Isla L, Weinert L, Macaya C, Rodriguez E, Lang RM: Real-time three-dimensional echocardiography for rheumatic mitral valve stenosis evaluation: an accurate and novel approach. Journal of the American College of Cardiology. 2004, 43: 2091-2096. 10.1016/j.jacc.2004.01.046.CrossRefPubMed Zamorano J, Cordeiro P, Sugeng L, Perez de Isla L, Weinert L, Macaya C, Rodriguez E, Lang RM: Real-time three-dimensional echocardiography for rheumatic mitral valve stenosis evaluation: an accurate and novel approach. Journal of the American College of Cardiology. 2004, 43: 2091-2096. 10.1016/j.jacc.2004.01.046.CrossRefPubMed
20.
go back to reference Perez de Isla L, Casanova C, Almeria C, Rodrigo JL, Cordeiro P, Mataix L, Aubele AL, Lang R, Zamorano JL: Which method should be the reference method to evaluate the severity of rheumatic mitral stenosis? Gorlin's method versus 3D-echo. Eur J Echocardiogr. 2007, 8: 470-473. 10.1016/j.euje.2006.08.008.CrossRefPubMed Perez de Isla L, Casanova C, Almeria C, Rodrigo JL, Cordeiro P, Mataix L, Aubele AL, Lang R, Zamorano JL: Which method should be the reference method to evaluate the severity of rheumatic mitral stenosis? Gorlin's method versus 3D-echo. Eur J Echocardiogr. 2007, 8: 470-473. 10.1016/j.euje.2006.08.008.CrossRefPubMed
21.
go back to reference Nakatani S, Masuyama T, Kodama K, Kitabatake A, Fujii K, Kamada T: Value and limitations of Doppler echocardiography in the quantification of stenotic mitral valve area: comparison of the pressure half-time and the continuity equation methods. Circulation. 1988, 77: 78-85.CrossRefPubMed Nakatani S, Masuyama T, Kodama K, Kitabatake A, Fujii K, Kamada T: Value and limitations of Doppler echocardiography in the quantification of stenotic mitral valve area: comparison of the pressure half-time and the continuity equation methods. Circulation. 1988, 77: 78-85.CrossRefPubMed
22.
go back to reference Dumesnil JG, Honos GN, Lemieux M, Beauchemin J: Validation and applications of mitral prosthetic valvular areas calculated by Doppler echocardiography. The American journal of cardiology. 1990, 65: 1443-1448. 10.1016/0002-9149(90)91352-7.CrossRefPubMed Dumesnil JG, Honos GN, Lemieux M, Beauchemin J: Validation and applications of mitral prosthetic valvular areas calculated by Doppler echocardiography. The American journal of cardiology. 1990, 65: 1443-1448. 10.1016/0002-9149(90)91352-7.CrossRefPubMed
23.
go back to reference Kim HK, Kim YJ, Chang SA, Kim DH, Sohn DW, Oh BH, Park YB: Impact of cardiac rhythm on mitral valve area calculated by the pressure half time method in patients with moderate or severe mitral stenosis. J Am Soc Echocardiogr. 2009, 22: 42-47. 10.1016/j.echo.2008.11.007.CrossRefPubMed Kim HK, Kim YJ, Chang SA, Kim DH, Sohn DW, Oh BH, Park YB: Impact of cardiac rhythm on mitral valve area calculated by the pressure half time method in patients with moderate or severe mitral stenosis. J Am Soc Echocardiogr. 2009, 22: 42-47. 10.1016/j.echo.2008.11.007.CrossRefPubMed
24.
go back to reference Djavidani B, Debl K, Buchner S, Lipke C, Nitz W, Feuerbach S, Riegger G, Luchner A: MRI planimetry for diagnosis and follow-up of valve area in mitral stenosis treated with valvuloplasty. Rofo. 2006, 178: 781-786.CrossRefPubMed Djavidani B, Debl K, Buchner S, Lipke C, Nitz W, Feuerbach S, Riegger G, Luchner A: MRI planimetry for diagnosis and follow-up of valve area in mitral stenosis treated with valvuloplasty. Rofo. 2006, 178: 781-786.CrossRefPubMed
25.
go back to reference Messika-Zeitoun D, Serfaty JM, Laissy JP, Berhili M, Brochet E, Iung B, Vahanian A: Assessment of the mitral valve area in patients with mitral stenosis by multislice computed tomography. Journal of the American College of Cardiology. 2006, 48: 411-413. 10.1016/j.jacc.2006.04.035.CrossRefPubMed Messika-Zeitoun D, Serfaty JM, Laissy JP, Berhili M, Brochet E, Iung B, Vahanian A: Assessment of the mitral valve area in patients with mitral stenosis by multislice computed tomography. Journal of the American College of Cardiology. 2006, 48: 411-413. 10.1016/j.jacc.2006.04.035.CrossRefPubMed
26.
go back to reference Goland S, Trento A, Iida K, Czer LS, De Robertis M, Naqvi TZ, Tolstrup K, Akima T, Luo H, Siegel RJ: Assessment of aortic stenosis by three-dimensional echocardiography: an accurate and novel approach. Heart (British Cardiac Society). 2007, 93: 801-807.CrossRef Goland S, Trento A, Iida K, Czer LS, De Robertis M, Naqvi TZ, Tolstrup K, Akima T, Luo H, Siegel RJ: Assessment of aortic stenosis by three-dimensional echocardiography: an accurate and novel approach. Heart (British Cardiac Society). 2007, 93: 801-807.CrossRef
27.
go back to reference Magne J, Mathieu P, Dumesnil JG, Tanne D, Dagenais F, Doyle D, Pibarot P: Impact of prosthesis-patient mismatch on survival after mitral valve replacement. Circulation. 2007, 115: 1417-1425. 10.1161/CIRCULATIONAHA.106.631549.CrossRefPubMed Magne J, Mathieu P, Dumesnil JG, Tanne D, Dagenais F, Doyle D, Pibarot P: Impact of prosthesis-patient mismatch on survival after mitral valve replacement. Circulation. 2007, 115: 1417-1425. 10.1161/CIRCULATIONAHA.106.631549.CrossRefPubMed
Metadata
Title
Assessment of mitral bioprostheses using cardiovascular magnetic resonance
Authors
Florian von Knobelsdorff-Brenkenhoff
André Rudolph
Ralf Wassmuth
Jeanette Schulz-Menger
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2010
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/1532-429X-12-36

Other articles of this Issue 1/2010

Journal of Cardiovascular Magnetic Resonance 1/2010 Go to the issue