Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2009

Open Access 01-12-2009 | Research

Improved accuracy in flow mapping of congenital heart disease using stationary phantom technique

Authors: Thomas A Miller, Andrew B Landes, Adrian M Moran

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2009

Login to get access

Abstract

Background

Flow mapping by cardiovascular magnetic resonance has become the gold standard for non-invasively defining cardiac output (CO), shunt flow and regurgitation. Previous reports have highlighted the presence of inherent errors in flow mapping that are improved with the use of a stationary phantom control. To our knowledge, these studies have only been performed in healthy volunteers.

Results

We analyzed the variation in flow measurements made with and without stationary phantom correction in 31 patients with congenital heart disease. Variation in stroke volume (SV) measurements was seen in all vessels across all patient groups. The variation was largest when analyzing the right ventricular outflow tract (RVOT), with a range of absolute differences in SV from 0.2 to 70 ml and in CO from 0.02 to 4.8 L/min. In patients with repaired Tetrology of Fallot (ToF), the average ratio of pulmonary to systemic blood flow (Qp:Qs) was 1.18 without and 1.02 with phantom correction. Without performing phantom correction, 23% of the repaired ToF patients were classified as having a residual shunt as compared to 0% when flow mapping was performed with phantom correction. Similarly, in patients with known atrial level shunting (ASD/PAPVR) 20% of patients had no shunt when flow mapping was performed without phantom correction as compared to 0% with phantom correction. In patients with bicuspid aortic valves (BAV), the differences in the regurgitant fraction between measuring flow with and without phantom correction ranged from 0 to 30%, while the regurgitant fraction in the RVOT of ToF patients varied by as much as 31%.

Conclusion

The impact of inherent errors in CMR flow mapping should not be underestimated. While the variation across a population may not display a significant trend, for any individual patient it can be quite large. Failure to correct for such variation can lead to clinically significant misinterpretation of flow data. The use of the stationary phantom correction technique appears to improve accuracy both in normal patients as well as those with congenital heart disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Valente AM, Powell AJ: Clinical applications of cardiovascular magnetic resonance in congenital heart disease. Cardiol Clin. 2007, 25: 97-110. 10.1016/j.ccl.2007.02.007. viCrossRefPubMed Valente AM, Powell AJ: Clinical applications of cardiovascular magnetic resonance in congenital heart disease. Cardiol Clin. 2007, 25: 97-110. 10.1016/j.ccl.2007.02.007. viCrossRefPubMed
2.
go back to reference Powell AJ, Tsai-Goodman B, Prakash A, Greil GF, Geva T: Comparison between phase-velocity cine magnetic resonance imaging and invasive oximetry for quantification of atrial shunts. Am J Cardiol. 2003, 91: 1523-1525. 10.1016/S0002-9149(03)00417-X. A1529CrossRefPubMed Powell AJ, Tsai-Goodman B, Prakash A, Greil GF, Geva T: Comparison between phase-velocity cine magnetic resonance imaging and invasive oximetry for quantification of atrial shunts. Am J Cardiol. 2003, 91: 1523-1525. 10.1016/S0002-9149(03)00417-X. A1529CrossRefPubMed
3.
go back to reference Brown DW, Gauvreau K, Powell AJ, Lang P, Colan SD, Del Nido PJ, Odegard KC, Geva T: Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional glenn anastomosis in infants with functional single ventricle: a prospective randomized trial. Circulation. 2007, 116: 2718-2725. 10.1161/CIRCULATIONAHA.107.723213.CrossRefPubMed Brown DW, Gauvreau K, Powell AJ, Lang P, Colan SD, Del Nido PJ, Odegard KC, Geva T: Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional glenn anastomosis in infants with functional single ventricle: a prospective randomized trial. Circulation. 2007, 116: 2718-2725. 10.1161/CIRCULATIONAHA.107.723213.CrossRefPubMed
4.
go back to reference Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennell DJ: Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J. 2004, 147: 218-223. 10.1016/j.ahj.2003.10.005.CrossRefPubMed Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennell DJ: Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J. 2004, 147: 218-223. 10.1016/j.ahj.2003.10.005.CrossRefPubMed
5.
go back to reference Powell AJ, Geva T: Blood flow measurement by magnetic resonance imaging in congenital heart disease. Pediatr Cardiol. 2000, 21: 47-58. 10.1007/s002469910007.CrossRefPubMed Powell AJ, Geva T: Blood flow measurement by magnetic resonance imaging in congenital heart disease. Pediatr Cardiol. 2000, 21: 47-58. 10.1007/s002469910007.CrossRefPubMed
6.
go back to reference Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH: Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med. 1998, 39: 300-308. 10.1002/mrm.1910390218.CrossRefPubMed Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH: Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med. 1998, 39: 300-308. 10.1002/mrm.1910390218.CrossRefPubMed
7.
go back to reference Chernobelsky A, Shubayev O, Comeau CR, Wolff SD: Baseline correction of phase contrast images improves quantification of blood flow in the great vessels. J Cardiovasc Magn Reson. 2007, 9: 681-685. 10.1080/10976640601187588.CrossRefPubMed Chernobelsky A, Shubayev O, Comeau CR, Wolff SD: Baseline correction of phase contrast images improves quantification of blood flow in the great vessels. J Cardiovasc Magn Reson. 2007, 9: 681-685. 10.1080/10976640601187588.CrossRefPubMed
8.
go back to reference Kilner PJ, Gatehouse PD, Firmin DN: Flow measurement by magnetic resonance: a unique asset worth optimising. J Cardiovasc Magn Reson. 2007, 9: 723-728. 10.1080/10976640701465090.CrossRefPubMed Kilner PJ, Gatehouse PD, Firmin DN: Flow measurement by magnetic resonance: a unique asset worth optimising. J Cardiovasc Magn Reson. 2007, 9: 723-728. 10.1080/10976640701465090.CrossRefPubMed
9.
go back to reference Bakker CJ, Hoogeveen RM, Viergever MA: Construction of a protocol for measuring blood flow by two-dimensional phase-contrast MRA. J Magn Reson Imaging. 1999, 9: 119-127. 10.1002/(SICI)1522-2586(199901)9:1<119::AID-JMRI16>3.0.CO;2-F.CrossRefPubMed Bakker CJ, Hoogeveen RM, Viergever MA: Construction of a protocol for measuring blood flow by two-dimensional phase-contrast MRA. J Magn Reson Imaging. 1999, 9: 119-127. 10.1002/(SICI)1522-2586(199901)9:1<119::AID-JMRI16>3.0.CO;2-F.CrossRefPubMed
10.
go back to reference Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP: Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging. 1993, 3: 521-530. 10.1002/jmri.1880030315.CrossRefPubMed Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP: Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging. 1993, 3: 521-530. 10.1002/jmri.1880030315.CrossRefPubMed
11.
go back to reference Lankhaar JW, Hofman MB, Marcus JT, Zwanenburg JJ, Faes TJ, Vonk-Noordegraaf A: Correction of phase offset errors in main pulmonary artery flow quantification. J Magn Reson Imaging. 2005, 22: 73-79. 10.1002/jmri.20361.CrossRefPubMed Lankhaar JW, Hofman MB, Marcus JT, Zwanenburg JJ, Faes TJ, Vonk-Noordegraaf A: Correction of phase offset errors in main pulmonary artery flow quantification. J Magn Reson Imaging. 2005, 22: 73-79. 10.1002/jmri.20361.CrossRefPubMed
12.
go back to reference Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986, 1: 307-310.CrossRefPubMed Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986, 1: 307-310.CrossRefPubMed
13.
go back to reference Powell AJ, Maier SE, Chung T, Geva T: Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: in vitro and in vivo validation. Pediatr Cardiol. 2000, 21: 104-110. 10.1007/s002469910014.CrossRefPubMed Powell AJ, Maier SE, Chung T, Geva T: Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: in vitro and in vivo validation. Pediatr Cardiol. 2000, 21: 104-110. 10.1007/s002469910014.CrossRefPubMed
14.
go back to reference Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, van Rossum AC, Shaw LJ, Yucel EK: Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J. 2004, 25: 1940-1965. 10.1016/j.ehj.2004.06.040.CrossRefPubMed Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, van Rossum AC, Shaw LJ, Yucel EK: Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J. 2004, 25: 1940-1965. 10.1016/j.ehj.2004.06.040.CrossRefPubMed
15.
go back to reference Gatehouse PD, Rolf MP, Graves MJ, Totman J, von Spiczaki J, Santarelli MF, Liy Y, Quest RA, Dieringer M, Lombardi M, Schwitter J, Schulz-Menger J, Firmin DN, Hofman MBM, Kilner PJ: Evidence across CMR sites and systems of background velocity offset errors requiring correction before accurate measurement of regurgitant and shunt flow. J Cardiovasc Magn Reson. 2009, 11: 81-82. 10.1186/1532-429X-11-S1-O96.CrossRef Gatehouse PD, Rolf MP, Graves MJ, Totman J, von Spiczaki J, Santarelli MF, Liy Y, Quest RA, Dieringer M, Lombardi M, Schwitter J, Schulz-Menger J, Firmin DN, Hofman MBM, Kilner PJ: Evidence across CMR sites and systems of background velocity offset errors requiring correction before accurate measurement of regurgitant and shunt flow. J Cardiovasc Magn Reson. 2009, 11: 81-82. 10.1186/1532-429X-11-S1-O96.CrossRef
Metadata
Title
Improved accuracy in flow mapping of congenital heart disease using stationary phantom technique
Authors
Thomas A Miller
Andrew B Landes
Adrian M Moran
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2009
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/1532-429X-11-52

Other articles of this Issue 1/2009

Journal of Cardiovascular Magnetic Resonance 1/2009 Go to the issue