Skip to main content
Top
Published in: Population Health Metrics 1/2012

Open Access 01-12-2012 | Research

Measured and modeled personal and environmental NO2 exposure

Authors: Emilie Stroh, Ralf Rittner, Anna Oudin, Jonas Ardö, Kristina Jakobsson, Jonas Björk, Håkan Tinnerberg

Published in: Population Health Metrics | Issue 1/2012

Login to get access

Abstract

Background

Measured or modeled levels of outdoor air pollution are being used as proxies for individual exposure in a growing number of epidemiological studies. We studied the accuracy of such approaches, in comparison with measured individual levels, and also combined modeled levels for each subject’s workplace with the levels at their residence to investigate the influence of living and working in different places on individual exposure levels.

Methods

A GIS-based dispersion model and an emissions database were used to model concentrations of NO2 at the subject’s residence. Modeled levels were then compared with measured levels of NO2. Personal exposure was also modeled based on levels of NO2 at the subject’s residence in combination with levels of NO2 at their workplace during working hours.

Results

There was a good agreement between measured façade levels and modeled residential NO2 levels (rs = 0.8, p > 0.001); however, the agreement between measured and modeled outdoor levels and measured personal exposure was poor with overestimations at low levels and underestimation at high levels (rs = 0.5, p > 0.001 and rs = 0.4, p > 0.001) even when compensating for workplace location (rs = 0.4, p > 0.001).

Conclusion

Modeling residential levels of NO2 proved to be a useful method of estimating façade concentrations. However, the agreement between outdoor levels (both modeled and measured) and personal exposure was, although significant, rather poor even when compensating for workplace location. These results indicate that personal exposure cannot be fully approximated by outdoor levels and that differences in personal activity patterns or household characteristics should be carefully considered when conducting exposure studies. This is an important finding that may help to correct substantial bias in epidemiological studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO: WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide - Global update 2005, summary of risk assessment. Book WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide - Global update 2005, summary of risk assessment,WHO 2006. WHO: WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide - Global update 2005, summary of risk assessment. Book WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide - Global update 2005, summary of risk assessment,WHO 2006.
2.
go back to reference Brunekreef B: Health effects of air pollution observed in cohort studies in Europe. J Expo Sci Environ Epidemiol 2007,17(Suppl 2):S61-S65.CrossRefPubMed Brunekreef B: Health effects of air pollution observed in cohort studies in Europe. J Expo Sci Environ Epidemiol 2007,17(Suppl 2):S61-S65.CrossRefPubMed
3.
go back to reference Han X, Naeher LP: A review of traffic-related air pollution exposure assessment studies in the developing world. Environ Int 2006, 32: 106-120. 10.1016/j.envint.2005.05.020CrossRefPubMed Han X, Naeher LP: A review of traffic-related air pollution exposure assessment studies in the developing world. Environ Int 2006, 32: 106-120. 10.1016/j.envint.2005.05.020CrossRefPubMed
4.
go back to reference Nethery E, Leckie SE, Teschke K, Brauer M: From measures to models: an evaluation of air pollution exposure assessment for epidemiological studies of pregnant women. Occup Environ Med 2008, 65: 579-586. 10.1136/oem.2007.035337CrossRefPubMed Nethery E, Leckie SE, Teschke K, Brauer M: From measures to models: an evaluation of air pollution exposure assessment for epidemiological studies of pregnant women. Occup Environ Med 2008, 65: 579-586. 10.1136/oem.2007.035337CrossRefPubMed
5.
go back to reference Sarnat SE, Klein M, Sarnat JA, Flanders WD, Waller LA, Mulholland JA, Russell AG, Tolbert PE: An examination of exposure measurement error from air pollutant spatial variability in time-series studies. J Expo Sci Environ Epidemiol 2010, 20: 135-146. 10.1038/jes.2009.10CrossRefPubMed Sarnat SE, Klein M, Sarnat JA, Flanders WD, Waller LA, Mulholland JA, Russell AG, Tolbert PE: An examination of exposure measurement error from air pollutant spatial variability in time-series studies. J Expo Sci Environ Epidemiol 2010, 20: 135-146. 10.1038/jes.2009.10CrossRefPubMed
6.
go back to reference Wheeler AJ, Smith-Doiron M, Xu X, Gilbert NL, Brook JR: Intra-urban variability of air pollution in Windsor, Ontario–measurement and modeling for human exposure assessment. Environ Res 2008, 106: 7-16. 10.1016/j.envres.2007.09.004CrossRefPubMed Wheeler AJ, Smith-Doiron M, Xu X, Gilbert NL, Brook JR: Intra-urban variability of air pollution in Windsor, Ontario–measurement and modeling for human exposure assessment. Environ Res 2008, 106: 7-16. 10.1016/j.envres.2007.09.004CrossRefPubMed
7.
go back to reference Gauderman WJ, Vora H, McConnell R, Berhane K, Gilliland F, Thomas D, Lurmann F, Avol E, Kunzli N, Jerrett M, Peters J: Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study. Lancet 2007, 369: 571-577. 10.1016/S0140-6736(07)60037-3CrossRefPubMed Gauderman WJ, Vora H, McConnell R, Berhane K, Gilliland F, Thomas D, Lurmann F, Avol E, Kunzli N, Jerrett M, Peters J: Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study. Lancet 2007, 369: 571-577. 10.1016/S0140-6736(07)60037-3CrossRefPubMed
8.
go back to reference Jerrett M, McConnell R, Chang CC, Wolch J, Reynolds K, Lurmann F, Gilliland F, Berhane K: Automobile traffic around the home and attained body mass index: a longitudinal cohort study of children aged 10–18 years. Prev Med 2010,50(Suppl 1):S50-S58.CrossRefPubMed Jerrett M, McConnell R, Chang CC, Wolch J, Reynolds K, Lurmann F, Gilliland F, Berhane K: Automobile traffic around the home and attained body mass index: a longitudinal cohort study of children aged 10–18 years. Prev Med 2010,50(Suppl 1):S50-S58.CrossRefPubMed
9.
go back to reference Ryan PH, LeMasters G, Biagini J, Bernstein D, Grinshpun SA, Shukla R, Wilson K, Villareal M, Burkle J, Lockey J: Is it traffic type, volume, or distance? Wheezing in infants living near truck and bus traffic. J Allergy Clin Immunol 2005, 116: 279-284. 10.1016/j.jaci.2005.05.014CrossRefPubMed Ryan PH, LeMasters G, Biagini J, Bernstein D, Grinshpun SA, Shukla R, Wilson K, Villareal M, Burkle J, Lockey J: Is it traffic type, volume, or distance? Wheezing in infants living near truck and bus traffic. J Allergy Clin Immunol 2005, 116: 279-284. 10.1016/j.jaci.2005.05.014CrossRefPubMed
10.
go back to reference Liard R, Zureik M, Le Moullec Y, Soussan D, Glorian M, Grimfeld A, Neukirch F: Use of personal passive samplers for measurement of NO2, NO, and O3 levels in panel studies. Environ Res 1999, 81: 339-348. 10.1006/enrs.1999.3993CrossRefPubMed Liard R, Zureik M, Le Moullec Y, Soussan D, Glorian M, Grimfeld A, Neukirch F: Use of personal passive samplers for measurement of NO2, NO, and O3 levels in panel studies. Environ Res 1999, 81: 339-348. 10.1006/enrs.1999.3993CrossRefPubMed
11.
go back to reference Zhou Y, Levy JI: Factors influencing the spatial extent of mobile source air pollution impacts: a meta-analysis. BMC Publ Health 2007, 7: 89. 10.1186/1471-2458-7-89CrossRef Zhou Y, Levy JI: Factors influencing the spatial extent of mobile source air pollution impacts: a meta-analysis. BMC Publ Health 2007, 7: 89. 10.1186/1471-2458-7-89CrossRef
12.
go back to reference Lindgren A, Stroh E, Montnemery P, Nihlen U, Jakobsson K, Axmon A: Traffic-related air pollution associated with prevalence of asthma and COPD/chronic bronchitis. A cross-sectional study in Southern Sweden. Int J Health Geogr 2009, 8: 2. 10.1186/1476-072X-8-2CrossRefPubMedPubMedCentral Lindgren A, Stroh E, Montnemery P, Nihlen U, Jakobsson K, Axmon A: Traffic-related air pollution associated with prevalence of asthma and COPD/chronic bronchitis. A cross-sectional study in Southern Sweden. Int J Health Geogr 2009, 8: 2. 10.1186/1476-072X-8-2CrossRefPubMedPubMedCentral
13.
go back to reference Gulliver J, Briggs DJ: Time-space modeling of journey-time exposure to traffic-related air pollution using GIS. Environ Res 2005, 97: 10-25. 10.1016/j.envres.2004.05.002CrossRefPubMed Gulliver J, Briggs DJ: Time-space modeling of journey-time exposure to traffic-related air pollution using GIS. Environ Res 2005, 97: 10-25. 10.1016/j.envres.2004.05.002CrossRefPubMed
14.
go back to reference Kousa A, Monn C, Rotko T, Alm S, Oglesby L, Jantunen M: Personal exposures to NO2 in the EXPOLIS-study: relation to residential indoor, outdoor and workplace concentrations in Basel, Helsinki and Prague. Atmos Environ 2001, 35: 3405-3412. 10.1016/S1352-2310(01)00131-5CrossRef Kousa A, Monn C, Rotko T, Alm S, Oglesby L, Jantunen M: Personal exposures to NO2 in the EXPOLIS-study: relation to residential indoor, outdoor and workplace concentrations in Basel, Helsinki and Prague. Atmos Environ 2001, 35: 3405-3412. 10.1016/S1352-2310(01)00131-5CrossRef
15.
go back to reference Jenkins RA, Gill BE: Determination of Oxides of Nitrogen (NO,) in cigarette smoke by chemiluminescent analysis. Anal Chem 1980, 52: 925-928. 10.1021/ac50056a035CrossRef Jenkins RA, Gill BE: Determination of Oxides of Nitrogen (NO,) in cigarette smoke by chemiluminescent analysis. Anal Chem 1980, 52: 925-928. 10.1021/ac50056a035CrossRef
16.
go back to reference Stroh E: The use of GIS in assessing exposure to airborne pollutants. Lund, Sweden: Lund University, Faculty of Medicine Doctoral Dissertation Series; 2011:2. Stroh E: The use of GIS in assessing exposure to airborne pollutants. Lund, Sweden: Lund University, Faculty of Medicine Doctoral Dissertation Series; 2011:2.
17.
go back to reference Hagenbjörk-Gustafsson A, Lindahl R, Levin JO, Karlsson D: Validation of the Willems badge diffusive sampler for nitrogen dioxide determinations in occupational environments. Analyst 2002,127(1):163-168. 10.1039/b107844eCrossRefPubMed Hagenbjörk-Gustafsson A, Lindahl R, Levin JO, Karlsson D: Validation of the Willems badge diffusive sampler for nitrogen dioxide determinations in occupational environments. Analyst 2002,127(1):163-168. 10.1039/b107844eCrossRefPubMed
18.
go back to reference Ferm M, Svanberg P-A: Cost-efficient techniques for urban- and background measurements of SO2 and NO2. Atmos Environ 1998, 32, 8: 1377-1381.CrossRef Ferm M, Svanberg P-A: Cost-efficient techniques for urban- and background measurements of SO2 and NO2. Atmos Environ 1998, 32, 8: 1377-1381.CrossRef
19.
go back to reference Brooks Mason J, Fujita E, Campbell E, Zielinska B: Evaluation of passive samplers for assessment of community exposure to toxic air contaminants and related pollutants. Environ Sci Technol 2011, 45: 2243-2249. 10.1021/es102500vCrossRefPubMed Brooks Mason J, Fujita E, Campbell E, Zielinska B: Evaluation of passive samplers for assessment of community exposure to toxic air contaminants and related pollutants. Environ Sci Technol 2011, 45: 2243-2249. 10.1021/es102500vCrossRefPubMed
20.
go back to reference Stroh E, Oudin A, Gustafsson S, Pilesjo P, Harrie L, Stromberg U, Jakobsson K: Are associations between socio-economic characteristics and exposure to air pollution a question of study area size? An example from Scania, Sweden. Int J Health Geogr 2005, 4: 30. Lund, Sweden 10.1186/1476-072X-4-30CrossRefPubMedPubMedCentral Stroh E, Oudin A, Gustafsson S, Pilesjo P, Harrie L, Stromberg U, Jakobsson K: Are associations between socio-economic characteristics and exposure to air pollution a question of study area size? An example from Scania, Sweden. Int J Health Geogr 2005, 4: 30. Lund, Sweden 10.1186/1476-072X-4-30CrossRefPubMedPubMedCentral
21.
go back to reference Krouwer J-S: Letter to the Editor: Why Bland–Altman plots should use X, not (Y+X)/2 when X is a reference method. Stat Med 2008, 27: 778-780. 10.1002/sim.3086CrossRefPubMed Krouwer J-S: Letter to the Editor: Why Bland–Altman plots should use X, not (Y+X)/2 when X is a reference method. Stat Med 2008, 27: 778-780. 10.1002/sim.3086CrossRefPubMed
22.
go back to reference Kornartit C, Sokhi RS, Burton MA, Ravindra K: Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments. Environ Int 2010, 36: 36-45. 10.1016/j.envint.2009.09.004CrossRefPubMed Kornartit C, Sokhi RS, Burton MA, Ravindra K: Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments. Environ Int 2010, 36: 36-45. 10.1016/j.envint.2009.09.004CrossRefPubMed
23.
go back to reference Sexton K, Adgate JL, Mongin SJ, Pratt GC, Ramachandran G, Stock TH, Morandi MT: Evaluating differences between measured personal exposures to volatile organic compounds and concentrations in outdoor and indoor air. Environ Sci Technol 2004, 38: 2593-2602. 10.1021/es030607qCrossRefPubMed Sexton K, Adgate JL, Mongin SJ, Pratt GC, Ramachandran G, Stock TH, Morandi MT: Evaluating differences between measured personal exposures to volatile organic compounds and concentrations in outdoor and indoor air. Environ Sci Technol 2004, 38: 2593-2602. 10.1021/es030607qCrossRefPubMed
24.
go back to reference Zhang K, Batterman SA: Time allocation shifts and pollutant exposure due to traffic congestion: an analysis using the national human activity pattern survey. Sci Total Environ 2009, 407: 5493-5500. 10.1016/j.scitotenv.2009.07.008CrossRefPubMed Zhang K, Batterman SA: Time allocation shifts and pollutant exposure due to traffic congestion: an analysis using the national human activity pattern survey. Sci Total Environ 2009, 407: 5493-5500. 10.1016/j.scitotenv.2009.07.008CrossRefPubMed
25.
go back to reference Zuurbier M, Hoek G, Oldenwening M, Lenters V, Meliefste K, van den Hazel P, Brunekreef B: Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect 2010, 118: 783-789. 10.1289/ehp.0901622CrossRefPubMedPubMedCentral Zuurbier M, Hoek G, Oldenwening M, Lenters V, Meliefste K, van den Hazel P, Brunekreef B: Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect 2010, 118: 783-789. 10.1289/ehp.0901622CrossRefPubMedPubMedCentral
26.
go back to reference Kinkade S, Verclas K: Wireless technology for social change: Trends in NGO mobile use. Book Wireless technology for social change: Trends in NGO mobile use , United Nations Foundation 2009. Kinkade S, Verclas K: Wireless technology for social change: Trends in NGO mobile use. Book Wireless technology for social change: Trends in NGO mobile use , United Nations Foundation 2009.
Metadata
Title
Measured and modeled personal and environmental NO2 exposure
Authors
Emilie Stroh
Ralf Rittner
Anna Oudin
Jonas Ardö
Kristina Jakobsson
Jonas Björk
Håkan Tinnerberg
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Population Health Metrics / Issue 1/2012
Electronic ISSN: 1478-7954
DOI
https://doi.org/10.1186/1478-7954-10-10

Other articles of this Issue 1/2012

Population Health Metrics 1/2012 Go to the issue