Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2014

Open Access 01-12-2014 | Research

Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare

Authors: Juliano C da Silveira, Elaine M Carnevale, Quinton A Winger, Gerrit J Bouma

Published in: Reproductive Biology and Endocrinology | Issue 1/2014

Login to get access

Abstract

Background

Ovarian follicle growth and maturation requires extensive communication between follicular somatic cells and oocytes. Recently, intercellular cell communication was described involving cell-secreted vesicles called exosomes (50–150 nm), which contain miRNAs and protein, and have been identified in ovarian follicular fluid. The goal of this study was to identify a possible role of exosomes in follicle maturation.

Methods

Follicle contents were collected from mares at mid-estrous (~35 mm, before induction of follicular maturation) and pre-ovulatory follicles (30–34 h after induction of follicular maturation). A real time PCR screen was conducted to reveal significant differences in the presence of exosomal miRNAs isolated from mid-estrous and pre-ovulatory follicles, and according to bioinformatics analysis these exosomal miRNAs are predicted to target members belonging to the TGFB superfamily, including ACVR1 and ID2. Granulosa cells from pre-ovulatory follicles were cultured and treated with exosomes isolated from follicular fluid. Changes in mRNA and protein were measured by real time PCR and Western blot.

Results

ACVR1 mRNA and protein was detected in granulosa cells at mid-estrous and pre-ovulatory stages, and real time PCR analysis revealed significantly lower levels of ID2 (an ACVR1 target gene) in granulosa cells from pre-ovulatory follicles. Exposure to exosomes from follicular fluid of mid-estrous follicles decreased ID2 levels in granulosa cells. Moreover, exosomes isolated from mid-estrous and pre-ovulatory follicles contain ACVR1 and miR-27b, miR-372, and miR-382 (predicted regulators of ACVR1 and ID2) were capable of altering ID2 levels in pre-ovulatory granulosa cells.

Conclusions

These data indicate that exosomes isolated from follicular fluid can regulate members of the TGFB/BMP signaling pathway in granulosa cells, and possibly play a role in regulating follicle maturation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fortune JE: Ovarian follicular growth and development in mammals. 1994, 232: 225-232. Fortune JE: Ovarian follicular growth and development in mammals. 1994, 232: 225-232.
2.
go back to reference Knight PG, Glister C: TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006, 132: 191-206. 10.1530/rep.1.01074.CrossRefPubMed Knight PG, Glister C: TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006, 132: 191-206. 10.1530/rep.1.01074.CrossRefPubMed
3.
go back to reference Matzuk MM, Burns KH, Viveiros MM, Eppig JJ: Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002, 296: 2178-2180. 10.1126/science.1071965.CrossRefPubMed Matzuk MM, Burns KH, Viveiros MM, Eppig JJ: Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002, 296: 2178-2180. 10.1126/science.1071965.CrossRefPubMed
5.
go back to reference Da Silveira JC, Veeramachaneni DNR, Winger QA, Carnevale EM, Bouma GJ: Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod. 2012, 86: 71-10.1095/biolreprod.111.093252.CrossRefPubMed Da Silveira JC, Veeramachaneni DNR, Winger QA, Carnevale EM, Bouma GJ: Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod. 2012, 86: 71-10.1095/biolreprod.111.093252.CrossRefPubMed
6.
go back to reference Sohel MMH, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C, Rings F, Uddin MJ, Spencer TE, Schellander K, Tesfaye D: Exosomal and Non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS One. 2013, 8: e78505-10.1371/journal.pone.0078505.PubMedCentralCrossRefPubMed Sohel MMH, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C, Rings F, Uddin MJ, Spencer TE, Schellander K, Tesfaye D: Exosomal and Non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS One. 2013, 8: e78505-10.1371/journal.pone.0078505.PubMedCentralCrossRefPubMed
8.
go back to reference Huntzinger E, Izaurralde E: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011, 12: 99-110. 10.1038/nrg2936.CrossRefPubMed Huntzinger E, Izaurralde E: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011, 12: 99-110. 10.1038/nrg2936.CrossRefPubMed
9.
go back to reference Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, Zhu H, Agno JE, Gunaratne PH, DeMayo FJ, Matzuk MM: Deletion of dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol. 2008, 22: 2336-2352. 10.1210/me.2008-0142.PubMedCentralCrossRefPubMed Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, Zhu H, Agno JE, Gunaratne PH, DeMayo FJ, Matzuk MM: Deletion of dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol. 2008, 22: 2336-2352. 10.1210/me.2008-0142.PubMedCentralCrossRefPubMed
11.
go back to reference Donadeu FX, Schauer SN, Sontakke SD: Involvement of miRNAs in ovarian follicular and luteal development. J Endocrinol. 2012, 215: 323-334. 10.1530/JOE-12-0252.CrossRefPubMed Donadeu FX, Schauer SN, Sontakke SD: Involvement of miRNAs in ovarian follicular and luteal development. J Endocrinol. 2012, 215: 323-334. 10.1530/JOE-12-0252.CrossRefPubMed
12.
go back to reference Yao G, Yin M, Lian J, Tian H, Liu L, Li X, Sun F: MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol. 2010, 24: 540-551. 10.1210/me.2009-0432.CrossRefPubMed Yao G, Yin M, Lian J, Tian H, Liu L, Li X, Sun F: MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol. 2010, 24: 540-551. 10.1210/me.2009-0432.CrossRefPubMed
13.
go back to reference Yin M, Lü M, Yao G, Tian H, Lian J, Liu L, Liang M, Wang Y, Sun F: Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1. Mol Endocrinol. 2012, 26: 1129-1143. 10.1210/me.2011-1341.CrossRefPubMed Yin M, Lü M, Yao G, Tian H, Lian J, Liu L, Liang M, Wang Y, Sun F: Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1. Mol Endocrinol. 2012, 26: 1129-1143. 10.1210/me.2011-1341.CrossRefPubMed
15.
go back to reference Donadeu FX, Pedersen HG: Follicle development in mares. Reprod Domest Anim. 2008, 43 (Suppl 2): 224-231.CrossRefPubMed Donadeu FX, Pedersen HG: Follicle development in mares. Reprod Domest Anim. 2008, 43 (Suppl 2): 224-231.CrossRefPubMed
16.
go back to reference Carnevale EM, Maclellan LJ: Collection, evaluation, and use of oocytes in equine assisted reproduction. Vet Clin North Am Equine Pract. 2006, 22: 843-856. 10.1016/j.cveq.2006.09.001.CrossRefPubMed Carnevale EM, Maclellan LJ: Collection, evaluation, and use of oocytes in equine assisted reproduction. Vet Clin North Am Equine Pract. 2006, 22: 843-856. 10.1016/j.cveq.2006.09.001.CrossRefPubMed
17.
go back to reference Bézard J, Mekarska A, Goudet G, Duchamp G, Palmer E: Timing of in vivo maturation of equine preovulatory oocytes and competence for in vitro maturation of immature oocytes collected simultaneously. Equine Vet J. 1997, 25: 33-37. Bézard J, Mekarska A, Goudet G, Duchamp G, Palmer E: Timing of in vivo maturation of equine preovulatory oocytes and competence for in vitro maturation of immature oocytes collected simultaneously. Equine Vet J. 1997, 25: 33-37.
18.
go back to reference Théry C, Clayton A, Amigorena S, Raposo G: Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc cell Biol. 2006, Chapter 3:Unit: 3.22-3.22.1–3.22.29. Théry C, Clayton A, Amigorena S, Raposo G: Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc cell Biol. 2006, Chapter 3:Unit: 3.22-3.22.1–3.22.29.
19.
go back to reference Davidson TR, Chamberlain CS, Bridges TS, Spicer LJ: Effect of follicle size on in vitro production of steroids and insulin-like growth factor (IGF)-I, IGF-II, and the IGF-binding proteins by equine ovarian granulosa cells. Biol Reprod. 2002, 66: 1640-1648. 10.1095/biolreprod66.6.1640.CrossRefPubMed Davidson TR, Chamberlain CS, Bridges TS, Spicer LJ: Effect of follicle size on in vitro production of steroids and insulin-like growth factor (IGF)-I, IGF-II, and the IGF-binding proteins by equine ovarian granulosa cells. Biol Reprod. 2002, 66: 1640-1648. 10.1095/biolreprod66.6.1640.CrossRefPubMed
20.
go back to reference Kayis SA, Atli MO, Kurar E, Bozkaya F, Semacan A, Aslan S, Guzeloglu A: Rating of putative housekeeping genes for quantitative gene expression analysis in cyclic and early pregnant equine endometrium. Anim Reprod Sci. 2011, 125: 124-132. 10.1016/j.anireprosci.2011.02.019.CrossRefPubMed Kayis SA, Atli MO, Kurar E, Bozkaya F, Semacan A, Aslan S, Guzeloglu A: Rating of putative housekeeping genes for quantitative gene expression analysis in cyclic and early pregnant equine endometrium. Anim Reprod Sci. 2011, 125: 124-132. 10.1016/j.anireprosci.2011.02.019.CrossRefPubMed
21.
go back to reference Klein C, Rutllant J, Troedsson MH: Expression stability of putative reference genes in equine endometrial, testicular, and conceptus tissues. BMC Res Notes. 2011, 4: 120-10.1186/1756-0500-4-120.PubMedCentralCrossRefPubMed Klein C, Rutllant J, Troedsson MH: Expression stability of putative reference genes in equine endometrial, testicular, and conceptus tissues. BMC Res Notes. 2011, 4: 120-10.1186/1756-0500-4-120.PubMedCentralCrossRefPubMed
22.
go back to reference Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, Paraskevopoulou MD, Prionidis K, Dalamagas T, Hatzigeorgiou AG: DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012, 40 (Web Server issue): W498-W504.PubMedCentralCrossRefPubMed Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, Paraskevopoulou MD, Prionidis K, Dalamagas T, Hatzigeorgiou AG: DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012, 40 (Web Server issue): W498-W504.PubMedCentralCrossRefPubMed
23.
go back to reference Shimizu T, Jayawardana BC, Nishimoto H, Kaneko E, Tetsuka M, Miyamoto A: Involvement of the bone morphogenetic protein/receptor system during follicle development in the bovine ovary: hormonal regulation of the expression of bone morphogenetic protein 7 (BMP-7) and its receptors (ActRII and ALK-2). Mol Cell Endocrinol. 2006, 249: 78-83. 10.1016/j.mce.2006.01.015.CrossRefPubMed Shimizu T, Jayawardana BC, Nishimoto H, Kaneko E, Tetsuka M, Miyamoto A: Involvement of the bone morphogenetic protein/receptor system during follicle development in the bovine ovary: hormonal regulation of the expression of bone morphogenetic protein 7 (BMP-7) and its receptors (ActRII and ALK-2). Mol Cell Endocrinol. 2006, 249: 78-83. 10.1016/j.mce.2006.01.015.CrossRefPubMed
24.
go back to reference Glister C, Satchell L, Knight PG: Changes in expression of bone morphogenetic proteins (BMPs), their receptors and inhibin co-receptor betaglycan during bovine antral follicle development: inhibin can antagonize the suppressive effect of BMPs on thecal androgen production. Reproduction. 2010, 140: 699-712. 10.1530/REP-10-0216.CrossRefPubMed Glister C, Satchell L, Knight PG: Changes in expression of bone morphogenetic proteins (BMPs), their receptors and inhibin co-receptor betaglycan during bovine antral follicle development: inhibin can antagonize the suppressive effect of BMPs on thecal androgen production. Reproduction. 2010, 140: 699-712. 10.1530/REP-10-0216.CrossRefPubMed
25.
go back to reference Johnson AL, Haugen MJ, Woods DC: Role for inhibitor of differentiation/deoxyribonucleic acid-binding (Id) proteins in granulosa cell differentiation. Endocrinology. 2008, 149: 3187-3195. 10.1210/en.2007-1659.CrossRefPubMed Johnson AL, Haugen MJ, Woods DC: Role for inhibitor of differentiation/deoxyribonucleic acid-binding (Id) proteins in granulosa cell differentiation. Endocrinology. 2008, 149: 3187-3195. 10.1210/en.2007-1659.CrossRefPubMed
26.
go back to reference Verbraak EJC, Veld EM V ’t, Groot Koerkamp M, Roelen BA J, van Haeften T, Stoorvogel W, Zijlstra C: Identification of genes targeted by FSH and oocytes in porcine granulosa cells. Theriogenology. 2011, 75: 362-376. 10.1016/j.theriogenology.2010.09.008.CrossRefPubMed Verbraak EJC, Veld EM V ’t, Groot Koerkamp M, Roelen BA J, van Haeften T, Stoorvogel W, Zijlstra C: Identification of genes targeted by FSH and oocytes in porcine granulosa cells. Theriogenology. 2011, 75: 362-376. 10.1016/j.theriogenology.2010.09.008.CrossRefPubMed
27.
go back to reference Karaya K, Mori S, Kimoto H, Shima Y, Tsuji Y, Kurooka H, Akira S, Yokota Y: Regulation of Id2 expression by CCAAT/enhancer binding protein beta. Nucleic Acids Res. 2005, 33: 1924-1934. 10.1093/nar/gki339.PubMedCentralCrossRefPubMed Karaya K, Mori S, Kimoto H, Shima Y, Tsuji Y, Kurooka H, Akira S, Yokota Y: Regulation of Id2 expression by CCAAT/enhancer binding protein beta. Nucleic Acids Res. 2005, 33: 1924-1934. 10.1093/nar/gki339.PubMedCentralCrossRefPubMed
28.
29.
go back to reference Song H, Wang Q, Wen J, Liu S, Gao X, Cheng J, Zhang D: ACVR1, a therapeutic target of fibrodysplasia ossificans progressiva, is negatively regulated by miR-148a. Int J Mol Sci. 2012, 13: 2063-2077. 10.3390/ijms13022063.PubMedCentralCrossRefPubMed Song H, Wang Q, Wen J, Liu S, Gao X, Cheng J, Zhang D: ACVR1, a therapeutic target of fibrodysplasia ossificans progressiva, is negatively regulated by miR-148a. Int J Mol Sci. 2012, 13: 2063-2077. 10.3390/ijms13022063.PubMedCentralCrossRefPubMed
30.
go back to reference McBride D, Carré W, Sontakke SD, Hogg CO, Law A, Donadeu FX, Clinton M: Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction. 2012, 144: 221-233. 10.1530/REP-12-0025.CrossRefPubMed McBride D, Carré W, Sontakke SD, Hogg CO, Law A, Donadeu FX, Clinton M: Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction. 2012, 144: 221-233. 10.1530/REP-12-0025.CrossRefPubMed
31.
go back to reference Sirotkin AV, Lauková M, Ovcharenko D, Brenaut P, Mlyncek M: Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol. 2010, 223: 49-56.PubMed Sirotkin AV, Lauková M, Ovcharenko D, Brenaut P, Mlyncek M: Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol. 2010, 223: 49-56.PubMed
32.
go back to reference Hossain MM, Ghanem N, Hoelker M, Rings F, Phatsara C, Tholen E, Schellander K, Tesfaye D: Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics. 2009, 10: 443-10.1186/1471-2164-10-443.PubMedCentralCrossRefPubMed Hossain MM, Ghanem N, Hoelker M, Rings F, Phatsara C, Tholen E, Schellander K, Tesfaye D: Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics. 2009, 10: 443-10.1186/1471-2164-10-443.PubMedCentralCrossRefPubMed
33.
go back to reference Hong BS, Cho J-H, Kim H, Choi E-J, Rho S, Kim J, Kim JH, Choi D-S, Kim Y-K, Hwang D, Gho YS: Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics. 2009, 10: 556-10.1186/1471-2164-10-556.PubMedCentralCrossRefPubMed Hong BS, Cho J-H, Kim H, Choi E-J, Rho S, Kim J, Kim JH, Choi D-S, Kim Y-K, Hwang D, Gho YS: Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics. 2009, 10: 556-10.1186/1471-2164-10-556.PubMedCentralCrossRefPubMed
34.
go back to reference Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007, 9: 654-659. 10.1038/ncb1596.CrossRefPubMed Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007, 9: 654-659. 10.1038/ncb1596.CrossRefPubMed
Metadata
Title
Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare
Authors
Juliano C da Silveira
Elaine M Carnevale
Quinton A Winger
Gerrit J Bouma
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2014
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/1477-7827-12-44

Other articles of this Issue 1/2014

Reproductive Biology and Endocrinology 1/2014 Go to the issue