Skip to main content
Top
Published in: Molecular Cancer 1/2010

Open Access 01-12-2010 | Research

Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells

Authors: Bo Song, Yuan Wang, Matthew A. Titmus, Galina Botchkina, Andrea Formentini, Marko Kornmann, Jingfang Ju

Published in: Molecular Cancer | Issue 1/2010

Login to get access

Abstract

Background

Translational control mediated by non-coding microRNAs (miRNAs) plays a key role in the mechanism of cellular resistance to anti-cancer drug treatment. Dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS, TS) are two of the most important targets for antifolate- and fluoropyrimidine-based chemotherapies in the past 50 years. In this study, we investigated the roles of miR-215 in the chemoresistance to DHFR inhibitor methotrexate (MTX) and TS inhibitor Tomudex (TDX).

Results

The protein levels of both DHFR and TS were suppressed by miR-215 without the alteration of the target mRNA transcript levels. Interestingly, despite the down-regulation of DHFR and TS proteins, ectopic expression of miR-215 resulted in a decreased sensitivity to MTX and TDX. Paradoxically, gene-specific small-interfering RNAs (siRNAs) against DHFR or TS had the opposite effect, increasing sensitivity to MTX and TDX. Further studies revealed that over-expression of miR-215 inhibited cell proliferation and triggered cell cycle arrest at G2 phase, and that this effect was accompanied by a p53-dependent up-regulation of p21. The inhibitory effect on cell proliferation was more pronounced in cell lines containing wild-type p53, but was not seen in cells transfected with siRNAs against DHFR or TS. Moreover, denticleless protein homolog (DTL), a cell cycle-regulated nuclear and centrosome protein, was confirmed to be one of the critical targets of miR-215, and knock-down of DTL by siRNA resulted in enhanced G2-arrest, p53 and p21 induction, and reduced cell proliferation. Additionally, cells subjected to siRNA against DTL exhibited increased chemoresistance to MTX and TDX. Endogenous miR-215 was elevated about 3-fold in CD133+HI/CD44+HI colon cancer stem cells that exhibit slow proliferating rate and chemoresistance compared to control bulk CD133+/CD44+ colon cancer cells.

Conclusions

Taken together, our results indicate that miR-215, through the suppression of DTL expression, induces a decreased cell proliferation by causing G2-arrest, thereby leading to an increase in chemoresistance to MTX and TDX. The findings of this study suggest that miR-215 may play a significant role in the mechanism of tumor chemoresistance and it may have a unique potential as a novel biomarker candidate.
Appendix
Available only for authorised users
Literature
1.
go back to reference Banerjee D, Mayer-Kuckuk P, Capiaux G, Budak-Alpdogan T, Gorlick R, Bertino JR: Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase. Biochim Biophys Acta. 2002, 1587: 164-173.CrossRefPubMed Banerjee D, Mayer-Kuckuk P, Capiaux G, Budak-Alpdogan T, Gorlick R, Bertino JR: Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase. Biochim Biophys Acta. 2002, 1587: 164-173.CrossRefPubMed
2.
go back to reference Carreras CW, Santi DV: The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem. 1995, 64: 721-762. 10.1146/annurev.bi.64.070195.003445CrossRefPubMed Carreras CW, Santi DV: The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem. 1995, 64: 721-762. 10.1146/annurev.bi.64.070195.003445CrossRefPubMed
3.
go back to reference Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD, Lenz HJ, Leichman CG, Leichman L, Diasio RB, Danenberg PV: Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res. 2000, 6: 1322-1327.PubMed Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD, Lenz HJ, Leichman CG, Leichman L, Diasio RB, Danenberg PV: Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res. 2000, 6: 1322-1327.PubMed
4.
go back to reference Formentini A, Henne-Bruns D, Kornmann M: Thymidylate synthase expression and prognosis of patients with gastrointestinal cancers receiving adjuvant chemotherapy: a review. Langenbecks Arch Surg. 2004, 389: 405-413. 10.1007/s00423-004-0510-yCrossRefPubMed Formentini A, Henne-Bruns D, Kornmann M: Thymidylate synthase expression and prognosis of patients with gastrointestinal cancers receiving adjuvant chemotherapy: a review. Langenbecks Arch Surg. 2004, 389: 405-413. 10.1007/s00423-004-0510-yCrossRefPubMed
5.
go back to reference Johnston PG, Benson AB, Catalano P, Rao MS, O'Dwyer PJ, Allegra CJ: Thymidylate synthase protein expression in primary colorectal cancer: lack of correlation with outcome and response to fluorouracil in metastatic disease sites. J Clin Oncol. 2003, 21: 815-819. 10.1200/JCO.2003.07.039CrossRefPubMed Johnston PG, Benson AB, Catalano P, Rao MS, O'Dwyer PJ, Allegra CJ: Thymidylate synthase protein expression in primary colorectal cancer: lack of correlation with outcome and response to fluorouracil in metastatic disease sites. J Clin Oncol. 2003, 21: 815-819. 10.1200/JCO.2003.07.039CrossRefPubMed
6.
go back to reference Wang W, McLeod HL, Cassidy J, Collie-Duguid ES: Mechanisms of acquired chemoresistance to 5-fluorouracil and tomudex: thymidylate synthase dependent and independent networks. Cancer Chemother Pharmacol. 2007, 59: 839-845. 10.1007/s00280-006-0384-5CrossRefPubMed Wang W, McLeod HL, Cassidy J, Collie-Duguid ES: Mechanisms of acquired chemoresistance to 5-fluorouracil and tomudex: thymidylate synthase dependent and independent networks. Cancer Chemother Pharmacol. 2007, 59: 839-845. 10.1007/s00280-006-0384-5CrossRefPubMed
7.
go back to reference Sheikh MS, Fornace AJ: Regulation of translation initiation following stress. Oncogene. 1999, 18: 6121-6128. 10.1038/sj.onc.1203131CrossRefPubMed Sheikh MS, Fornace AJ: Regulation of translation initiation following stress. Oncogene. 1999, 18: 6121-6128. 10.1038/sj.onc.1203131CrossRefPubMed
8.
go back to reference Chu E, Copur S, Ju J, Chen TM, Khleif S, Voeller DM, Mizunuma N, Patel M, Maley GF, Maley F, Allegra CJ: Thymidylate synthase protein and p53 mRNA form an in vivo ribonucleoprotein complex. Mol Cell Biol. 1999, 19: 1582-1594.PubMedCentralCrossRefPubMed Chu E, Copur S, Ju J, Chen TM, Khleif S, Voeller DM, Mizunuma N, Patel M, Maley GF, Maley F, Allegra CJ: Thymidylate synthase protein and p53 mRNA form an in vivo ribonucleoprotein complex. Mol Cell Biol. 1999, 19: 1582-1594.PubMedCentralCrossRefPubMed
9.
go back to reference Ju J, Pedersen-Lane J, Maley F, Chu E: Regulation of p53 expression by thymidylate synthase. Proc Natl Acad Sci USA. 1999, 96: 3769-3774. 10.1073/pnas.96.7.3769PubMedCentralCrossRefPubMed Ju J, Pedersen-Lane J, Maley F, Chu E: Regulation of p53 expression by thymidylate synthase. Proc Natl Acad Sci USA. 1999, 96: 3769-3774. 10.1073/pnas.96.7.3769PubMedCentralCrossRefPubMed
10.
go back to reference Ju J, Huang C, Minskoff S, Mayotte J, Taillon B, Simons JF: Simultaneous gene expression analysis of steady-state and actively translated mRNA populations from osteosarcoma MG-63 cells in response to IL-1α via an open expression analysis platform. Nucleic Acids Res. 2003, 31: 5157-5166. 10.1093/nar/gkg702PubMedCentralCrossRefPubMed Ju J, Huang C, Minskoff S, Mayotte J, Taillon B, Simons JF: Simultaneous gene expression analysis of steady-state and actively translated mRNA populations from osteosarcoma MG-63 cells in response to IL-1α via an open expression analysis platform. Nucleic Acids Res. 2003, 31: 5157-5166. 10.1093/nar/gkg702PubMedCentralCrossRefPubMed
11.
12.
go back to reference Chu E, Koeller DM, Casey JL, Drake JC, Chabner BA, Elwood PC, Zinn S, Allegra CJ: Autoregulation of human thymidylate synthase messenger RNA translation by thymidylate synthase. Proc Natl Acad Sci USA. 1991, 88: 8977-8981. 10.1073/pnas.88.20.8977PubMedCentralCrossRefPubMed Chu E, Koeller DM, Casey JL, Drake JC, Chabner BA, Elwood PC, Zinn S, Allegra CJ: Autoregulation of human thymidylate synthase messenger RNA translation by thymidylate synthase. Proc Natl Acad Sci USA. 1991, 88: 8977-8981. 10.1073/pnas.88.20.8977PubMedCentralCrossRefPubMed
13.
go back to reference Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75: 843-854. 10.1016/0092-8674(93)90529-YCrossRefPubMed Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75: 843-854. 10.1016/0092-8674(93)90529-YCrossRefPubMed
14.
go back to reference Kozak M: Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function. Gene. 2008, 423: 108-115. 10.1016/j.gene.2008.07.013CrossRefPubMed Kozak M: Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function. Gene. 2008, 423: 108-115. 10.1016/j.gene.2008.07.013CrossRefPubMed
15.
go back to reference Engels BM, Hutvagner G: Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene. 2006, 25: 6163-6169. 10.1038/sj.onc.1209909CrossRefPubMed Engels BM, Hutvagner G: Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene. 2006, 25: 6163-6169. 10.1038/sj.onc.1209909CrossRefPubMed
16.
go back to reference Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5CrossRefPubMed Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5CrossRefPubMed
17.
go back to reference Lewis BP, Burge C, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120: 15-20. 10.1016/j.cell.2004.12.035CrossRefPubMed Lewis BP, Burge C, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120: 15-20. 10.1016/j.cell.2004.12.035CrossRefPubMed
18.
go back to reference Verghese ET, Hanby A, Speirs V, Hughes TA: Small is beautiful: microRNAs and breast cancer-where are we now?. J Pathol. 2008, 215: 214-221. 10.1002/path.2359CrossRefPubMed Verghese ET, Hanby A, Speirs V, Hughes TA: Small is beautiful: microRNAs and breast cancer-where are we now?. J Pathol. 2008, 215: 214-221. 10.1002/path.2359CrossRefPubMed
19.
go back to reference Xi Y, Shalgi R, Fodstad O, Pilpel Y, Ju J: Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res. 2006, 12: 2014-2024. 10.1158/1078-0432.CCR-05-1853CrossRefPubMed Xi Y, Shalgi R, Fodstad O, Pilpel Y, Ju J: Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res. 2006, 12: 2014-2024. 10.1158/1078-0432.CCR-05-1853CrossRefPubMed
20.
go back to reference He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ: A microRNA component of the p53 tumour suppressor network. Nature. 2007, 447: 1130-1134. 10.1038/nature05939PubMedCentralCrossRefPubMed He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ: A microRNA component of the p53 tumour suppressor network. Nature. 2007, 447: 1130-1134. 10.1038/nature05939PubMedCentralCrossRefPubMed
21.
go back to reference He X, He L, Hannon GJ: The guardian's little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 2007, 67: 11099-11101. 10.1158/0008-5472.CAN-07-2672CrossRefPubMed He X, He L, Hannon GJ: The guardian's little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 2007, 67: 11099-11101. 10.1158/0008-5472.CAN-07-2672CrossRefPubMed
22.
go back to reference Xi Y, Edwards JR, Ju J: Investigation of miRNA biology by bioinformatic tools and impact of miRNAs in colorectal cancer-regulatory relationship of c-Myc and p53 with miRNAs. Cancer Inform. 2007, 3: 245-253.PubMedCentralPubMed Xi Y, Edwards JR, Ju J: Investigation of miRNA biology by bioinformatic tools and impact of miRNAs in colorectal cancer-regulatory relationship of c-Myc and p53 with miRNAs. Cancer Inform. 2007, 3: 245-253.PubMedCentralPubMed
23.
go back to reference Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007, 26: 745-752. 10.1016/j.molcel.2007.05.010PubMedCentralCrossRefPubMed Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007, 26: 745-752. 10.1016/j.molcel.2007.05.010PubMedCentralCrossRefPubMed
24.
go back to reference Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell Biol. 2007, 26: 731-743. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell Biol. 2007, 26: 731-743.
25.
go back to reference Song B, Wang Y, Kudo K, Gavin E, Xi Y, Ju J: miR-192 regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin Cancer Res. 2008, 14: 8080-8086. 10.1158/1078-0432.CCR-08-1422PubMedCentralCrossRefPubMed Song B, Wang Y, Kudo K, Gavin E, Xi Y, Ju J: miR-192 regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin Cancer Res. 2008, 14: 8080-8086. 10.1158/1078-0432.CCR-08-1422PubMedCentralCrossRefPubMed
26.
go back to reference Pan HW, Chou HY, Liu SH, Peng SY, Liu CL, Hsu HC: Role of L2DTL, cell cycle-regulated nuclear and centrosome protein, in aggressive hepatocellular carcinoma. Cell Cycle. 2006, 5: 2676-2687.CrossRefPubMed Pan HW, Chou HY, Liu SH, Peng SY, Liu CL, Hsu HC: Role of L2DTL, cell cycle-regulated nuclear and centrosome protein, in aggressive hepatocellular carcinoma. Cell Cycle. 2006, 5: 2676-2687.CrossRefPubMed
27.
go back to reference Ueki L, Nishidate T, Park JH, Lin ML, Shimo A, Hirata K, Nakamura Y, Katagiri T: Involvement of elevated expression of multiple cell-cycle regulator, DTL/RAMP (denticleless/RA-regulated nuclear matrix associated protein), in the growth of breast cancer cells. Oncogene. 2008, 27: 5672-5683. 10.1038/onc.2008.186CrossRefPubMed Ueki L, Nishidate T, Park JH, Lin ML, Shimo A, Hirata K, Nakamura Y, Katagiri T: Involvement of elevated expression of multiple cell-cycle regulator, DTL/RAMP (denticleless/RA-regulated nuclear matrix associated protein), in the growth of breast cancer cells. Oncogene. 2008, 27: 5672-5683. 10.1038/onc.2008.186CrossRefPubMed
28.
go back to reference Li J, Ng EK, Ng YP, Wong CY, Yu J, Jin H, Cheng VY, Go MY, Cheung PK, Ebert MP, Tong J, To KF, Chan FK, Sung JJ, Ip NY, Leung WK: Identification of retinoic acid-regulated nuclear matrix-associated protein as a novel regulator of gastric cancer. Br J Cancer. 2009, 101: 691-698. 10.1038/sj.bjc.6605202PubMedCentralCrossRefPubMed Li J, Ng EK, Ng YP, Wong CY, Yu J, Jin H, Cheng VY, Go MY, Cheung PK, Ebert MP, Tong J, To KF, Chan FK, Sung JJ, Ip NY, Leung WK: Identification of retinoic acid-regulated nuclear matrix-associated protein as a novel regulator of gastric cancer. Br J Cancer. 2009, 101: 691-698. 10.1038/sj.bjc.6605202PubMedCentralCrossRefPubMed
29.
go back to reference Zou GM: Cancer initiating cells or cancer stem cells in the gastrointestinal tract and liver. J Cell Physiol. 2008, 217: 598-604. 10.1002/jcp.21541CrossRefPubMed Zou GM: Cancer initiating cells or cancer stem cells in the gastrointestinal tract and liver. J Cell Physiol. 2008, 217: 598-604. 10.1002/jcp.21541CrossRefPubMed
30.
go back to reference Schmitz JC, Chen TM, Chu E: Small interfering double-stranded RNAs as therapeutic molecules to restore chemosensitivity to thymidylate synthase inhibitor compounds. Cancer Res. 2004, 64: 1431-1435. 10.1158/0008-5472.CAN-03-1203CrossRefPubMed Schmitz JC, Chen TM, Chu E: Small interfering double-stranded RNAs as therapeutic molecules to restore chemosensitivity to thymidylate synthase inhibitor compounds. Cancer Res. 2004, 64: 1431-1435. 10.1158/0008-5472.CAN-03-1203CrossRefPubMed
31.
go back to reference Showalter SL, Showalter TN, Witkiewicz A, Havens R, Kennedy EP, Hucl T, Kern SE, Yeo CJ, Brody JR: Evaluating the drug-target relationship between thymidylate synthase expression and tumor response to 5-fluorouracil. Is it time to move forward?. Cancer Biol Ther. 2008, 7: 986-994.PubMedCentralCrossRefPubMed Showalter SL, Showalter TN, Witkiewicz A, Havens R, Kennedy EP, Hucl T, Kern SE, Yeo CJ, Brody JR: Evaluating the drug-target relationship between thymidylate synthase expression and tumor response to 5-fluorouracil. Is it time to move forward?. Cancer Biol Ther. 2008, 7: 986-994.PubMedCentralCrossRefPubMed
32.
go back to reference Georges SA, Biery MC, Kim SY, Schelter JM, Guo J, Chang AN, Jackson AL, Carleton MO, Linsley PS, Cleary MA, Chau BN: Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res. 2008, 68: 10105-10112. 10.1158/0008-5472.CAN-08-1846CrossRefPubMed Georges SA, Biery MC, Kim SY, Schelter JM, Guo J, Chang AN, Jackson AL, Carleton MO, Linsley PS, Cleary MA, Chau BN: Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res. 2008, 68: 10105-10112. 10.1158/0008-5472.CAN-08-1846CrossRefPubMed
33.
go back to reference Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T: Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006, 130: 2113-2129. 10.1053/j.gastro.2006.02.057CrossRefPubMed Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T: Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006, 130: 2113-2129. 10.1053/j.gastro.2006.02.057CrossRefPubMed
34.
go back to reference Calin GA, Croce CM: MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 2006, 66: 7390-7394. 10.1158/0008-5472.CAN-06-0800CrossRefPubMed Calin GA, Croce CM: MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 2006, 66: 7390-7394. 10.1158/0008-5472.CAN-06-0800CrossRefPubMed
35.
go back to reference Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T, Ørntoft TF, Andersen CL, Dobbelstein M: p53-responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Res. 2008, 68: 10094-10104. 10.1158/0008-5472.CAN-08-1569PubMedCentralCrossRefPubMed Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T, Ørntoft TF, Andersen CL, Dobbelstein M: p53-responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Res. 2008, 68: 10094-10104. 10.1158/0008-5472.CAN-08-1569PubMedCentralCrossRefPubMed
36.
go back to reference Liu Y, Elf SE, Miyata Y, Sashida G, Liu Y, Huang G, Di Giandomenico S, Lee JM, Deblasio A, Menendez S, Antipin J, Reva B, Koff A, Nimer SD: p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell. 2009, 4: 37-48. 10.1016/j.stem.2008.11.006PubMedCentralCrossRefPubMed Liu Y, Elf SE, Miyata Y, Sashida G, Liu Y, Huang G, Di Giandomenico S, Lee JM, Deblasio A, Menendez S, Antipin J, Reva B, Koff A, Nimer SD: p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell. 2009, 4: 37-48. 10.1016/j.stem.2008.11.006PubMedCentralCrossRefPubMed
37.
go back to reference Taylor WR, Stark GR: Regulation of the G2/M transition by p53. Oncogene. 2001, 20: 1803-1815. 10.1038/sj.onc.1204252CrossRefPubMed Taylor WR, Stark GR: Regulation of the G2/M transition by p53. Oncogene. 2001, 20: 1803-1815. 10.1038/sj.onc.1204252CrossRefPubMed
38.
go back to reference Sansam CL, Shepard JL, Lai K, Ianari A, Danielian PS, Amsterdam A, Hopkins N, Lees JA: DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint. Genes Dev. 2006, 20: 3117-3129. 10.1101/gad.1482106PubMedCentralCrossRefPubMed Sansam CL, Shepard JL, Lai K, Ianari A, Danielian PS, Amsterdam A, Hopkins N, Lees JA: DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint. Genes Dev. 2006, 20: 3117-3129. 10.1101/gad.1482106PubMedCentralCrossRefPubMed
39.
go back to reference Banks D, Wu M, Higa LA, Gavrilova N, Quan J, Ye T, Kobayashi R, Sun H, Zhang H: L2DTL/CDT2 and PCNA interact with p53 and regulate p53 polyubiquitination and protein stability through MDM2 and CUL4A/DDB1 complexes. Cell Cycle. 2006, 5: 1719-1729.CrossRefPubMed Banks D, Wu M, Higa LA, Gavrilova N, Quan J, Ye T, Kobayashi R, Sun H, Zhang H: L2DTL/CDT2 and PCNA interact with p53 and regulate p53 polyubiquitination and protein stability through MDM2 and CUL4A/DDB1 complexes. Cell Cycle. 2006, 5: 1719-1729.CrossRefPubMed
40.
go back to reference Higa LA, Banks D, Wu M, Kobayashi R, Sun H, Zhang H: L2DTL/CDT2 interacts with the CUL4/DDB1 complex and PCNA and regulates CDT1 proteolysis in response to DNA damage. Cell Cycle. 2006, 5: 1675-1680.CrossRefPubMed Higa LA, Banks D, Wu M, Kobayashi R, Sun H, Zhang H: L2DTL/CDT2 interacts with the CUL4/DDB1 complex and PCNA and regulates CDT1 proteolysis in response to DNA damage. Cell Cycle. 2006, 5: 1675-1680.CrossRefPubMed
41.
go back to reference Ju J, Kane SE, Lenz HJ, Danenberg KD, Chu E, Danenberg PV: Desensitization and sensitization of cells to fluoropyrimidines with different antisenses directed against thymidylate synthase messenger RNA. Clin Cancer Res. 1998, 4: 2229-2236.PubMed Ju J, Kane SE, Lenz HJ, Danenberg KD, Chu E, Danenberg PV: Desensitization and sensitization of cells to fluoropyrimidines with different antisenses directed against thymidylate synthase messenger RNA. Clin Cancer Res. 1998, 4: 2229-2236.PubMed
42.
go back to reference van Triest B, Pinedo HM, van Hensbergen Y, Smid K, Telleman F, Schoenmakers PS, Wilt van der CL, van Laar JA, Noordhuis P, Jansen G, Peters GJ: Thymidylate synthase level as the main predictive parameter for sensitivity to 5-fluorouracil, but not for folate-based thymidylate synthase inhibitors, in 13 nonselected colon cancer cell lines. Clin Cancer Res. 1999, 5: 643-654.PubMed van Triest B, Pinedo HM, van Hensbergen Y, Smid K, Telleman F, Schoenmakers PS, Wilt van der CL, van Laar JA, Noordhuis P, Jansen G, Peters GJ: Thymidylate synthase level as the main predictive parameter for sensitivity to 5-fluorouracil, but not for folate-based thymidylate synthase inhibitors, in 13 nonselected colon cancer cell lines. Clin Cancer Res. 1999, 5: 643-654.PubMed
43.
go back to reference Peters GJ, Smitskamp-Wilms E, Smid K, Pinedo HM, Jansen G: Determinants of activity of the antifolate thymidylate synthase inhibitors Tomudex (ZD1694) and GW1843U89 against mono- and multilayered colon cancer cell lines under folate-restricted conditions. Cancer Res. 1999, 59: 5529-5535.PubMed Peters GJ, Smitskamp-Wilms E, Smid K, Pinedo HM, Jansen G: Determinants of activity of the antifolate thymidylate synthase inhibitors Tomudex (ZD1694) and GW1843U89 against mono- and multilayered colon cancer cell lines under folate-restricted conditions. Cancer Res. 1999, 59: 5529-5535.PubMed
44.
go back to reference Olsen EA: The pharmacology of methotrexate. J Am Acad Dermatol. 1991, 25: 306-318. 10.1016/0190-9622(91)70199-CCrossRefPubMed Olsen EA: The pharmacology of methotrexate. J Am Acad Dermatol. 1991, 25: 306-318. 10.1016/0190-9622(91)70199-CCrossRefPubMed
45.
go back to reference Pinedo HM, Zaharko DS, Bull JM, Chabner BA: The reversal of methotrexate cytotoxicity to mouse bone marrow cells by leucovorin and nucleosides. Cancer Res. 1976, 36: 4418-4424.PubMed Pinedo HM, Zaharko DS, Bull JM, Chabner BA: The reversal of methotrexate cytotoxicity to mouse bone marrow cells by leucovorin and nucleosides. Cancer Res. 1976, 36: 4418-4424.PubMed
46.
go back to reference Yamauchi A, Ichimiya T, Inoue K, Taguchi Y, Matsunaga N, Koyanagi S, Fukagawa T, Aramaki H, Higuchi S, Ohdo S: Cell-cycle-dependent pharmacology of methotrexate in HL-60. J Pharmacol Sci. 2005, 99: 335-341. 10.1254/jphs.FP0050761CrossRefPubMed Yamauchi A, Ichimiya T, Inoue K, Taguchi Y, Matsunaga N, Koyanagi S, Fukagawa T, Aramaki H, Higuchi S, Ohdo S: Cell-cycle-dependent pharmacology of methotrexate in HL-60. J Pharmacol Sci. 2005, 99: 335-341. 10.1254/jphs.FP0050761CrossRefPubMed
47.
go back to reference Kano Y, Akutsu M, Tsunoda S, Suzuki K, Yazawa Y, Furukawa Y: Schedule-dependent synergism and antagonism between raltitrexed ("Tomudex") and methotrexate in human colon cancer cell lines in vitro. Jpn J Cancer Res. 2001, 92: 74-82.CrossRefPubMed Kano Y, Akutsu M, Tsunoda S, Suzuki K, Yazawa Y, Furukawa Y: Schedule-dependent synergism and antagonism between raltitrexed ("Tomudex") and methotrexate in human colon cancer cell lines in vitro. Jpn J Cancer Res. 2001, 92: 74-82.CrossRefPubMed
48.
go back to reference Du L, Wang H, He L, Zhang J, Ni B, Wang X, Jin H, Cahuzac N, Mehrpour M, Lu Y, Chen Q: CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008, 14: 6751-6760. 10.1158/1078-0432.CCR-08-1034CrossRefPubMed Du L, Wang H, He L, Zhang J, Ni B, Wang X, Jin H, Cahuzac N, Mehrpour M, Lu Y, Chen Q: CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008, 14: 6751-6760. 10.1158/1078-0432.CCR-08-1034CrossRefPubMed
49.
go back to reference Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R: Identification and expansion of human colon-cancer-initiating cells. Nature. 2007, 445: 111-115. 10.1038/nature05384CrossRefPubMed Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R: Identification and expansion of human colon-cancer-initiating cells. Nature. 2007, 445: 111-115. 10.1038/nature05384CrossRefPubMed
50.
go back to reference Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, St Clair R, Baljevic M, White I, Jin DK, Chadburn A, Murphy AJ, Valenzuela DM, Gale NW, Thurston G, Yancopoulos GD, D'Angelica M, Kemeny N, Lyden D, Rafii S: CD133 expression is not restricted to stem cells, and both CD133 and CD133 metastatic colon cancer cells initiate tumors. J Clin Invest. 2008, 118: 2111-2120.PubMedCentralPubMed Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, St Clair R, Baljevic M, White I, Jin DK, Chadburn A, Murphy AJ, Valenzuela DM, Gale NW, Thurston G, Yancopoulos GD, D'Angelica M, Kemeny N, Lyden D, Rafii S: CD133 expression is not restricted to stem cells, and both CD133 and CD133 metastatic colon cancer cells initiate tumors. J Clin Invest. 2008, 118: 2111-2120.PubMedCentralPubMed
51.
go back to reference Botchkina IL, Rowehl RA, Rivadeneira DE, Karpeh MS, Crawford H, Dufour A, Ju J, Wang Y, Leyfman Y, Botchkina GI: Phenotypic subpopulations of metastatic colon cancer stem cells: genomic analysis. Cancer Genomics Proteomics. 2009, 6: 19-29.PubMed Botchkina IL, Rowehl RA, Rivadeneira DE, Karpeh MS, Crawford H, Dufour A, Ju J, Wang Y, Leyfman Y, Botchkina GI: Phenotypic subpopulations of metastatic colon cancer stem cells: genomic analysis. Cancer Genomics Proteomics. 2009, 6: 19-29.PubMed
52.
go back to reference Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J, Kornmann M, Ju J: Prognostic values of microRNAs in colorectal cancer. Biomark Insights. 2006, 2: 113-121.PubMed Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J, Kornmann M, Ju J: Prognostic values of microRNAs in colorectal cancer. Biomark Insights. 2006, 2: 113-121.PubMed
Metadata
Title
Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells
Authors
Bo Song
Yuan Wang
Matthew A. Titmus
Galina Botchkina
Andrea Formentini
Marko Kornmann
Jingfang Ju
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2010
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-96

Other articles of this Issue 1/2010

Molecular Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine