Skip to main content
Top
Published in: Molecular Cancer 1/2010

Open Access 01-12-2010 | Research

ISG20L1 is a p53 family target gene that modulates genotoxic stress-induced autophagy

Authors: Kathryn G. Eby, Jennifer M. Rosenbluth, Deborah J. Mays, Clayton B. Marshall, Christopher E. Barton, Seema Sinha, Kimberly N. Johnson, Luojia Tang, Jennifer A. Pietenpol

Published in: Molecular Cancer | Issue 1/2010

Login to get access

Abstract

Background

Autophagy is characterized by the sequestration of cytoplasm and organelles into multimembrane vesicles and subsequent degradation by the cell's lysosomal system. It is linked to many physiological functions in human cells including stress response, protein degradation, organelle turnover, caspase-independent cell death and tumor suppression. Malignant transformation is frequently associated with deregulation of autophagy and several tumor suppressors can modulate autophagic processes. The tumor suppressor p53 can induce autophagy after metabolic or genotoxic stress through transcriptionally-dependent and -independent mechanisms. In this study we expand on the former mechanism by functionally characterizing a p53 family target gene, ISG20L1 under conditions of genotoxic stress.

Results

We identified a p53 target gene, ISG20L1, and show that transcription of the gene can be regulated by all three p53 family members (p53, p63, and p73). We generated an antibody to ISG20L1 and found that it localizes to the nucleolar and perinucleolar regions of the nucleus and its protein levels increase in a p53- and p73-dependent manner after various forms of genotoxic stress. When ectopically expressed in epithelial cancer-derived cell lines, ISG20L1 expression decreased clonogenic survival without a concomitant elevation in apoptosis and this effect was partially rescued in cells that were ATG5 deficient. Knockdown of ISG20L1 did not alter 5-FU induced apoptosis as assessed by PARP and caspase-3 cleavage, sub-G1 content, and DNA laddering. Thus, we investigated the role of ISG20L1 in autophagy, a process commonly associated with type II cell death, and found that ISG20L1 knockdown decreased levels of autophagic vacuoles and LC3-II after genotoxic stress as assessed by electron microscopy, biochemical, and immunohistochemical measurements of LC3-II.

Conclusions

Our identification of ISG20L1 as a p53 family target and discovery that modulation of this target can regulate autophagic processes further strengthens the connection between p53 signaling and autophagy. Given the keen interest in targeting autophagy as an anticancer therapeutic approach in tumor cells that are defective in apoptosis, investigation of genes and signaling pathways involved in cell death associated with autophagy is critical.
Appendix
Available only for authorised users
Literature
1.
go back to reference Crighton D, Wilkinson S, Ryan KM: DRAM links autophagy to p53 and programmed cell death. Autophagy. 2007, 3: 72-74.CrossRefPubMed Crighton D, Wilkinson S, Ryan KM: DRAM links autophagy to p53 and programmed cell death. Autophagy. 2007, 3: 72-74.CrossRefPubMed
2.
go back to reference Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y: Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005, 169: 425-434. 10.1083/jcb.200412022PubMedCentralCrossRefPubMed Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y: Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005, 169: 425-434. 10.1083/jcb.200412022PubMedCentralCrossRefPubMed
3.
go back to reference Levine B: Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell. 2005, 120: 159-162.PubMed Levine B: Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell. 2005, 120: 159-162.PubMed
4.
go back to reference Green DR, Chipuk JE: p53 and metabolism: Inside the TIGAR. Cell. 2006, 126: 30-32. 10.1016/j.cell.2006.06.032CrossRefPubMed Green DR, Chipuk JE: p53 and metabolism: Inside the TIGAR. Cell. 2006, 126: 30-32. 10.1016/j.cell.2006.06.032CrossRefPubMed
5.
go back to reference Kang C, You YJ, Avery L: Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev. 2007, 21: 2161-2171. 10.1101/gad.1573107PubMedCentralCrossRefPubMed Kang C, You YJ, Avery L: Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev. 2007, 21: 2161-2171. 10.1101/gad.1573107PubMedCentralCrossRefPubMed
6.
go back to reference Scott RC, Juhasz G, Neufeld TP: Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol. 2007, 17: 1-11. 10.1016/j.cub.2006.10.053PubMedCentralCrossRefPubMed Scott RC, Juhasz G, Neufeld TP: Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol. 2007, 17: 1-11. 10.1016/j.cub.2006.10.053PubMedCentralCrossRefPubMed
7.
go back to reference Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y: Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol. 2004, 6: 1221-1228. 10.1038/ncb1192CrossRefPubMed Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y: Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol. 2004, 6: 1221-1228. 10.1038/ncb1192CrossRefPubMed
10.
go back to reference Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu C, Harper F: Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008, 10: 676-687. 10.1038/ncb1730PubMedCentralCrossRefPubMed Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu C, Harper F: Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008, 10: 676-687. 10.1038/ncb1730PubMedCentralCrossRefPubMed
11.
12.
go back to reference Braunstein S, Badura ML, Xi Q, Formenti SC, Schneider RJ: Regulation of protein synthesis by ionizing radiation. Mol Cell Biol. 2009, 29: 5645-5656. 10.1128/MCB.00711-09PubMedCentralCrossRefPubMed Braunstein S, Badura ML, Xi Q, Formenti SC, Schneider RJ: Regulation of protein synthesis by ionizing radiation. Mol Cell Biol. 2009, 29: 5645-5656. 10.1128/MCB.00711-09PubMedCentralCrossRefPubMed
13.
go back to reference Budanov AV, Karin M: p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008, 134: 451-460. 10.1016/j.cell.2008.06.028PubMedCentralCrossRefPubMed Budanov AV, Karin M: p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008, 134: 451-460. 10.1016/j.cell.2008.06.028PubMedCentralCrossRefPubMed
14.
go back to reference Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM: DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006, 126: 121-134. 10.1016/j.cell.2006.05.034CrossRefPubMed Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM: DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006, 126: 121-134. 10.1016/j.cell.2006.05.034CrossRefPubMed
15.
go back to reference Murray-Zmijewski F, Lane DP, Bourdon JC: p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 2006, 13: 962-972. 10.1038/sj.cdd.4401914CrossRefPubMed Murray-Zmijewski F, Lane DP, Bourdon JC: p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 2006, 13: 962-972. 10.1038/sj.cdd.4401914CrossRefPubMed
16.
go back to reference Rosenbluth JM, Pietenpol JA: The jury is in: p73 is a tumor suppressor after all. Genes Dev. 2008, 22: 2591-2595. 10.1101/gad.1727408CrossRefPubMed Rosenbluth JM, Pietenpol JA: The jury is in: p73 is a tumor suppressor after all. Genes Dev. 2008, 22: 2591-2595. 10.1101/gad.1727408CrossRefPubMed
17.
18.
go back to reference Crighton D, O'Prey J, Bell HS, Ryan KM: p73 regulates DRAM-independent autophagy that does not contribute to programmed cell death. Cell Death Differ. 2007, 14. 10.1-1079.CrossRefPubMed Crighton D, O'Prey J, Bell HS, Ryan KM: p73 regulates DRAM-independent autophagy that does not contribute to programmed cell death. Cell Death Differ. 2007, 14. 10.1-1079.CrossRefPubMed
19.
go back to reference Schavolt KL, Pietenpol JA: p53 and Delta Np63 alpha differentially bind and regulate target genes involved in cell cycle arrest, DNA repair and apoptosis. Oncogene. 2007, 26: 6125-6132. 10.1038/sj.onc.1210441CrossRefPubMed Schavolt KL, Pietenpol JA: p53 and Delta Np63 alpha differentially bind and regulate target genes involved in cell cycle arrest, DNA repair and apoptosis. Oncogene. 2007, 26: 6125-6132. 10.1038/sj.onc.1210441CrossRefPubMed
20.
go back to reference Hearnes JM, Mays DJ, Schavolt KL, Tang L, Jiang X, Pietenpol JA: Chromatin immunoprecipitation-based screen to identify functional genomic binding sites for sequence-specific transactivators. Mol Cell Biol. 2005, 25: 10148-10158. 10.1128/MCB.25.22.10148-10158.2005PubMedCentralCrossRefPubMed Hearnes JM, Mays DJ, Schavolt KL, Tang L, Jiang X, Pietenpol JA: Chromatin immunoprecipitation-based screen to identify functional genomic binding sites for sequence-specific transactivators. Mol Cell Biol. 2005, 25: 10148-10158. 10.1128/MCB.25.22.10148-10158.2005PubMedCentralCrossRefPubMed
21.
go back to reference Coute Y, Kindbeiter K, Belin S, Dieckmann R, Duret L, Bezin L, Sanchez JC, Diaz JJ: ISG20L2, a novel vertebrate nucleolar exoribonuclease involved in ribosome biogenesis. Mol Cell Proteomics. 2008, 7: 546-559.CrossRefPubMed Coute Y, Kindbeiter K, Belin S, Dieckmann R, Duret L, Bezin L, Sanchez JC, Diaz JJ: ISG20L2, a novel vertebrate nucleolar exoribonuclease involved in ribosome biogenesis. Mol Cell Proteomics. 2008, 7: 546-559.CrossRefPubMed
22.
go back to reference Flatt PM, Price JO, Shaw A, Pietenpol JA: Differential cell cycle checkpoint response in normal human keratinocytes and fibroblasts. Cell Growth Differ. 1998, 9: 535-543.PubMed Flatt PM, Price JO, Shaw A, Pietenpol JA: Differential cell cycle checkpoint response in normal human keratinocytes and fibroblasts. Cell Growth Differ. 1998, 9: 535-543.PubMed
23.
go back to reference Agami R, Blandino G, Oren M, Shaul Y: Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature. 1999, 399: 809-813. 10.1038/21697CrossRefPubMed Agami R, Blandino G, Oren M, Shaul Y: Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature. 1999, 399: 809-813. 10.1038/21697CrossRefPubMed
24.
go back to reference Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin WG, Levrero M, Wang JY: The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature. 1999, 399: 806-809. 10.1038/21690CrossRefPubMed Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin WG, Levrero M, Wang JY: The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature. 1999, 399: 806-809. 10.1038/21690CrossRefPubMed
25.
go back to reference Lapi E, Iovino A, Fontemaggi G, Soliera AR, Iacovelli S, Sacchi A, Rechavi G, Givol D, Blandino G, Strano S: S100A2 gene is a direct transcriptional target of p53 homologues during keratinocyte differentiation. Oncogene. 2006, 25: 3628-3637. 10.1038/sj.onc.1209401CrossRefPubMed Lapi E, Iovino A, Fontemaggi G, Soliera AR, Iacovelli S, Sacchi A, Rechavi G, Givol D, Blandino G, Strano S: S100A2 gene is a direct transcriptional target of p53 homologues during keratinocyte differentiation. Oncogene. 2006, 25: 3628-3637. 10.1038/sj.onc.1209401CrossRefPubMed
26.
go back to reference Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY, Lu H, Kharbanda S, Weichselbaum R, Kufe D: p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature. 1999, 399: 814-817. 10.1038/21704CrossRefPubMed Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY, Lu H, Kharbanda S, Weichselbaum R, Kufe D: p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature. 1999, 399: 814-817. 10.1038/21704CrossRefPubMed
27.
go back to reference Leong CO, Vidnovic N, DeYoung MP, Sgroi D, Ellisen LW: The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest. 2007, 117: 1370-1380. 10.1172/JCI30866PubMedCentralCrossRefPubMed Leong CO, Vidnovic N, DeYoung MP, Sgroi D, Ellisen LW: The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest. 2007, 117: 1370-1380. 10.1172/JCI30866PubMedCentralCrossRefPubMed
28.
go back to reference Oh YK, Lee HJ, Jeong MH, Rhee M, Mo JW, Song EH, Lim JY, Choi KH, Jo I, Park SI: Role of activating transcription factor 3 on TAp73 stability and apoptosis in paclitaxel-treated cervical cancer cells. Mol Cancer Res. 2008, 6: 1232-1249. 10.1158/1541-7786.MCR-07-0297PubMedCentralCrossRefPubMed Oh YK, Lee HJ, Jeong MH, Rhee M, Mo JW, Song EH, Lim JY, Choi KH, Jo I, Park SI: Role of activating transcription factor 3 on TAp73 stability and apoptosis in paclitaxel-treated cervical cancer cells. Mol Cancer Res. 2008, 6: 1232-1249. 10.1158/1541-7786.MCR-07-0297PubMedCentralCrossRefPubMed
29.
go back to reference Rosenbluth JM, Mays DJ, Pino MF, Tang LJ, Pietenpol JA: A gene signature-based approach identifies mTOR as a regulator of p73. Mol Cell Biol. 2008, 28: 5951-5964. 10.1128/MCB.00305-08PubMedCentralCrossRefPubMed Rosenbluth JM, Mays DJ, Pino MF, Tang LJ, Pietenpol JA: A gene signature-based approach identifies mTOR as a regulator of p73. Mol Cell Biol. 2008, 28: 5951-5964. 10.1128/MCB.00305-08PubMedCentralCrossRefPubMed
30.
go back to reference Peng T, Golub TR, Sabatini DM: The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol. 2002, 22: 5575-5584. 10.1128/MCB.22.15.5575-5584.2002PubMedCentralCrossRefPubMed Peng T, Golub TR, Sabatini DM: The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol. 2002, 22: 5575-5584. 10.1128/MCB.22.15.5575-5584.2002PubMedCentralCrossRefPubMed
31.
go back to reference Ortt K, Sinha S: Derivation of the consensus DNA-binding sequence for p63 reveals unique requirements that are distinct from p53. FEBS Lett. 2006, 580: 4544-4550. 10.1016/j.febslet.2006.07.004CrossRefPubMed Ortt K, Sinha S: Derivation of the consensus DNA-binding sequence for p63 reveals unique requirements that are distinct from p53. FEBS Lett. 2006, 580: 4544-4550. 10.1016/j.febslet.2006.07.004CrossRefPubMed
32.
go back to reference Perez CA, Ott J, Mays DJ, Pietenpol JA: p63 consensus DNA-binding site: identification, analysis and application into a p63MH algorithm. Oncogene. 2007, 26: 7363-7370. 10.1038/sj.onc.1210561CrossRefPubMed Perez CA, Ott J, Mays DJ, Pietenpol JA: p63 consensus DNA-binding site: identification, analysis and application into a p63MH algorithm. Oncogene. 2007, 26: 7363-7370. 10.1038/sj.onc.1210561CrossRefPubMed
33.
go back to reference Shikama N, Lee CW, France S, Delavaine L, Lyon J, Krstic-Demonacos M, La Thangue NB: A novel cofactor for p300 that regulates the p53 response. Mol Cell. 1999, 4: 365-376. 10.1016/S1097-2765(00)80338-XCrossRefPubMed Shikama N, Lee CW, France S, Delavaine L, Lyon J, Krstic-Demonacos M, La Thangue NB: A novel cofactor for p300 that regulates the p53 response. Mol Cell. 1999, 4: 365-376. 10.1016/S1097-2765(00)80338-XCrossRefPubMed
34.
go back to reference Zhu J, Jiang J, Zhou W, Chen X: The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer Res. 1998, 58: 5061-5065.PubMed Zhu J, Jiang J, Zhou W, Chen X: The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer Res. 1998, 58: 5061-5065.PubMed
35.
go back to reference Fritsche M, Haessler C, Brandner G: Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene. 1993, 8: 307-318.PubMed Fritsche M, Haessler C, Brandner G: Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene. 1993, 8: 307-318.PubMed
36.
go back to reference Lee JH, Koh YA, Cho CK, Lee SJ, Lee YS, Bae S: Identification of a novel ionizing radiation-induced nuclease, AEN, and its functional characterization in apoptosis. Biochem Biophys Res Commun. 2005, 337: 39-47. 10.1016/j.bbrc.2005.08.264CrossRefPubMed Lee JH, Koh YA, Cho CK, Lee SJ, Lee YS, Bae S: Identification of a novel ionizing radiation-induced nuclease, AEN, and its functional characterization in apoptosis. Biochem Biophys Res Commun. 2005, 337: 39-47. 10.1016/j.bbrc.2005.08.264CrossRefPubMed
37.
go back to reference Cecconi F, Levine B: The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell. 2008, 15: 344-357. 10.1016/j.devcel.2008.08.012PubMedCentralCrossRefPubMed Cecconi F, Levine B: The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell. 2008, 15: 344-357. 10.1016/j.devcel.2008.08.012PubMedCentralCrossRefPubMed
38.
go back to reference Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J. 2000, 19: 5720-5728. 10.1093/emboj/19.21.5720PubMedCentralCrossRefPubMed Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J. 2000, 19: 5720-5728. 10.1093/emboj/19.21.5720PubMedCentralCrossRefPubMed
39.
go back to reference Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A: Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy. 2008, 4: 151-175.PubMedCentralCrossRefPubMed Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A: Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy. 2008, 4: 151-175.PubMedCentralCrossRefPubMed
40.
go back to reference Mizushima N: Methods for monitoring autophagy. Int J Biochem Cell Biol. 2004, 36: 2491-2502. 10.1016/j.biocel.2004.02.005CrossRefPubMed Mizushima N: Methods for monitoring autophagy. Int J Biochem Cell Biol. 2004, 36: 2491-2502. 10.1016/j.biocel.2004.02.005CrossRefPubMed
41.
go back to reference Mizushima N, Yoshimori T, Levine B: Methods in mammalian autophagy research. Cell. 140: 313-326. Mizushima N, Yoshimori T, Levine B: Methods in mammalian autophagy research. Cell. 140: 313-326.
42.
go back to reference Swanlund JM, Kregel KC, Oberley TD: Investigating autophagy: Quantitative morphometric analysis using electron microscopy. Autophagy. 6: Swanlund JM, Kregel KC, Oberley TD: Investigating autophagy: Quantitative morphometric analysis using electron microscopy. Autophagy. 6:
43.
go back to reference Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL: Monitoring autophagy by electron microscopy in Mammalian cells. Methods Enzymol. 2009, 452: 143-164. full_textCrossRefPubMed Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL: Monitoring autophagy by electron microscopy in Mammalian cells. Methods Enzymol. 2009, 452: 143-164. full_textCrossRefPubMed
44.
go back to reference Kimura S, Noda T, Yoshimori T: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 2007, 3: 452-460.CrossRefPubMed Kimura S, Noda T, Yoshimori T: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 2007, 3: 452-460.CrossRefPubMed
45.
go back to reference Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N: The role of autophagy during the early neonatal starvation period. Nature. 2004, 432: 1032-1036. 10.1038/nature03029CrossRefPubMed Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N: The role of autophagy during the early neonatal starvation period. Nature. 2004, 432: 1032-1036. 10.1038/nature03029CrossRefPubMed
46.
go back to reference Feng Z, Zhang H, Levine AJ, Jin S: The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA. 2005, 102: 8204-8209. 10.1073/pnas.0502857102PubMedCentralCrossRefPubMed Feng Z, Zhang H, Levine AJ, Jin S: The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA. 2005, 102: 8204-8209. 10.1073/pnas.0502857102PubMedCentralCrossRefPubMed
47.
go back to reference Yue Z, Jin S, Yang C, Levine AJ, Heintz N: Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA. 2003, 100: 15077-15082. 10.1073/pnas.2436255100PubMedCentralCrossRefPubMed Yue Z, Jin S, Yang C, Levine AJ, Heintz N: Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA. 2003, 100: 15077-15082. 10.1073/pnas.2436255100PubMedCentralCrossRefPubMed
48.
go back to reference Scheer U, Hock R: Structure and function of the nucleolus. Curr Opin Cell Biol. 1999, 11: 385-390. 10.1016/S0955-0674(99)80054-4CrossRefPubMed Scheer U, Hock R: Structure and function of the nucleolus. Curr Opin Cell Biol. 1999, 11: 385-390. 10.1016/S0955-0674(99)80054-4CrossRefPubMed
49.
go back to reference Pestov DG, Strezoska Z, Lau LF: Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol. 2001, 21: 4246-4255. 10.1128/MCB.21.13.4246-4255.2001PubMedCentralCrossRefPubMed Pestov DG, Strezoska Z, Lau LF: Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol. 2001, 21: 4246-4255. 10.1128/MCB.21.13.4246-4255.2001PubMedCentralCrossRefPubMed
50.
go back to reference David-Pfeuty T: Potent inhibitors of cyclin-dependent kinase 2 induce nuclear accumulation of wild-type p53 and nucleolar fragmentation in human untransformed and tumor-derived cells. Oncogene. 1999, 18: 7409-7422. 10.1038/sj.onc.1203103CrossRefPubMed David-Pfeuty T: Potent inhibitors of cyclin-dependent kinase 2 induce nuclear accumulation of wild-type p53 and nucleolar fragmentation in human untransformed and tumor-derived cells. Oncogene. 1999, 18: 7409-7422. 10.1038/sj.onc.1203103CrossRefPubMed
51.
go back to reference Olson MO: Sensing cellular stress: another new function for the nucleolus?. Sci STKE. 2004, 2004: pe10- 10.1126/stke.2242004pe10PubMed Olson MO: Sensing cellular stress: another new function for the nucleolus?. Sci STKE. 2004, 2004: pe10- 10.1126/stke.2242004pe10PubMed
52.
go back to reference Rubbi CP, Milner J: Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. Embo J. 2003, 22: 6068-6077. 10.1093/emboj/cdg579PubMedCentralCrossRefPubMed Rubbi CP, Milner J: Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. Embo J. 2003, 22: 6068-6077. 10.1093/emboj/cdg579PubMedCentralCrossRefPubMed
53.
go back to reference Sugimoto M, Kuo ML, Roussel MF, Sherr CJ: Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol Cell. 2003, 11: 415-424. 10.1016/S1097-2765(03)00057-1CrossRefPubMed Sugimoto M, Kuo ML, Roussel MF, Sherr CJ: Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol Cell. 2003, 11: 415-424. 10.1016/S1097-2765(03)00057-1CrossRefPubMed
54.
55.
go back to reference Kawase T, Ichikawa H, Ohta T, Nozaki N, Tashiro F, Ohki R, Taya Y: p53 target gene AEN is a nuclear exonuclease required for p53-dependent apoptosis. Oncogene. 2008, 27: 3797-3810. 10.1038/onc.2008.32CrossRefPubMed Kawase T, Ichikawa H, Ohta T, Nozaki N, Tashiro F, Ohki R, Taya Y: p53 target gene AEN is a nuclear exonuclease required for p53-dependent apoptosis. Oncogene. 2008, 27: 3797-3810. 10.1038/onc.2008.32CrossRefPubMed
56.
go back to reference Kraft C, Deplazes A, Sohrmann M, Peter M: Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol. 2008, 10: 602-610. 10.1038/ncb1723CrossRefPubMed Kraft C, Deplazes A, Sohrmann M, Peter M: Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol. 2008, 10: 602-610. 10.1038/ncb1723CrossRefPubMed
57.
go back to reference Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A: Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 2009, 16: 966-975. 10.1038/cdd.2009.33CrossRefPubMed Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A: Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 2009, 16: 966-975. 10.1038/cdd.2009.33CrossRefPubMed
58.
go back to reference Bursch W, Karwan A, Mayer M, Dornetshuber J, Frohwein U, Schulte-Hermann R, Fazi B, Di Sano F, Piredda L, Piacentini M: Cell death and autophagy: cytokines, drugs, and nutritional factors. Toxicology. 2008, 254: 147-157. 10.1016/j.tox.2008.07.048CrossRefPubMed Bursch W, Karwan A, Mayer M, Dornetshuber J, Frohwein U, Schulte-Hermann R, Fazi B, Di Sano F, Piredda L, Piacentini M: Cell death and autophagy: cytokines, drugs, and nutritional factors. Toxicology. 2008, 254: 147-157. 10.1016/j.tox.2008.07.048CrossRefPubMed
59.
go back to reference Westfall MD, Joyner AS, Barbieri CE, Livingstone M, Pietenpol JA: Ultraviolet radiation induces phosphorylation and ubiquitin-mediated degradation of DeltaNp63alpha. Cell Cycle. 2005, 4: 710-716.CrossRefPubMed Westfall MD, Joyner AS, Barbieri CE, Livingstone M, Pietenpol JA: Ultraviolet radiation induces phosphorylation and ubiquitin-mediated degradation of DeltaNp63alpha. Cell Cycle. 2005, 4: 710-716.CrossRefPubMed
60.
go back to reference Stampfer MR, Garbe J, Levine G, Lichtsteiner S, Vasserot AP, Yaswen P: Expression of the telomerase catalytic subunit, hTERT, induces resistance to transforming growth factor beta growth inhibition in p16INK4A(-) human mammary epithelial cells. Proc Natl Acad Sci USA. 2001, 98: 4498-4503. 10.1073/pnas.071483998PubMedCentralCrossRefPubMed Stampfer MR, Garbe J, Levine G, Lichtsteiner S, Vasserot AP, Yaswen P: Expression of the telomerase catalytic subunit, hTERT, induces resistance to transforming growth factor beta growth inhibition in p16INK4A(-) human mammary epithelial cells. Proc Natl Acad Sci USA. 2001, 98: 4498-4503. 10.1073/pnas.071483998PubMedCentralCrossRefPubMed
61.
go back to reference Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA: The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol Cell Biol. 2003, 23: 2264-2276. 10.1128/MCB.23.7.2264-2276.2003PubMedCentralCrossRefPubMed Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA: The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol Cell Biol. 2003, 23: 2264-2276. 10.1128/MCB.23.7.2264-2276.2003PubMedCentralCrossRefPubMed
62.
go back to reference Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T: Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol. 2001, 152: 657-668. 10.1083/jcb.152.4.657PubMedCentralCrossRefPubMed Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T: Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol. 2001, 152: 657-668. 10.1083/jcb.152.4.657PubMedCentralCrossRefPubMed
63.
go back to reference Stewart ZA, Leach SD, Pietenpol JA: p21(Waf1/Cip1) inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption. Mol Cell Biol. 1999, 19: 205-215.PubMedCentralCrossRefPubMed Stewart ZA, Leach SD, Pietenpol JA: p21(Waf1/Cip1) inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption. Mol Cell Biol. 1999, 19: 205-215.PubMedCentralCrossRefPubMed
64.
65.
go back to reference Rosenbluth JM, Johnson K, Tang L, Triplett T, Pietenpol JA: Evaluation of p63 and p73 antibodies for cross-reactivity. Cell Cycle. 2009, 8: 3702-3706. 10.4161/cc.8.22.10036CrossRefPubMed Rosenbluth JM, Johnson K, Tang L, Triplett T, Pietenpol JA: Evaluation of p63 and p73 antibodies for cross-reactivity. Cell Cycle. 2009, 8: 3702-3706. 10.4161/cc.8.22.10036CrossRefPubMed
Metadata
Title
ISG20L1 is a p53 family target gene that modulates genotoxic stress-induced autophagy
Authors
Kathryn G. Eby
Jennifer M. Rosenbluth
Deborah J. Mays
Clayton B. Marshall
Christopher E. Barton
Seema Sinha
Kimberly N. Johnson
Luojia Tang
Jennifer A. Pietenpol
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2010
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-95

Other articles of this Issue 1/2010

Molecular Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine