Skip to main content
Top
Published in: Molecular Cancer 1/2010

Open Access 01-12-2010 | Research

Replication independent DNA double-strand break retention may prevent genomic instability

Authors: Narisorn Kongruttanachok, Chutipa Phuangphairoj, Araya Thongnak, Wanpen Ponyeam, Prakasit Rattanatanyong, Wichai Pornthanakasem, Apiwat Mutirangura

Published in: Molecular Cancer | Issue 1/2010

Login to get access

Abstract

Background

Global hypomethylation and genomic instability are cardinal features of cancers. Recently, we established a method for the detection of DNA methylation levels at sites close to endogenous DNA double strand breaks (EDSBs), and found that those sites have a higher level of methylation than the rest of the genome. Interestingly, the most significant differences between EDSBs and genomes were observed when cells were cultured in the absence of serum. DNA methylation levels on each genomic location are different. Therefore, there are more replication-independent EDSBs (RIND-EDSBs) located in methylated genomic regions. Moreover, methylated and unmethylated RIND-EDSBs are differentially processed. Euchromatins respond rapidly to DSBs induced by irradiation with the phosphorylation of H2AX, γ-H2AX, and these initiate the DSB repair process. During G0, most DSBs are repaired by non-homologous end-joining repair (NHEJ), mediated by at least two distinct pathways; the Ku-mediated and the ataxia telangiectasia-mutated (ATM)-mediated. The ATM-mediated pathway is more precise. Here we explored how cells process methylated RIND-EDSBs and if RIND-EDSBs play a role in global hypomethylation-induced genomic instability.

Results

We observed a significant number of methylated RIND-EDSBs that are retained within deacetylated chromatin and free from an immediate cellular response to DSBs, the γ-H2AX. When cells were treated with tricostatin A (TSA) and the histones became hyperacetylated, the amount of γ-H2AX-bound DNA increased and the retained RIND-EDSBs were rapidly repaired. When NHEJ was simultaneously inhibited in TSA-treated cells, more EDSBs were detected. Without TSA, a sporadic increase in unmethylated RIND-EDSBs could be observed when Ku-mediated NHEJ was inhibited. Finally, a remarkable increase in RIND-EDSB methylation levels was observed when cells were depleted of ATM, but not of Ku86 and RAD51.

Conclusions

Methylated RIND-EDSBs are retained in non-acetylated heterochromatin because there is a prolonged time lag between RIND-EDSB production and repair. The rapid cellular responses to DSBs may be blocked by compact heterochromatin structure which then allows these breaks to be repaired by a more precise ATM-dependent pathway. In contrast, Ku-mediated NHEJ can repair euchromatin-associated EDSBs. Consequently, spontaneous mutations in hypomethylated genome are produced at faster rates because unmethylated EDSBs are unable to avoid the more error-prone NHEJ mechanisms.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pornthanakasem W, Kongruttanachok N, Phuangphairoj C, Suyarnsestakorn C, Sanghangthum T, Oonsiri S, Ponyeam W, Thanasupawat T, Matangkasombut O, Mutirangura A: LINE-1 methylation status of endogenous DNA double-strand breaks. Nucleic Acids Res. 2008, 36: 3667-3675. 10.1093/nar/gkn261PubMedCentralCrossRefPubMed Pornthanakasem W, Kongruttanachok N, Phuangphairoj C, Suyarnsestakorn C, Sanghangthum T, Oonsiri S, Ponyeam W, Thanasupawat T, Matangkasombut O, Mutirangura A: LINE-1 methylation status of endogenous DNA double-strand breaks. Nucleic Acids Res. 2008, 36: 3667-3675. 10.1093/nar/gkn261PubMedCentralCrossRefPubMed
2.
go back to reference Phokaew C, Kowudtitham S, Subbalekha K, Shuangshoti S, Mutirangura A: LINE-1 methylation patterns of different loci in normal and cancerous cells. Nucleic Acids Res. 2008, 36: 5704-5712. 10.1093/nar/gkn571PubMedCentralCrossRefPubMed Phokaew C, Kowudtitham S, Subbalekha K, Shuangshoti S, Mutirangura A: LINE-1 methylation patterns of different loci in normal and cancerous cells. Nucleic Acids Res. 2008, 36: 5704-5712. 10.1093/nar/gkn571PubMedCentralCrossRefPubMed
3.
go back to reference Feinberg AP, Vogelstein B: Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983, 301: 89-92. 10.1038/301089a0CrossRefPubMed Feinberg AP, Vogelstein B: Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983, 301: 89-92. 10.1038/301089a0CrossRefPubMed
4.
go back to reference Chalitchagorn K, Shuangshoti S, Hourpai N, Kongruttanachok N, Tangkijvanich P, Thong-ngam D, Voravud N, Sriuranpong V, Mutirangura A: Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene. 2004, 23: 8841-8846. 10.1038/sj.onc.1208137CrossRefPubMed Chalitchagorn K, Shuangshoti S, Hourpai N, Kongruttanachok N, Tangkijvanich P, Thong-ngam D, Voravud N, Sriuranpong V, Mutirangura A: Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene. 2004, 23: 8841-8846. 10.1038/sj.onc.1208137CrossRefPubMed
5.
go back to reference Hoffmann MJ, Schulz WA: Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol. 2005, 83: 296-321. 10.1139/o05-036CrossRefPubMed Hoffmann MJ, Schulz WA: Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol. 2005, 83: 296-321. 10.1139/o05-036CrossRefPubMed
6.
go back to reference Pogribny IP, Beland FA: DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci. 2009. Pogribny IP, Beland FA: DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci. 2009.
7.
go back to reference Wilson AS, Power BE, Molloy PL: DNA hypomethylation and human diseases. Biochim Biophys Acta. 2007, 1775: 138-162.PubMed Wilson AS, Power BE, Molloy PL: DNA hypomethylation and human diseases. Biochim Biophys Acta. 2007, 1775: 138-162.PubMed
8.
go back to reference Karpf AR, Matsui S: Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res. 2005, 65: 8635-8639. 10.1158/0008-5472.CAN-05-1961CrossRefPubMed Karpf AR, Matsui S: Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res. 2005, 65: 8635-8639. 10.1158/0008-5472.CAN-05-1961CrossRefPubMed
9.
go back to reference Ji W, Hernandez R, Zhang XY, Qu GZ, Frady A, Varela M, Ehrlich M: DNA demethylation and pericentromeric rearrangements of chromosome 1. Mutat Res. 1997, 379: 33-41.CrossRefPubMed Ji W, Hernandez R, Zhang XY, Qu GZ, Frady A, Varela M, Ehrlich M: DNA demethylation and pericentromeric rearrangements of chromosome 1. Mutat Res. 1997, 379: 33-41.CrossRefPubMed
10.
go back to reference Tuck-Muller CM, Narayan A, Tsien F, Smeets DF, Sawyer J, Fiala ES, Sohn OS, Ehrlich M: DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet Cell Genet. 2000, 89: 121-128. 10.1159/000015590CrossRefPubMed Tuck-Muller CM, Narayan A, Tsien F, Smeets DF, Sawyer J, Fiala ES, Sohn OS, Ehrlich M: DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet Cell Genet. 2000, 89: 121-128. 10.1159/000015590CrossRefPubMed
11.
go back to reference Brito-Babapulle V, Atkin NB: Break points in chromosome #1 abnormalities of 218 human neoplasms. Cancer Genet Cytogenet. 1981, 4: 215-225. 10.1016/0165-4608(81)90015-7CrossRefPubMed Brito-Babapulle V, Atkin NB: Break points in chromosome #1 abnormalities of 218 human neoplasms. Cancer Genet Cytogenet. 1981, 4: 215-225. 10.1016/0165-4608(81)90015-7CrossRefPubMed
12.
go back to reference Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R: DNA hypomethylation leads to elevated mutation rates. Nature. 1998, 395: 89-93. 10.1038/25779CrossRefPubMed Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R: DNA hypomethylation leads to elevated mutation rates. Nature. 1998, 395: 89-93. 10.1038/25779CrossRefPubMed
13.
go back to reference Eden A, Gaudet F, Waghmare A, Jaenisch R: Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003, 300: 455. 10.1126/science.1083557CrossRefPubMed Eden A, Gaudet F, Waghmare A, Jaenisch R: Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003, 300: 455. 10.1126/science.1083557CrossRefPubMed
14.
go back to reference Matsuzaki K, Deng G, Tanaka H, Kakar S, Miura S, Kim YS: The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. Clin Cancer Res. 2005, 11: 8564-8569. 10.1158/1078-0432.CCR-05-0859CrossRefPubMed Matsuzaki K, Deng G, Tanaka H, Kakar S, Miura S, Kim YS: The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. Clin Cancer Res. 2005, 11: 8564-8569. 10.1158/1078-0432.CCR-05-0859CrossRefPubMed
15.
go back to reference Ehrlich M, Hopkins NE, Jiang G, Dome JS, Yu MC, Woods CB, Tomlinson GE, Chintagumpala M, Champagne M, Dillerg L: Satellite DNA hypomethylation in karyotyped Wilms tumors. Cancer Genet Cytogenet. 2003, 141: 97-105. 10.1016/S0165-4608(02)00668-4CrossRefPubMed Ehrlich M, Hopkins NE, Jiang G, Dome JS, Yu MC, Woods CB, Tomlinson GE, Chintagumpala M, Champagne M, Dillerg L: Satellite DNA hypomethylation in karyotyped Wilms tumors. Cancer Genet Cytogenet. 2003, 141: 97-105. 10.1016/S0165-4608(02)00668-4CrossRefPubMed
16.
go back to reference Schulz WA, Elo JP, Florl AR, Pennanen S, Santourlidis S, Engers R, Buchardt M, Seifert HH, Visakorpi T: Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer. 2002, 35: 58-65. 10.1002/gcc.10092CrossRefPubMed Schulz WA, Elo JP, Florl AR, Pennanen S, Santourlidis S, Engers R, Buchardt M, Seifert HH, Visakorpi T: Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer. 2002, 35: 58-65. 10.1002/gcc.10092CrossRefPubMed
17.
go back to reference Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, Debrock S, Amyere M, Vikkula M, Schuit F: Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009, 15: 577-583. 10.1038/nm.1924CrossRefPubMed Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, Debrock S, Amyere M, Vikkula M, Schuit F: Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009, 15: 577-583. 10.1038/nm.1924CrossRefPubMed
18.
go back to reference Davidson S, Crowther P, Radley J, Woodcock D: Cytotoxicity of 5-aza-2'-deoxycytidine in a mammalian cell system. Eur J Cancer. 1992, 28: 362-368. 10.1016/S0959-8049(05)80054-1CrossRefPubMed Davidson S, Crowther P, Radley J, Woodcock D: Cytotoxicity of 5-aza-2'-deoxycytidine in a mammalian cell system. Eur J Cancer. 1992, 28: 362-368. 10.1016/S0959-8049(05)80054-1CrossRefPubMed
19.
go back to reference Vilenchik MM, Knudson AG: Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA. 2003, 100: 12871-12876. 10.1073/pnas.2135498100PubMedCentralCrossRefPubMed Vilenchik MM, Knudson AG: Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA. 2003, 100: 12871-12876. 10.1073/pnas.2135498100PubMedCentralCrossRefPubMed
20.
go back to reference Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998, 273: 5858-5868. 10.1074/jbc.273.10.5858CrossRefPubMed Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998, 273: 5858-5868. 10.1074/jbc.273.10.5858CrossRefPubMed
21.
go back to reference Kuo LJ, Yang LX: Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo. 2008, 22: 305-309.PubMed Kuo LJ, Yang LX: Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo. 2008, 22: 305-309.PubMed
22.
go back to reference Kaneko H, Igarashi K, Kataoka K, Miura M: Heat shock induces phosphorylation of histone H2AX in mammalian cells. Biochem Biophys Res Commun. 2005, 328: 1101-1106. 10.1016/j.bbrc.2005.01.073CrossRefPubMed Kaneko H, Igarashi K, Kataoka K, Miura M: Heat shock induces phosphorylation of histone H2AX in mammalian cells. Biochem Biophys Res Commun. 2005, 328: 1101-1106. 10.1016/j.bbrc.2005.01.073CrossRefPubMed
23.
go back to reference Takahashi A, Matsumoto H, Nagayama K, Kitano M, Hirose S, Tanaka H, Mori E, Yamakawa N, Yasumoto J, Yuki K: Evidence for the involvement of double-strand breaks in heat-induced cell killing. Cancer Res. 2004, 64: 8839-8845. 10.1158/0008-5472.CAN-04-1876CrossRefPubMed Takahashi A, Matsumoto H, Nagayama K, Kitano M, Hirose S, Tanaka H, Mori E, Yamakawa N, Yasumoto J, Yuki K: Evidence for the involvement of double-strand breaks in heat-induced cell killing. Cancer Res. 2004, 64: 8839-8845. 10.1158/0008-5472.CAN-04-1876CrossRefPubMed
24.
go back to reference Kongruttanachok N, Phuangphairoj C, Ponveam W, Mutirangura A: Temperature dependent gamma-H2AX binding to DNA. Scienceasia. 2008, 34: 253-257. 10.2306/scienceasia1513-1874.2008.34.253.CrossRef Kongruttanachok N, Phuangphairoj C, Ponveam W, Mutirangura A: Temperature dependent gamma-H2AX binding to DNA. Scienceasia. 2008, 34: 253-257. 10.2306/scienceasia1513-1874.2008.34.253.CrossRef
25.
go back to reference Tanaka T, Halicka HD, Huang X, Traganos F, Darzynkiewicz Z: Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants. Cell Cycle. 2006, 5: 1940-1945.PubMedCentralCrossRefPubMed Tanaka T, Halicka HD, Huang X, Traganos F, Darzynkiewicz Z: Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants. Cell Cycle. 2006, 5: 1940-1945.PubMedCentralCrossRefPubMed
26.
go back to reference Baure J, Izadi A, Suarez V, Giedzinski E, Cleaver JE, Fike JR, Limoli CL: Histone H2AX phosphorylation in response to changes in chromatin structure induced by altered osmolarity. Mutagenesis. 2009, 24: 161-167. 10.1093/mutage/gen064PubMedCentralCrossRefPubMed Baure J, Izadi A, Suarez V, Giedzinski E, Cleaver JE, Fike JR, Limoli CL: Histone H2AX phosphorylation in response to changes in chromatin structure induced by altered osmolarity. Mutagenesis. 2009, 24: 161-167. 10.1093/mutage/gen064PubMedCentralCrossRefPubMed
27.
go back to reference Gellert M: V(D)J recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem. 2002, 71: 101-132. 10.1146/annurev.biochem.71.090501.150203CrossRefPubMed Gellert M: V(D)J recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem. 2002, 71: 101-132. 10.1146/annurev.biochem.71.090501.150203CrossRefPubMed
28.
go back to reference Sokolov MV, Dickey JS, Bonner WM, Sedelnikova OA: gamma-H2AX in bystander cells: not just a radiation-triggered event, a cellular response to stress mediated by intercellular communication. Cell Cycle. 2007, 6: 2210-2212.CrossRefPubMed Sokolov MV, Dickey JS, Bonner WM, Sedelnikova OA: gamma-H2AX in bystander cells: not just a radiation-triggered event, a cellular response to stress mediated by intercellular communication. Cell Cycle. 2007, 6: 2210-2212.CrossRefPubMed
29.
go back to reference Gasior SL, Wakeman TP, Xu B, Deininger PL: The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol. 2006, 357: 1383-1393. 10.1016/j.jmb.2006.01.089PubMedCentralCrossRefPubMed Gasior SL, Wakeman TP, Xu B, Deininger PL: The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol. 2006, 357: 1383-1393. 10.1016/j.jmb.2006.01.089PubMedCentralCrossRefPubMed
30.
go back to reference Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee MC, Guan A, Hesley JA, Miller SC, Cromwell EF, Solow-Cordero DE: A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol Cell. 2009, 35: 228-239. 10.1016/j.molcel.2009.06.021PubMedCentralCrossRefPubMed Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee MC, Guan A, Hesley JA, Miller SC, Cromwell EF, Solow-Cordero DE: A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol Cell. 2009, 35: 228-239. 10.1016/j.molcel.2009.06.021PubMedCentralCrossRefPubMed
31.
go back to reference Ostling O, Johanson KJ: Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun. 1984, 123: 291-298. 10.1016/0006-291X(84)90411-XCrossRefPubMed Ostling O, Johanson KJ: Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun. 1984, 123: 291-298. 10.1016/0006-291X(84)90411-XCrossRefPubMed
32.
go back to reference Dusinska M, Collins AR: The comet assay in human biomonitoring: gene-environment interactions. Mutagenesis. 2008, 23: 191-205. 10.1093/mutage/gen007CrossRefPubMed Dusinska M, Collins AR: The comet assay in human biomonitoring: gene-environment interactions. Mutagenesis. 2008, 23: 191-205. 10.1093/mutage/gen007CrossRefPubMed
33.
go back to reference Khanna KK, Jackson SP: DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001, 27: 247-254. 10.1038/85798CrossRefPubMed Khanna KK, Jackson SP: DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001, 27: 247-254. 10.1038/85798CrossRefPubMed
34.
go back to reference Kampinga HH, Laszlo A: DNA double strand breaks do not play a role in heat-induced cell killing. Cancer Res. 2005, 65: 10632-10633. 10.1158/0008-5472.CAN-05-0006CrossRefPubMed Kampinga HH, Laszlo A: DNA double strand breaks do not play a role in heat-induced cell killing. Cancer Res. 2005, 65: 10632-10633. 10.1158/0008-5472.CAN-05-0006CrossRefPubMed
35.
go back to reference Schlissel M, Constantinescu A, Morrow T, Baxter M, Peng A: Double-strand signal sequence breaks in V(D)J recombination are blunt, 5'-phosphorylated, RAG-dependent, and cell cycle regulated. Genes Dev. 1993, 7: 2520-2532. 10.1101/gad.7.12b.2520CrossRefPubMed Schlissel M, Constantinescu A, Morrow T, Baxter M, Peng A: Double-strand signal sequence breaks in V(D)J recombination are blunt, 5'-phosphorylated, RAG-dependent, and cell cycle regulated. Genes Dev. 1993, 7: 2520-2532. 10.1101/gad.7.12b.2520CrossRefPubMed
37.
go back to reference Nelson DL, Ledbetter SA, Corbo L, Victoria MF, Ramirez-Solis R, Webster TD, Ledbetter DH, Caskey CT: Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. Proc Natl Acad Sci USA. 1989, 86: 6686-6690. 10.1073/pnas.86.17.6686PubMedCentralCrossRefPubMed Nelson DL, Ledbetter SA, Corbo L, Victoria MF, Ramirez-Solis R, Webster TD, Ledbetter DH, Caskey CT: Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. Proc Natl Acad Sci USA. 1989, 86: 6686-6690. 10.1073/pnas.86.17.6686PubMedCentralCrossRefPubMed
38.
go back to reference Geigl EM, Eckardt-Schupp F: The repair of double-strand breaks and S1 nuclease-sensitive sites can be monitored chromosome-specifically in Saccharomyces cerevisiae using pulse-field gel electrophoresis. Mol Microbiol. 1991, 5: 1615-1620. 10.1111/j.1365-2958.1991.tb01908.xCrossRefPubMed Geigl EM, Eckardt-Schupp F: The repair of double-strand breaks and S1 nuclease-sensitive sites can be monitored chromosome-specifically in Saccharomyces cerevisiae using pulse-field gel electrophoresis. Mol Microbiol. 1991, 5: 1615-1620. 10.1111/j.1365-2958.1991.tb01908.xCrossRefPubMed
39.
go back to reference Papavasiliou FN, Schatz DG: Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature. 2000, 408: 216-221. 10.1038/35041599CrossRefPubMed Papavasiliou FN, Schatz DG: Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature. 2000, 408: 216-221. 10.1038/35041599CrossRefPubMed
40.
go back to reference Mutirangura A: Quantitative PCR analysis for methylation level of genome: clinical implications in cancer. Asian Biomedicine. 2007, 1: 121-128. Mutirangura A: Quantitative PCR analysis for methylation level of genome: clinical implications in cancer. Asian Biomedicine. 2007, 1: 121-128.
41.
go back to reference Wyman C, Ristic D, Kanaar R: Homologous recombination-mediated double-strand break repair. DNA Repair (Amst). 2004, 3: 827-833. 10.1016/j.dnarep.2004.03.037CrossRef Wyman C, Ristic D, Kanaar R: Homologous recombination-mediated double-strand break repair. DNA Repair (Amst). 2004, 3: 827-833. 10.1016/j.dnarep.2004.03.037CrossRef
42.
go back to reference Pastwa E, Blasiak J: Non-homologous DNA end joining. Acta Biochim Pol. 2003, 50: 891-908.PubMed Pastwa E, Blasiak J: Non-homologous DNA end joining. Acta Biochim Pol. 2003, 50: 891-908.PubMed
43.
go back to reference Wang HC, Chou WC, Shieh SY, Shen CY: Ataxia telangiectasia mutated and checkpoint kinase 2 regulate BRCA1 to promote the fidelity of DNA end-joining. Cancer Res. 2006, 66: 1391-1400. 10.1158/0008-5472.CAN-05-3270CrossRefPubMed Wang HC, Chou WC, Shieh SY, Shen CY: Ataxia telangiectasia mutated and checkpoint kinase 2 regulate BRCA1 to promote the fidelity of DNA end-joining. Cancer Res. 2006, 66: 1391-1400. 10.1158/0008-5472.CAN-05-3270CrossRefPubMed
44.
go back to reference Durant ST, Nickoloff JA: Good timing in the cell cycle for precise DNA repair by BRCA1. Cell Cycle. 2005, 4: 1216-1222.CrossRefPubMed Durant ST, Nickoloff JA: Good timing in the cell cycle for precise DNA repair by BRCA1. Cell Cycle. 2005, 4: 1216-1222.CrossRefPubMed
45.
go back to reference Baumann P, West SC: Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem Sci. 1998, 23: 247-251. 10.1016/S0968-0004(98)01232-8CrossRefPubMed Baumann P, West SC: Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem Sci. 1998, 23: 247-251. 10.1016/S0968-0004(98)01232-8CrossRefPubMed
46.
go back to reference Eden S, Hashimshony T, Keshet I, Cedar H, Thorne AW: DNA methylation models histone acetylation. Nature. 1998, 394: 842- 10.1038/29680CrossRefPubMed Eden S, Hashimshony T, Keshet I, Cedar H, Thorne AW: DNA methylation models histone acetylation. Nature. 1998, 394: 842- 10.1038/29680CrossRefPubMed
47.
go back to reference Popova EY, Krauss SW, Short SA, Lee G, Villalobos J, Etzell J, Koury MJ, Ney PA, Chasis JA, Grigoryev SA: Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation. Chromosome Res. 2009, 17: 47-64. 10.1007/s10577-008-9005-yPubMedCentralCrossRefPubMed Popova EY, Krauss SW, Short SA, Lee G, Villalobos J, Etzell J, Koury MJ, Ney PA, Chasis JA, Grigoryev SA: Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation. Chromosome Res. 2009, 17: 47-64. 10.1007/s10577-008-9005-yPubMedCentralCrossRefPubMed
48.
go back to reference Grunstein M: Histone acetylation in chromatin structure and transcription. Nature. 1997, 389: 349-352. 10.1038/38664CrossRefPubMed Grunstein M: Histone acetylation in chromatin structure and transcription. Nature. 1997, 389: 349-352. 10.1038/38664CrossRefPubMed
49.
go back to reference Mathis DJ, Oudet P, Wasylyk B, Chambon P: Effect of histone acetylation on structure and in vitro transcription of chromatin. Nucleic Acids Res. 1978, 5: 3523-3547. 10.1093/nar/5.10.3523PubMedCentralCrossRefPubMed Mathis DJ, Oudet P, Wasylyk B, Chambon P: Effect of histone acetylation on structure and in vitro transcription of chromatin. Nucleic Acids Res. 1978, 5: 3523-3547. 10.1093/nar/5.10.3523PubMedCentralCrossRefPubMed
51.
go back to reference Sabisz M, Skladanowski A: Modulation of cellular response to anticancer treatment by caffeine: inhibition of cell cycle checkpoints, DNA repair and more. Curr Pharm Biotechnol. 2008, 9: 325-336. 10.2174/138920108785161497CrossRefPubMed Sabisz M, Skladanowski A: Modulation of cellular response to anticancer treatment by caffeine: inhibition of cell cycle checkpoints, DNA repair and more. Curr Pharm Biotechnol. 2008, 9: 325-336. 10.2174/138920108785161497CrossRefPubMed
52.
go back to reference Karagiannis TC, Harikrishnan KN, El-Osta A: Disparity of histone deacetylase inhibition on repair of radiation-induced DNA damage on euchromatin and constitutive heterochromatin compartments. Oncogene. 2007, 26: 3963-3971. 10.1038/sj.onc.1210174CrossRefPubMed Karagiannis TC, Harikrishnan KN, El-Osta A: Disparity of histone deacetylase inhibition on repair of radiation-induced DNA damage on euchromatin and constitutive heterochromatin compartments. Oncogene. 2007, 26: 3963-3971. 10.1038/sj.onc.1210174CrossRefPubMed
53.
go back to reference Zhang Y, Adachi M, Zou H, Hareyama M, Imai K, Shinomura Y: Histone deacetylase inhibitors enhance phosphorylation of histone H2AX after ionizing radiation. Int J Radiat Oncol Biol Phys. 2006, 65: 859-866.CrossRefPubMed Zhang Y, Adachi M, Zou H, Hareyama M, Imai K, Shinomura Y: Histone deacetylase inhibitors enhance phosphorylation of histone H2AX after ionizing radiation. Int J Radiat Oncol Biol Phys. 2006, 65: 859-866.CrossRefPubMed
54.
go back to reference Zhang Y, Adachi M, Zhao X, Kawamura R, Imai K: Histone deacetylase inhibitors FK228, N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl)amino- methyl]benzamide and m-carboxycinnamic acid bis-hydroxamide augment radiation-induced cell death in gastrointestinal adenocarcinoma cells. Int J Cancer. 2004, 110: 301-308. 10.1002/ijc.20117CrossRefPubMed Zhang Y, Adachi M, Zhao X, Kawamura R, Imai K: Histone deacetylase inhibitors FK228, N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl)amino- methyl]benzamide and m-carboxycinnamic acid bis-hydroxamide augment radiation-induced cell death in gastrointestinal adenocarcinoma cells. Int J Cancer. 2004, 110: 301-308. 10.1002/ijc.20117CrossRefPubMed
55.
go back to reference Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL, Ismail S, Stevens C, Meyn RE: Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res. 2005, 11: 4912-4922. 10.1158/1078-0432.CCR-04-2088CrossRefPubMed Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL, Ismail S, Stevens C, Meyn RE: Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res. 2005, 11: 4912-4922. 10.1158/1078-0432.CCR-04-2088CrossRefPubMed
56.
go back to reference Chinnaiyan P, Vallabhaneni G, Armstrong E, Huang SM, Harari PM: Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys. 2005, 62: 223-229. 10.1016/j.ijrobp.2004.12.088CrossRefPubMed Chinnaiyan P, Vallabhaneni G, Armstrong E, Huang SM, Harari PM: Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys. 2005, 62: 223-229. 10.1016/j.ijrobp.2004.12.088CrossRefPubMed
57.
go back to reference Zhang Y, Jung M, Dritschilo A: Enhancement of radiation sensitivity of human squamous carcinoma cells by histone deacetylase inhibitors. Radiat Res. 2004, 161: 667-674. 10.1667/RR3192CrossRefPubMed Zhang Y, Jung M, Dritschilo A: Enhancement of radiation sensitivity of human squamous carcinoma cells by histone deacetylase inhibitors. Radiat Res. 2004, 161: 667-674. 10.1667/RR3192CrossRefPubMed
58.
go back to reference Kim IA, Shin JH, Kim IH, Kim JH, Kim JS, Wu HG, Chie EK, Ha SW, Park CI, Kao GD: Histone deacetylase inhibitor-mediated radiosensitization of human cancer cells: class differences and the potential influence of p53. Clin Cancer Res. 2006, 12: 940-949. 10.1158/1078-0432.CCR-05-1230CrossRefPubMed Kim IA, Shin JH, Kim IH, Kim JH, Kim JS, Wu HG, Chie EK, Ha SW, Park CI, Kao GD: Histone deacetylase inhibitor-mediated radiosensitization of human cancer cells: class differences and the potential influence of p53. Clin Cancer Res. 2006, 12: 940-949. 10.1158/1078-0432.CCR-05-1230CrossRefPubMed
59.
go back to reference Cowell IG, Sunter NJ, Singh PB, Austin CA, Durkacz BW, Tilby MJ: gammaH2AX Foci Form Preferentially in Euchromatin after Ionising-Radiation. PLoS ONE. 2007, 2: e1057. 10.1371/journal.pone.0001057PubMedCentralCrossRefPubMed Cowell IG, Sunter NJ, Singh PB, Austin CA, Durkacz BW, Tilby MJ: gammaH2AX Foci Form Preferentially in Euchromatin after Ionising-Radiation. PLoS ONE. 2007, 2: e1057. 10.1371/journal.pone.0001057PubMedCentralCrossRefPubMed
60.
go back to reference Boyd KE, Farnham PJ: Coexamination of site-specific transcription factor binding and promoter activity in living cells. Mol Cell Biol. 1999, 19: 8393-8399.PubMedCentralCrossRefPubMed Boyd KE, Farnham PJ: Coexamination of site-specific transcription factor binding and promoter activity in living cells. Mol Cell Biol. 1999, 19: 8393-8399.PubMedCentralCrossRefPubMed
61.
go back to reference Estecio MR, Gharibyan V, Shen L, Ibrahim AE, Doshi K, He R, Jelinek J, Yang AS, Yan PS, Huang TH: LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS ONE. 2007, 2: e399. 10.1371/journal.pone.0000399PubMedCentralCrossRefPubMed Estecio MR, Gharibyan V, Shen L, Ibrahim AE, Doshi K, He R, Jelinek J, Yang AS, Yan PS, Huang TH: LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS ONE. 2007, 2: e399. 10.1371/journal.pone.0000399PubMedCentralCrossRefPubMed
62.
go back to reference Hefferin ML, Tomkinson AE: Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair (Amst). 2005, 4: 639-648.CrossRef Hefferin ML, Tomkinson AE: Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair (Amst). 2005, 4: 639-648.CrossRef
63.
go back to reference Collis SJ, DeWeese TL, Jeggo PA, Parker AR: The life and death of DNA-PK. Oncogene. 2005, 24: 949-961. 10.1038/sj.onc.1208332CrossRefPubMed Collis SJ, DeWeese TL, Jeggo PA, Parker AR: The life and death of DNA-PK. Oncogene. 2005, 24: 949-961. 10.1038/sj.onc.1208332CrossRefPubMed
64.
go back to reference Wang H, Perrault AR, Takeda Y, Qin W, Wang H, Iliakis G: Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res. 2003, 31: 5377-5388. 10.1093/nar/gkg728PubMedCentralCrossRefPubMed Wang H, Perrault AR, Takeda Y, Qin W, Wang H, Iliakis G: Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res. 2003, 31: 5377-5388. 10.1093/nar/gkg728PubMedCentralCrossRefPubMed
65.
go back to reference Kazazian HH, Moran JV: The impact of L1 retrotransposons on the human genome. Nat Genet. 1998, 19: 19-24. 10.1038/ng0598-19CrossRefPubMed Kazazian HH, Moran JV: The impact of L1 retrotransposons on the human genome. Nat Genet. 1998, 19: 19-24. 10.1038/ng0598-19CrossRefPubMed
66.
go back to reference Stiff T, O'Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA: ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 2004, 64: 2390-2396. 10.1158/0008-5472.CAN-03-3207CrossRefPubMed Stiff T, O'Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA: ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 2004, 64: 2390-2396. 10.1158/0008-5472.CAN-03-3207CrossRefPubMed
67.
go back to reference Wang H, Wang M, Wang H, Bocker W, Iliakis G: Complex H2AX phosphorylation patterns by multiple kinases including ATM and DNA-PK in human cells exposed to ionizing radiation and treated with kinase inhibitors. J Cell Physiol. 2005, 202: 492-502. 10.1002/jcp.20141CrossRefPubMed Wang H, Wang M, Wang H, Bocker W, Iliakis G: Complex H2AX phosphorylation patterns by multiple kinases including ATM and DNA-PK in human cells exposed to ionizing radiation and treated with kinase inhibitors. J Cell Physiol. 2005, 202: 492-502. 10.1002/jcp.20141CrossRefPubMed
68.
go back to reference Peng Y, Woods RG, Beamish H, Ye R, Lees-Miller SP, Lavin MF, Bedford JS: Deficiency in the catalytic subunit of DNA-dependent protein kinase causes down-regulation of ATM. Cancer Res. 2005, 65: 1670-1677. 10.1158/0008-5472.CAN-04-3451CrossRefPubMed Peng Y, Woods RG, Beamish H, Ye R, Lees-Miller SP, Lavin MF, Bedford JS: Deficiency in the catalytic subunit of DNA-dependent protein kinase causes down-regulation of ATM. Cancer Res. 2005, 65: 1670-1677. 10.1158/0008-5472.CAN-04-3451CrossRefPubMed
69.
go back to reference Bennett CB, Lewis AL, Baldwin KK, Resnick MA: Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. Proc Natl Acad Sci USA. 1993, 90: 5613-5617. 10.1073/pnas.90.12.5613PubMedCentralCrossRefPubMed Bennett CB, Lewis AL, Baldwin KK, Resnick MA: Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. Proc Natl Acad Sci USA. 1993, 90: 5613-5617. 10.1073/pnas.90.12.5613PubMedCentralCrossRefPubMed
70.
go back to reference Jones JM, Gellert M: Intermediates in V(D)J recombination: a stable RAG1/2 complex sequesters cleaved RSS ends. Proc Natl Acad Sci USA. 2001, 98: 12926-12931. 10.1073/pnas.221471198PubMedCentralCrossRefPubMed Jones JM, Gellert M: Intermediates in V(D)J recombination: a stable RAG1/2 complex sequesters cleaved RSS ends. Proc Natl Acad Sci USA. 2001, 98: 12926-12931. 10.1073/pnas.221471198PubMedCentralCrossRefPubMed
71.
go back to reference Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB: Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999, 21: 103-107. 10.1038/5047CrossRefPubMed Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB: Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999, 21: 103-107. 10.1038/5047CrossRefPubMed
72.
go back to reference Chong SS, Gore-Langton RE, Hughes MR, Miron PM: Single-cell DNA and FISH analysis for application to preimplantation genetic diagnosis. Curr Protoc Hum Genet. 2002, Chapter 9 (Unit 9): 10.PubMed Chong SS, Gore-Langton RE, Hughes MR, Miron PM: Single-cell DNA and FISH analysis for application to preimplantation genetic diagnosis. Curr Protoc Hum Genet. 2002, Chapter 9 (Unit 9): 10.PubMed
73.
go back to reference Wilton L, Thornhill A, Traeger-Synodinos J, Sermon KD, Harper JC: The causes of misdiagnosis and adverse outcomes in PGD. Hum Reprod. 2009, 24 (5): 1221-8. 10.1093/humrep/den488CrossRefPubMed Wilton L, Thornhill A, Traeger-Synodinos J, Sermon KD, Harper JC: The causes of misdiagnosis and adverse outcomes in PGD. Hum Reprod. 2009, 24 (5): 1221-8. 10.1093/humrep/den488CrossRefPubMed
74.
go back to reference Gaymes TJ, Padua RA, Pla M, Orr S, Omidvar N, Chomienne C, Mufti GJ, Rassool FV: Histone deacetylase inhibitors (HDI) cause DNA damage in leukemia cells: a mechanism for leukemia-specific HDI-dependent apoptosis?. Mol Cancer Res. 2006, 4: 563-573. 10.1158/1541-7786.MCR-06-0111CrossRefPubMed Gaymes TJ, Padua RA, Pla M, Orr S, Omidvar N, Chomienne C, Mufti GJ, Rassool FV: Histone deacetylase inhibitors (HDI) cause DNA damage in leukemia cells: a mechanism for leukemia-specific HDI-dependent apoptosis?. Mol Cancer Res. 2006, 4: 563-573. 10.1158/1541-7786.MCR-06-0111CrossRefPubMed
75.
go back to reference Yaneva M, Li H, Marple T, Hasty P: Non-homologous end joining, but not homologous recombination, enables survival for cells exposed to a histone deacetylase inhibitor. Nucleic Acids Res. 2005, 33: 5320-5330. 10.1093/nar/gki821PubMedCentralCrossRefPubMed Yaneva M, Li H, Marple T, Hasty P: Non-homologous end joining, but not homologous recombination, enables survival for cells exposed to a histone deacetylase inhibitor. Nucleic Acids Res. 2005, 33: 5320-5330. 10.1093/nar/gki821PubMedCentralCrossRefPubMed
76.
go back to reference Mazin AL: [Genome loses all 5-methylcytosine a life span. How is this connected with accumulation of mutations during aging?]. Mol Biol (Mosk). 1993, 27: 160-173. Mazin AL: [Genome loses all 5-methylcytosine a life span. How is this connected with accumulation of mutations during aging?]. Mol Biol (Mosk). 1993, 27: 160-173.
77.
go back to reference Gao Q, Hauser SH, Liu XL, Wazer DE, Madoc-Jones H, Band V: Mutant p53-induced immortalization of primary human mammary epithelial cells. Cancer Res. 1996, 56: 3129-3133.PubMed Gao Q, Hauser SH, Liu XL, Wazer DE, Madoc-Jones H, Band V: Mutant p53-induced immortalization of primary human mammary epithelial cells. Cancer Res. 1996, 56: 3129-3133.PubMed
78.
go back to reference Lengauer C, Kinzler KW, Vogelstein B: Genetic instabilities in human cancers. Nature. 1998, 396: 643-649. 10.1038/25292CrossRefPubMed Lengauer C, Kinzler KW, Vogelstein B: Genetic instabilities in human cancers. Nature. 1998, 396: 643-649. 10.1038/25292CrossRefPubMed
80.
go back to reference Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M, Jeggo PA: ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell. 2008, 31: 167-177. 10.1016/j.molcel.2008.05.017CrossRefPubMed Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M, Jeggo PA: ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell. 2008, 31: 167-177. 10.1016/j.molcel.2008.05.017CrossRefPubMed
81.
go back to reference Bostock CJ, Prescott DM, Kirkpatrick JB: An evaluation of the double thymidine block for synchronizing mammalian cells at the G1-S border. Exp Cell Res. 1971, 68: 163-168. 10.1016/0014-4827(71)90599-4CrossRefPubMed Bostock CJ, Prescott DM, Kirkpatrick JB: An evaluation of the double thymidine block for synchronizing mammalian cells at the G1-S border. Exp Cell Res. 1971, 68: 163-168. 10.1016/0014-4827(71)90599-4CrossRefPubMed
82.
go back to reference Zhang X, Succi J, Feng Z, Prithivirajsingh S, Story MD, Legerski RJ: Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response. Mol Cell Biol. 2004, 24: 9207-9220. 10.1128/MCB.24.20.9207-9220.2004PubMedCentralCrossRefPubMed Zhang X, Succi J, Feng Z, Prithivirajsingh S, Story MD, Legerski RJ: Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response. Mol Cell Biol. 2004, 24: 9207-9220. 10.1128/MCB.24.20.9207-9220.2004PubMedCentralCrossRefPubMed
83.
go back to reference Penzkofer T, Dandekar T, Zemojtel T: L1Base: from functional annotation to prediction of active LINE-1 elements. Nucleic Acids Res. 2005, 33: D498-500. 10.1093/nar/gki044PubMedCentralCrossRefPubMed Penzkofer T, Dandekar T, Zemojtel T: L1Base: from functional annotation to prediction of active LINE-1 elements. Nucleic Acids Res. 2005, 33: D498-500. 10.1093/nar/gki044PubMedCentralCrossRefPubMed
84.
go back to reference Waninger S, Kuhen K, Hu X, Chatterton JE, Wong-Staal F, Tang H: Identification of cellular cofactors for human immunodeficiency virus replication via a ribozyme-based genomics approach. J Virol. 2004, 78: 12829-12837. 10.1128/JVI.78.23.12829-12837.2004PubMedCentralCrossRefPubMed Waninger S, Kuhen K, Hu X, Chatterton JE, Wong-Staal F, Tang H: Identification of cellular cofactors for human immunodeficiency virus replication via a ribozyme-based genomics approach. J Virol. 2004, 78: 12829-12837. 10.1128/JVI.78.23.12829-12837.2004PubMedCentralCrossRefPubMed
Metadata
Title
Replication independent DNA double-strand break retention may prevent genomic instability
Authors
Narisorn Kongruttanachok
Chutipa Phuangphairoj
Araya Thongnak
Wanpen Ponyeam
Prakasit Rattanatanyong
Wichai Pornthanakasem
Apiwat Mutirangura
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2010
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-70

Other articles of this Issue 1/2010

Molecular Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine