Skip to main content
Top
Published in: Molecular Cancer 1/2010

Open Access 01-12-2010 | Research

Mouse Rad1 deletion enhances susceptibility for skin tumor development

Authors: Lu Han, Zhishang Hu, Yuheng Liu, Xiangyuan Wang, Kevin M. Hopkins, Howard B. Lieberman, Haiying Hang

Published in: Molecular Cancer | Issue 1/2010

Login to get access

Abstract

Background

Cells are constantly exposed to stresses from cellular metabolites as well as environmental genotoxins. DNA damage caused by these genotoxins can be efficiently fixed by DNA repair in cooperation with cell cycle checkpoints. Unrepaired DNA lesions can lead to cell death, gene mutation and cancer. The Rad1 protein, evolutionarily conserved from yeast to humans, exists in cells as monomer as well as a component in the 9-1-1 protein complex. Rad1 plays crucial roles in DNA repair and cell cycle checkpoint control, but its contribution to carcinogenesis is unknown.

Results

To address this question, we constructed mice with a deletion of Mrad1. Matings between heterozygous Mrad1 mutant mice produced Mrad1+/+ and Mrad1+/- but no Mrad1-/- progeny, suggesting the Mrad1 null is embryonic lethal. Mrad1+/- mice demonstrated no overt abnormalities up to one and half years of age. DMBA-TPA combinational treatment was used to induce tumors on mouse skin. Tumors were larger, more numerous, and appeared earlier on the skin of Mrad1+/- mice compared to Mrad1+/+ animals. Keratinocytes isolated from Mrad1+/- mice had significantly more spontaneous DNA double strand breaks, proliferated slower and had slightly enhanced spontaneous apoptosis than Mrad1+/+ control cells.

Conclusion

These data suggest that Mrad1 is important for preventing tumor development, probably through maintaining genomic integrity. The effects of heterozygous deletion of Mrad1 on proliferation and apoptosis of keratinocytes is different from those resulted from Mrad9 heterozygous deletion (from our previous study), suggesting that Mrad1 also functions independent of Mrad9 besides its role in the Mrad9-Mrad1-Mhus1 complex in mouse cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Deng CX: BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res. 2006, 34: 1416-1426. 10.1093/nar/gkl010PubMedCentralCrossRefPubMed Deng CX: BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res. 2006, 34: 1416-1426. 10.1093/nar/gkl010PubMedCentralCrossRefPubMed
2.
go back to reference Houtgraaf JH, Versmissen J, Giessen van der WJ: A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med. 2006, 7: 165-172. 10.1016/j.carrev.2006.02.002CrossRefPubMed Houtgraaf JH, Versmissen J, Giessen van der WJ: A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med. 2006, 7: 165-172. 10.1016/j.carrev.2006.02.002CrossRefPubMed
3.
go back to reference Lieberman HB: Rad9, an evolutionarily conserved gene with multiple functions for preserving genomic integrity. J Cell Biochem. 2006, 97: 690-697. 10.1002/jcb.20759CrossRefPubMed Lieberman HB: Rad9, an evolutionarily conserved gene with multiple functions for preserving genomic integrity. J Cell Biochem. 2006, 97: 690-697. 10.1002/jcb.20759CrossRefPubMed
4.
go back to reference Parrilla-Castellar ER, Arlander SJ, Karnitz L: Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst). 2004, 3: 1009-1014. 10.1016/j.dnarep.2004.03.032CrossRef Parrilla-Castellar ER, Arlander SJ, Karnitz L: Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst). 2004, 3: 1009-1014. 10.1016/j.dnarep.2004.03.032CrossRef
5.
go back to reference Helt CE, Wang W, Keng PC, Bambara RA: Evidence that DNA damage detection machinery participates in DNA repair. Cell Cycle. 2005, 4: 529-532.CrossRefPubMed Helt CE, Wang W, Keng PC, Bambara RA: Evidence that DNA damage detection machinery participates in DNA repair. Cell Cycle. 2005, 4: 529-532.CrossRefPubMed
6.
go back to reference Pandita RK, Sharma GG, Laszlo A, Hopkins KM, Davey S, Chakhparonian M, Gupta A, Wellinger RJ, Zhang J, Powell SN: Mammalian Rad9 plays a role in telomere stability, S- and G2-phase-specific cell survival, and homologous recombinational repair. Mol Cell Biol. 2006, 26: 1850-1864. 10.1128/MCB.26.5.1850-1864.2006PubMedCentralCrossRefPubMed Pandita RK, Sharma GG, Laszlo A, Hopkins KM, Davey S, Chakhparonian M, Gupta A, Wellinger RJ, Zhang J, Powell SN: Mammalian Rad9 plays a role in telomere stability, S- and G2-phase-specific cell survival, and homologous recombinational repair. Mol Cell Biol. 2006, 26: 1850-1864. 10.1128/MCB.26.5.1850-1864.2006PubMedCentralCrossRefPubMed
7.
go back to reference Wang X, Hu B, Weiss RS, Wang Y: The effect of Hus1 on ionizing radiation sensitivity is associated with homologous recombination repair but is independent of nonhomologous end-joining. Oncogene. 2006, 25: 1980-1983. 10.1038/sj.onc.1209212CrossRefPubMed Wang X, Hu B, Weiss RS, Wang Y: The effect of Hus1 on ionizing radiation sensitivity is associated with homologous recombination repair but is independent of nonhomologous end-joining. Oncogene. 2006, 25: 1980-1983. 10.1038/sj.onc.1209212CrossRefPubMed
8.
go back to reference He W, Zhao Y, Zhang C, An L, Hu Z, Liu Y, Han L, Bi L, Xie Z, Xue P: Rad9 plays an important role in DNA mismatch repair through physical interaction with MLH1. Nucleic Acids Res. 2008, 36: 6406-6417. 10.1093/nar/gkn686PubMedCentralCrossRefPubMed He W, Zhao Y, Zhang C, An L, Hu Z, Liu Y, Han L, Bi L, Xie Z, Xue P: Rad9 plays an important role in DNA mismatch repair through physical interaction with MLH1. Nucleic Acids Res. 2008, 36: 6406-6417. 10.1093/nar/gkn686PubMedCentralCrossRefPubMed
9.
go back to reference Venclovas C, Thelen MP: Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res. 2000, 28: 2481-2493. 10.1093/nar/28.13.2481PubMedCentralCrossRefPubMed Venclovas C, Thelen MP: Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res. 2000, 28: 2481-2493. 10.1093/nar/28.13.2481PubMedCentralCrossRefPubMed
10.
go back to reference Burtelow MA, Roos-Mattjus PM, Rauen M, Babendure JR, Karnitz LM: Reconstitution and molecular analysis of the hRad9-hHus1-hRad1 (9-1-1) DNA damage responsive checkpoint complex. J Biol Chem. 2001, 276: 25903-25909. 10.1074/jbc.M102946200CrossRefPubMed Burtelow MA, Roos-Mattjus PM, Rauen M, Babendure JR, Karnitz LM: Reconstitution and molecular analysis of the hRad9-hHus1-hRad1 (9-1-1) DNA damage responsive checkpoint complex. J Biol Chem. 2001, 276: 25903-25909. 10.1074/jbc.M102946200CrossRefPubMed
11.
go back to reference Shiomi Y, Shinozaki A, Nakada D, Sugimoto K, Usukura J, Obuse C, Tsurimoto T: Clamp and clamp loader structures of the human checkpoint protein complexes, Rad9-1-1 and Rad17-RFC. Genes Cells. 2002, 7: 861-868. 10.1046/j.1365-2443.2002.00566.xCrossRefPubMed Shiomi Y, Shinozaki A, Nakada D, Sugimoto K, Usukura J, Obuse C, Tsurimoto T: Clamp and clamp loader structures of the human checkpoint protein complexes, Rad9-1-1 and Rad17-RFC. Genes Cells. 2002, 7: 861-868. 10.1046/j.1365-2443.2002.00566.xCrossRefPubMed
12.
go back to reference Zhang H, Zhu Z, Vidanes G, Mbangkollo D, Liu Y, Siede W: Characterization of DNA damage-stimulated self-interaction of Saccharomyces cerevisiae checkpoint protein Rad17p. J Biol Chem. 2001, 276: 26715-26723. 10.1074/jbc.M103682200CrossRefPubMed Zhang H, Zhu Z, Vidanes G, Mbangkollo D, Liu Y, Siede W: Characterization of DNA damage-stimulated self-interaction of Saccharomyces cerevisiae checkpoint protein Rad17p. J Biol Chem. 2001, 276: 26715-26723. 10.1074/jbc.M103682200CrossRefPubMed
13.
go back to reference Maniwa Y, Yoshimura M, Bermudez VP, Yuki T, Okada K, Kanomata N, Ohbayashi C, Hayashi Y, Hurwitz J, Okita Y: Accumulation of hRad9 protein in the nuclei of nonsmall cell lung carcinoma cells. Cancer. 2005, 103: 126-132. 10.1002/cncr.20740CrossRefPubMed Maniwa Y, Yoshimura M, Bermudez VP, Yuki T, Okada K, Kanomata N, Ohbayashi C, Hayashi Y, Hurwitz J, Okita Y: Accumulation of hRad9 protein in the nuclei of nonsmall cell lung carcinoma cells. Cancer. 2005, 103: 126-132. 10.1002/cncr.20740CrossRefPubMed
14.
go back to reference Cheng CK, Chow LW, Loo WT, Chan TK, Chan V: The cell cycle checkpoint gene Rad9 is a novel oncogene activated by 11q13 amplification and DNA methylation in breast cancer. Cancer Res. 2005, 65: 8646-8654. 10.1158/0008-5472.CAN-04-4243CrossRefPubMed Cheng CK, Chow LW, Loo WT, Chan TK, Chan V: The cell cycle checkpoint gene Rad9 is a novel oncogene activated by 11q13 amplification and DNA methylation in breast cancer. Cancer Res. 2005, 65: 8646-8654. 10.1158/0008-5472.CAN-04-4243CrossRefPubMed
15.
go back to reference Chan V, Khoo US, Wong MS, Lau K, Suen D, Li G, Kwong A, Chan TK: Localization of hRad9 in breast cancer. BMC Cancer. 2008, 8: 196- 10.1186/1471-2407-8-196PubMedCentralCrossRefPubMed Chan V, Khoo US, Wong MS, Lau K, Suen D, Li G, Kwong A, Chan TK: Localization of hRad9 in breast cancer. BMC Cancer. 2008, 8: 196- 10.1186/1471-2407-8-196PubMedCentralCrossRefPubMed
16.
go back to reference Zhu A, Zhang CX, Lieberman HB: Rad9 has a functional role in human prostate carcinogenesis. Cancer Res. 2008, 68: 1267-1274. 10.1158/0008-5472.CAN-07-2304PubMedCentralCrossRefPubMed Zhu A, Zhang CX, Lieberman HB: Rad9 has a functional role in human prostate carcinogenesis. Cancer Res. 2008, 68: 1267-1274. 10.1158/0008-5472.CAN-07-2304PubMedCentralCrossRefPubMed
17.
go back to reference de la Torre J, Gil-Moreno A, Garcia A, Rojo F, Xercavins J, Salido E, Freire R: Expression of DNA damage checkpoint protein Hus1 in epithelial ovarian tumors correlates with prognostic markers. Int J Gynecol Pathol. 2008, 27: 24-32. 10.1097/pgp.0b013e31812dfaefCrossRefPubMed de la Torre J, Gil-Moreno A, Garcia A, Rojo F, Xercavins J, Salido E, Freire R: Expression of DNA damage checkpoint protein Hus1 in epithelial ovarian tumors correlates with prognostic markers. Int J Gynecol Pathol. 2008, 27: 24-32. 10.1097/pgp.0b013e31812dfaefCrossRefPubMed
18.
go back to reference Yuki T, Maniwa Y, Doi T, Okada K, Nishio W, Hayashi Y, Okita Y: DNA damage sensor protein hRad9, a novel molecular target for lung cancer treatment. Oncol Rep. 2008, 20: 1047-1052.PubMed Yuki T, Maniwa Y, Doi T, Okada K, Nishio W, Hayashi Y, Okita Y: DNA damage sensor protein hRad9, a novel molecular target for lung cancer treatment. Oncol Rep. 2008, 20: 1047-1052.PubMed
19.
go back to reference Hu Z, Liu Y, Zhang C, Zhao Y, He W, Han L, Yang L, Hopkins KM, Yang X, Lieberman HB, Hang H: Targeted deletion of Rad9 in mouse skin keratinocytes enhances genotoxin-induced tumor development. Cancer Res. 2008, 68: 5552-5561. 10.1158/0008-5472.CAN-07-5670PubMedCentralCrossRefPubMed Hu Z, Liu Y, Zhang C, Zhao Y, He W, Han L, Yang L, Hopkins KM, Yang X, Lieberman HB, Hang H: Targeted deletion of Rad9 in mouse skin keratinocytes enhances genotoxin-induced tumor development. Cancer Res. 2008, 68: 5552-5561. 10.1158/0008-5472.CAN-07-5670PubMedCentralCrossRefPubMed
20.
go back to reference Sedivy JM, Dutriaux A: Gene targeting and somatic cell genetics--a rebirth or a coming of age?. Trends Genet. 1999, 15: 88-90. 10.1016/S0168-9525(98)01689-8CrossRefPubMed Sedivy JM, Dutriaux A: Gene targeting and somatic cell genetics--a rebirth or a coming of age?. Trends Genet. 1999, 15: 88-90. 10.1016/S0168-9525(98)01689-8CrossRefPubMed
21.
go back to reference Hopkins KM, Auerbach W, Wang XY, Hande MP, Hang H, Wolgemuth DJ, Joyner AL, Lieberman HB: Deletion of mouse rad9 causes abnormal cellular responses to DNA damage, genomic instability, and embryonic lethality. Mol Cell Biol. 2004, 24: 7235-7248. 10.1128/MCB.24.16.7235-7248.2004PubMedCentralCrossRefPubMed Hopkins KM, Auerbach W, Wang XY, Hande MP, Hang H, Wolgemuth DJ, Joyner AL, Lieberman HB: Deletion of mouse rad9 causes abnormal cellular responses to DNA damage, genomic instability, and embryonic lethality. Mol Cell Biol. 2004, 24: 7235-7248. 10.1128/MCB.24.16.7235-7248.2004PubMedCentralCrossRefPubMed
22.
go back to reference Weiss RS, Enoch T, Leder P: Inactivation of mouse Hus1 results in genomic instability and impaired responses to genotoxic stress. Genes Dev. 2000, 14: 1886-1898.PubMedCentralPubMed Weiss RS, Enoch T, Leder P: Inactivation of mouse Hus1 results in genomic instability and impaired responses to genotoxic stress. Genes Dev. 2000, 14: 1886-1898.PubMedCentralPubMed
23.
go back to reference LEE ETWJ: Statistical Methods for Survival Data Analysis. 2003, full_text. New York: John Wiley and Sons, 3rd edition.CrossRef LEE ETWJ: Statistical Methods for Survival Data Analysis. 2003, full_text. New York: John Wiley and Sons, 3rd edition.CrossRef
24.
go back to reference Lydall D, Weinert T: Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science. 1995, 270: 1488-1491. 10.1126/science.270.5241.1488CrossRefPubMed Lydall D, Weinert T: Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science. 1995, 270: 1488-1491. 10.1126/science.270.5241.1488CrossRefPubMed
25.
go back to reference Siede W, Nusspaumer G, Portillo V, Rodriguez R, Friedberg EC: Cloning and characterization of RAD17, a gene controlling cell cycle responses to DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res. 1996, 24: 1669-1675. 10.1093/nar/24.9.1669PubMedCentralCrossRefPubMed Siede W, Nusspaumer G, Portillo V, Rodriguez R, Friedberg EC: Cloning and characterization of RAD17, a gene controlling cell cycle responses to DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res. 1996, 24: 1669-1675. 10.1093/nar/24.9.1669PubMedCentralCrossRefPubMed
26.
go back to reference al-Khodairy F, Carr AM: DNA repair mutants defining G2 checkpoint pathways in Schizosaccharomyces pombe. Embo J. 1992, 11: 1343-1350.PubMedCentralPubMed al-Khodairy F, Carr AM: DNA repair mutants defining G2 checkpoint pathways in Schizosaccharomyces pombe. Embo J. 1992, 11: 1343-1350.PubMedCentralPubMed
27.
28.
go back to reference Long KE, Sunnerhagen P, Subramani S: The Schizosaccharomyces pombe rad1 gene consists of three exons and the cDNA sequence is partially homologous to the Ustilago maydis REC1 cDNA. Gene. 1994, 148: 155-159. 10.1016/0378-1119(94)90250-XCrossRefPubMed Long KE, Sunnerhagen P, Subramani S: The Schizosaccharomyces pombe rad1 gene consists of three exons and the cDNA sequence is partially homologous to the Ustilago maydis REC1 cDNA. Gene. 1994, 148: 155-159. 10.1016/0378-1119(94)90250-XCrossRefPubMed
29.
go back to reference Thelen MP, Onel K, Holloman WK: The REC1 gene of Ustilago maydis involved in the cellular response to DNA damage encodes an exonuclease. J Biol Chem. 1994, 269: 747-754.PubMed Thelen MP, Onel K, Holloman WK: The REC1 gene of Ustilago maydis involved in the cellular response to DNA damage encodes an exonuclease. J Biol Chem. 1994, 269: 747-754.PubMed
30.
go back to reference Bluyssen HA, van Os RI, Naus NC, Jaspers I, Hoeijmakers JH, de Klein A: A human and mouse homolog of the Schizosaccharomyces pombe rad1+ cell cycle checkpoint control gene. Genomics. 1998, 54: 331-337. 10.1006/geno.1998.5582CrossRefPubMed Bluyssen HA, van Os RI, Naus NC, Jaspers I, Hoeijmakers JH, de Klein A: A human and mouse homolog of the Schizosaccharomyces pombe rad1+ cell cycle checkpoint control gene. Genomics. 1998, 54: 331-337. 10.1006/geno.1998.5582CrossRefPubMed
31.
go back to reference Freire R, Murguia JR, Tarsounas M, Lowndes NF, Moens PB, Jackson SP: Human and mouse homologs of Schizosaccharomyces pombe rad1(+) and Saccharomyces cerevisiae RAD17: linkage to checkpoint control and mammalian meiosis. Genes Dev. 1998, 12: 2560-2573. 10.1101/gad.12.16.2560PubMedCentralCrossRefPubMed Freire R, Murguia JR, Tarsounas M, Lowndes NF, Moens PB, Jackson SP: Human and mouse homologs of Schizosaccharomyces pombe rad1(+) and Saccharomyces cerevisiae RAD17: linkage to checkpoint control and mammalian meiosis. Genes Dev. 1998, 12: 2560-2573. 10.1101/gad.12.16.2560PubMedCentralCrossRefPubMed
32.
go back to reference Marathi UK, Dahlen M, Sunnerhagen P, Romero AV, Ramagli LS, Siciliano MJ, Li L, Legerski RJ: RAD1, a human structural homolog of the Schizosaccharomyces pombe RAD1 cell cycle checkpoint gene. Genomics. 1998, 54: 344-347. 10.1006/geno.1998.5589CrossRefPubMed Marathi UK, Dahlen M, Sunnerhagen P, Romero AV, Ramagli LS, Siciliano MJ, Li L, Legerski RJ: RAD1, a human structural homolog of the Schizosaccharomyces pombe RAD1 cell cycle checkpoint gene. Genomics. 1998, 54: 344-347. 10.1006/geno.1998.5589CrossRefPubMed
33.
go back to reference Parker AE, Weyer Van de I, Laus MC, Oostveen I, Yon J, Verhasselt P, Luyten WH: A human homologue of the Schizosaccharomyces pombe rad1+ checkpoint gene encodes an exonuclease. J Biol Chem. 1998, 273: 18332-18339. 10.1074/jbc.273.29.18332CrossRefPubMed Parker AE, Weyer Van de I, Laus MC, Oostveen I, Yon J, Verhasselt P, Luyten WH: A human homologue of the Schizosaccharomyces pombe rad1+ checkpoint gene encodes an exonuclease. J Biol Chem. 1998, 273: 18332-18339. 10.1074/jbc.273.29.18332CrossRefPubMed
34.
go back to reference Udell CM, Lee SK, Davey S: HRAD1 and MRAD1 encode mammalian homologues of the fission yeast rad1(+) cell cycle checkpoint control gene. Nucleic Acids Res. 1998, 26: 3971-3976. 10.1093/nar/26.17.3971PubMedCentralCrossRefPubMed Udell CM, Lee SK, Davey S: HRAD1 and MRAD1 encode mammalian homologues of the fission yeast rad1(+) cell cycle checkpoint control gene. Nucleic Acids Res. 1998, 26: 3971-3976. 10.1093/nar/26.17.3971PubMedCentralCrossRefPubMed
35.
go back to reference Enoch T, Carr AM, Nurse P: Fission yeast genes involved in coupling mitosis to completion of DNA replication. Genes Dev. 1992, 6: 2035-2046. 10.1101/gad.6.11.2035CrossRefPubMed Enoch T, Carr AM, Nurse P: Fission yeast genes involved in coupling mitosis to completion of DNA replication. Genes Dev. 1992, 6: 2035-2046. 10.1101/gad.6.11.2035CrossRefPubMed
36.
go back to reference Murray JM, Carr AM, Lehmann AR, Watts FZ: Cloning and characterisation of the rad9 DNA repair gene from Schizosaccharomyces pombe. Nucleic Acids Res. 1991, 19: 3525-3531. 10.1093/nar/19.13.3525PubMedCentralCrossRefPubMed Murray JM, Carr AM, Lehmann AR, Watts FZ: Cloning and characterisation of the rad9 DNA repair gene from Schizosaccharomyces pombe. Nucleic Acids Res. 1991, 19: 3525-3531. 10.1093/nar/19.13.3525PubMedCentralCrossRefPubMed
37.
go back to reference Lieberman HB, Hopkins KM, Laverty M, Chu HM: Molecular cloning and analysis of Schizosaccharomyces pombe rad9, a gene involved in DNA repair and mutagenesis. Mol Gen Genet. 1992, 232: 367-376. 10.1007/BF00266239CrossRefPubMed Lieberman HB, Hopkins KM, Laverty M, Chu HM: Molecular cloning and analysis of Schizosaccharomyces pombe rad9, a gene involved in DNA repair and mutagenesis. Mol Gen Genet. 1992, 232: 367-376. 10.1007/BF00266239CrossRefPubMed
38.
go back to reference Matise MP, Auerbach W, Joyner AL: Gene targeting. A practical approah. Joyner AL (Series Editor): Production of targeted embryonic stem cell clones. 2000, 101-132. New York (NY): Oxford University Press, 2nd edition. Matise MP, Auerbach W, Joyner AL: Gene targeting. A practical approah. Joyner AL (Series Editor): Production of targeted embryonic stem cell clones. 2000, 101-132. New York (NY): Oxford University Press, 2nd edition.
39.
go back to reference Yang L, Mao C, Teng Y, Li W, Zhang J, Cheng X, Li X, Han X, Xia Z, Deng H, Yang X: Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. Cancer Res. 2005, 65: 8671-8678. 10.1158/0008-5472.CAN-05-0800CrossRefPubMed Yang L, Mao C, Teng Y, Li W, Zhang J, Cheng X, Li X, Han X, Xia Z, Deng H, Yang X: Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. Cancer Res. 2005, 65: 8671-8678. 10.1158/0008-5472.CAN-05-0800CrossRefPubMed
40.
go back to reference Suzuki A, Itami S, Ohishi M, Hamada K, Inoue T, Komazawa N, Senoo H, Sasaki T, Takeda J, Manabe M: Keratinocyte-specific Pten deficiency results in epidermal hyperplasia, accelerated hair follicle morphogenesis and tumor formation. Cancer Res. 2003, 63: 674-681.PubMed Suzuki A, Itami S, Ohishi M, Hamada K, Inoue T, Komazawa N, Senoo H, Sasaki T, Takeda J, Manabe M: Keratinocyte-specific Pten deficiency results in epidermal hyperplasia, accelerated hair follicle morphogenesis and tumor formation. Cancer Res. 2003, 63: 674-681.PubMed
41.
go back to reference Hang H: Analysis of the mammalian cell cycle by flow cytometry. 2004, Totowa (NJ): Humana Press. Hang H: Analysis of the mammalian cell cycle by flow cytometry. 2004, Totowa (NJ): Humana Press.
Metadata
Title
Mouse Rad1 deletion enhances susceptibility for skin tumor development
Authors
Lu Han
Zhishang Hu
Yuheng Liu
Xiangyuan Wang
Kevin M. Hopkins
Howard B. Lieberman
Haiying Hang
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2010
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-67

Other articles of this Issue 1/2010

Molecular Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine