Skip to main content
Top
Published in: Molecular Cancer 1/2010

Open Access 01-12-2010 | Research

Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1α and HIF-2α target genes

Authors: Sang Y Chun, Craig Johnson, Joseph G Washburn, Marcia R Cruz-Correa, Duyen T Dang, Long H Dang

Published in: Molecular Cancer | Issue 1/2010

Login to get access

Abstract

Background

Activating KRAS mutations are important for cancer initiation and progression; and have recently been shown to cause primary resistance to therapies targeting the epidermal growth factor receptor. Therefore, strategies are currently in development to overcome treatment resistance due to oncogenic KRAS. The hypoxia-inducible factors-1α and -2α (HIF-1α and HIF-2α) are activated in cancer due to dysregulated ras signaling.

Methods

To understand the individual and combined roles of HIF-1α and HIF-2α in cancer metabolism and oncogenic KRAS signaling, we used targeted homologous recombination to disrupt the oncogenic KRAS, HIF-1α, and HIF-2α gene loci in HCT116 colon cancer cells to generate isogenic HCT116WT KRAS, HCT116HIF-1α-/-, HCT116HIF-2α-/-, and HCT116HIF-1α-/-HIF-2α-/- cell lines.

Results

Global gene expression analyses of these cell lines reveal that HIF-1α and HIF-2α work together to modulate cancer metabolism and regulate genes signature overlapping with oncogenic KRAS. Cancer cells with disruption of both HIF-1α and HIF-2α or oncogenic KRAS showed decreased aerobic respiration and ATP production, with increased ROS generation.

Conclusion

Our findings suggest novel strategies for treating tumors with oncogenic KRAS mutations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bos JL: ras oncogenes in human cancer: a review. Cancer Res. 1989, 49 (17): 4682-9.PubMed Bos JL: ras oncogenes in human cancer: a review. Cancer Res. 1989, 49 (17): 4682-9.PubMed
2.
go back to reference Friday BB, Adjei AA: K-ras as a target for cancer therapy. Biochim Biophys Acta. 2005, 1756 (2): 127-44.PubMed Friday BB, Adjei AA: K-ras as a target for cancer therapy. Biochim Biophys Acta. 2005, 1756 (2): 127-44.PubMed
3.
go back to reference Weinberg RA: ras Oncogenes and the molecular mechanisms of carcinogenesis. Blood. 1984, 64 (6): 1143-5.PubMed Weinberg RA: ras Oncogenes and the molecular mechanisms of carcinogenesis. Blood. 1984, 64 (6): 1143-5.PubMed
4.
go back to reference Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100 (1): 57-70. 10.1016/S0092-8674(00)81683-9CrossRefPubMed Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100 (1): 57-70. 10.1016/S0092-8674(00)81683-9CrossRefPubMed
5.
go back to reference Ramanathan A, Wang C, Schreiber SL: Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA. 2005, 102 (17): 5992-7. 10.1073/pnas.0502267102PubMedCentralCrossRefPubMed Ramanathan A, Wang C, Schreiber SL: Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA. 2005, 102 (17): 5992-7. 10.1073/pnas.0502267102PubMedCentralCrossRefPubMed
6.
go back to reference Harris AL: Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer. 2002, 2 (1): 38-47. 10.1038/nrc704CrossRefPubMed Harris AL: Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer. 2002, 2 (1): 38-47. 10.1038/nrc704CrossRefPubMed
7.
go back to reference Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003, 3 (10): 721-32. 10.1038/nrc1187CrossRefPubMed Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003, 3 (10): 721-32. 10.1038/nrc1187CrossRefPubMed
8.
go back to reference Ema M: A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA. 1997, 94 (9): 4273-8. 10.1073/pnas.94.9.4273PubMedCentralCrossRefPubMed Ema M: A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA. 1997, 94 (9): 4273-8. 10.1073/pnas.94.9.4273PubMedCentralCrossRefPubMed
9.
go back to reference Flamme I: HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev. 1997, 63 (1): 51-60. 10.1016/S0925-4773(97)00674-6CrossRefPubMed Flamme I: HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev. 1997, 63 (1): 51-60. 10.1016/S0925-4773(97)00674-6CrossRefPubMed
10.
go back to reference Karni R: Activated pp60c-Src leads to elevated hypoxia-inducible factor (HIF)-1alpha expression under normoxia. J Biol Chem. 2002, 277 (45): 42919-25. 10.1074/jbc.M206141200CrossRefPubMed Karni R: Activated pp60c-Src leads to elevated hypoxia-inducible factor (HIF)-1alpha expression under normoxia. J Biol Chem. 2002, 277 (45): 42919-25. 10.1074/jbc.M206141200CrossRefPubMed
11.
go back to reference Richard DE: p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem. 1999, 274 (46): 32631-7. 10.1074/jbc.274.46.32631CrossRefPubMed Richard DE: p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem. 1999, 274 (46): 32631-7. 10.1074/jbc.274.46.32631CrossRefPubMed
12.
go back to reference Kamura T: Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA. 2000, 97 (19): 10430-5. 10.1073/pnas.190332597PubMedCentralCrossRefPubMed Kamura T: Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA. 2000, 97 (19): 10430-5. 10.1073/pnas.190332597PubMedCentralCrossRefPubMed
13.
go back to reference Ohh M: Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000, 2 (7): 423-7. 10.1038/35017054CrossRefPubMed Ohh M: Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000, 2 (7): 423-7. 10.1038/35017054CrossRefPubMed
14.
go back to reference Mylonis I: Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J Biol Chem. 2006, 281 (44): 33095-106. 10.1074/jbc.M605058200CrossRefPubMed Mylonis I: Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J Biol Chem. 2006, 281 (44): 33095-106. 10.1074/jbc.M605058200CrossRefPubMed
15.
go back to reference Chan DA, Giaccia AJ: Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev. 2007, 26 (2): 333-9. 10.1007/s10555-007-9063-1CrossRefPubMed Chan DA, Giaccia AJ: Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev. 2007, 26 (2): 333-9. 10.1007/s10555-007-9063-1CrossRefPubMed
16.
go back to reference Sowter HM: Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Res. 2003, 63 (19): 6130-4.PubMed Sowter HM: Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Res. 2003, 63 (19): 6130-4.PubMed
17.
go back to reference Brahimi-Horn MC, Chiche J, Pouyssegur J: Hypoxia and cancer. J Mol Med. 2007, 85 (12): 1301-7. 10.1007/s00109-007-0281-3CrossRefPubMed Brahimi-Horn MC, Chiche J, Pouyssegur J: Hypoxia and cancer. J Mol Med. 2007, 85 (12): 1301-7. 10.1007/s00109-007-0281-3CrossRefPubMed
18.
go back to reference Semenza GL: HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr. 2007, 39 (3): 231-4. 10.1007/s10863-007-9081-2CrossRefPubMed Semenza GL: HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr. 2007, 39 (3): 231-4. 10.1007/s10863-007-9081-2CrossRefPubMed
19.
go back to reference Agrawal A: Normoxic stabilization of HIF-1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am J Physiol Cell Physiol. 2007, 293 (2): C621-31. 10.1152/ajpcell.00538.2006CrossRefPubMed Agrawal A: Normoxic stabilization of HIF-1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am J Physiol Cell Physiol. 2007, 293 (2): C621-31. 10.1152/ajpcell.00538.2006CrossRefPubMed
20.
go back to reference Dang DT: Hypoxia-inducible factor-1alpha promotes nonhypoxia-mediated proliferation in colon cancer cells and xenografts. Cancer Res. 2006, 66 (3): 1684-936. 10.1158/0008-5472.CAN-05-2887CrossRefPubMed Dang DT: Hypoxia-inducible factor-1alpha promotes nonhypoxia-mediated proliferation in colon cancer cells and xenografts. Cancer Res. 2006, 66 (3): 1684-936. 10.1158/0008-5472.CAN-05-2887CrossRefPubMed
21.
go back to reference Papandreou I: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006, 3 (3): 187-97. 10.1016/j.cmet.2006.01.012CrossRefPubMed Papandreou I: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006, 3 (3): 187-97. 10.1016/j.cmet.2006.01.012CrossRefPubMed
22.
go back to reference Kim JW: HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3 (3): 177-85. 10.1016/j.cmet.2006.02.002CrossRefPubMed Kim JW: HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3 (3): 177-85. 10.1016/j.cmet.2006.02.002CrossRefPubMed
23.
go back to reference Fukuda R: HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007, 129 (1): 111-22. 10.1016/j.cell.2007.01.047CrossRefPubMed Fukuda R: HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007, 129 (1): 111-22. 10.1016/j.cell.2007.01.047CrossRefPubMed
24.
go back to reference Mashima T: p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target. J Natl Cancer Inst. 2005, 97 (10): 765-77. 10.1093/jnci/dji133CrossRefPubMed Mashima T: p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target. J Natl Cancer Inst. 2005, 97 (10): 765-77. 10.1093/jnci/dji133CrossRefPubMed
25.
go back to reference Vreken P: Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem Biophys Res Commun. 2000, 279 (2): 378-82. 10.1006/bbrc.2000.3952CrossRefPubMed Vreken P: Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem Biophys Res Commun. 2000, 279 (2): 378-82. 10.1006/bbrc.2000.3952CrossRefPubMed
26.
go back to reference Gu Z: Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth syndrome. Mol Microbiol. 2004, 51 (1): 149-58. 10.1046/j.1365-2958.2003.03802.xCrossRefPubMed Gu Z: Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth syndrome. Mol Microbiol. 2004, 51 (1): 149-58. 10.1046/j.1365-2958.2003.03802.xCrossRefPubMed
27.
go back to reference Cooke D, O'Kennedy R: Comparison of the tetrazolium salt assay for succinate dehydrogenase with the cytosensor microphysiometer in the assessment of compound toxicities. Anal Biochem. 1999, 274 (2): 188-94. 10.1006/abio.1999.4274CrossRefPubMed Cooke D, O'Kennedy R: Comparison of the tetrazolium salt assay for succinate dehydrogenase with the cytosensor microphysiometer in the assessment of compound toxicities. Anal Biochem. 1999, 274 (2): 188-94. 10.1006/abio.1999.4274CrossRefPubMed
28.
go back to reference Warburg O: On the origin of cancer cells. Science. 1956, 123 (3191): 309-14. 10.1126/science.123.3191.309CrossRefPubMed Warburg O: On the origin of cancer cells. Science. 1956, 123 (3191): 309-14. 10.1126/science.123.3191.309CrossRefPubMed
29.
go back to reference Bui T, Thompson CB: Cancer's sweet tooth. Cancer Cell. 2006, 9 (6): 419-20. 10.1016/j.ccr.2006.05.012CrossRefPubMed Bui T, Thompson CB: Cancer's sweet tooth. Cancer Cell. 2006, 9 (6): 419-20. 10.1016/j.ccr.2006.05.012CrossRefPubMed
30.
go back to reference Gillies RJ, Gatenby RA: Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis?. J Bioenerg Biomembr. 2007, 39 (3): 251-7. 10.1007/s10863-007-9085-yCrossRefPubMed Gillies RJ, Gatenby RA: Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis?. J Bioenerg Biomembr. 2007, 39 (3): 251-7. 10.1007/s10863-007-9085-yCrossRefPubMed
31.
go back to reference Li F: Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol. 2005, 25 (14): 6225-34. 10.1128/MCB.25.14.6225-6234.2005PubMedCentralCrossRefPubMed Li F: Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol. 2005, 25 (14): 6225-34. 10.1128/MCB.25.14.6225-6234.2005PubMedCentralCrossRefPubMed
33.
go back to reference de Groof AJ: Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Mol Cancer. 2009, 8: 54- 10.1186/1476-4598-8-54PubMedCentralCrossRefPubMed de Groof AJ: Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Mol Cancer. 2009, 8: 54- 10.1186/1476-4598-8-54PubMedCentralCrossRefPubMed
34.
go back to reference Baselga J, Rosen N: Determinants of RASistance to anti-epidermal growth factor receptor agents. J Clin Oncol. 2008, 26 (10): 1582-4. 10.1200/JCO.2007.15.3700CrossRefPubMed Baselga J, Rosen N: Determinants of RASistance to anti-epidermal growth factor receptor agents. J Clin Oncol. 2008, 26 (10): 1582-4. 10.1200/JCO.2007.15.3700CrossRefPubMed
35.
go back to reference Khambata-Ford S: Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol. 2007, 25 (22): 3230-7. 10.1200/JCO.2006.10.5437CrossRefPubMed Khambata-Ford S: Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol. 2007, 25 (22): 3230-7. 10.1200/JCO.2006.10.5437CrossRefPubMed
36.
go back to reference Giaccia A, Siim BG, Johnson RS: HIF-1 as a target for drug development. Nat Rev Drug Discov. 2003, 2 (10): 803-11. 10.1038/nrd1199CrossRefPubMed Giaccia A, Siim BG, Johnson RS: HIF-1 as a target for drug development. Nat Rev Drug Discov. 2003, 2 (10): 803-11. 10.1038/nrd1199CrossRefPubMed
37.
go back to reference Chun SY: CDX2 promotes anchorage-independent growth by transcriptional repression of IGFBP-3. Oncogene. 2007, 26 (32): 4725-9. 10.1038/sj.onc.1210258CrossRefPubMed Chun SY: CDX2 promotes anchorage-independent growth by transcriptional repression of IGFBP-3. Oncogene. 2007, 26 (32): 4725-9. 10.1038/sj.onc.1210258CrossRefPubMed
38.
go back to reference Folch J, Lees M, Stanley Sloane GH: A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957, 226 (1): 497-509.PubMed Folch J, Lees M, Stanley Sloane GH: A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957, 226 (1): 497-509.PubMed
Metadata
Title
Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1α and HIF-2α target genes
Authors
Sang Y Chun
Craig Johnson
Joseph G Washburn
Marcia R Cruz-Correa
Duyen T Dang
Long H Dang
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2010
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-293

Other articles of this Issue 1/2010

Molecular Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine