Skip to main content
Top
Published in: Molecular Cancer 1/2010

Open Access 01-12-2010 | Research

Maximum growth and survival of estrogen receptor-alpha positive breast cancer cells requires the Sin3A transcriptional repressor

Authors: Stephanie J Ellison-Zelski, Elaine T Alarid

Published in: Molecular Cancer | Issue 1/2010

Login to get access

Abstract

Background

Sin3A is an evolutionarily conserved transcriptional repressor which regulates gene expression as part of the multi-protein Sin3 repressive complex. It functions as a scaffold upon which proteins with enzymatic activity dock, including chromatin modifying histone deacetylases. Although regulation of transcription by Sin3A has been studied in detail, little is understood about the function of Sin3A in cancer cells. We previously showed that Sin3A is expressed in breast cancer cells and is a repressor of estrogen receptor-alpha (ERα, ESR1) gene expression. Here, we expand our previous studies to elucidate the function of Sin3A in the control of gene expression and growth of breast cancer cells.

Results

Analysis of gene expression following knockdown of Sin3A revealed changes in both basal and regulated gene transcription. Genes of known importance in breast cancer and estrogen signaling, including ERBB2, PGR, MYC, CLU, and NCOA2, were among those identified as Sin3A-responsive. The mechanism of Sin3A action varied among genes and was found to be mediated through both HDAC1/2 -dependent and -independent activities. Loss of Sin3A inhibited breast cancer cell growth by increasing apoptosis without affecting cell cycle progression. Analysis of both ERα-positive and ERα-negative cell lines revealed that the effects of Sin3A on growth were cell-type specific, as Sin3A expression promoted maximum growth of only the ERα-positive cells, and, notably, Sin3A protein itself was increased by estrogen. Further gene expression experiments revealed that Sin3A repressed expression of key apoptotic genes, including TRAIL, TRAILR1, CASP10, and APAF1, in ERα-positive, but not ERα-negative, cell lines, which could provide a mechanistic explanation for cell-type differences in growth.

Conclusions

This study identifies Sin3A as a regulator of gene expression, survival, and growth in ERα-positive breast cancer cells. Sin3A regulates the transcription of genes involved in breast cancer and apoptosis and acts through multiple mechanisms not limited to histone deacetylase function. These findings reveal previously undescribed functions of Sin3A in breast cancer and provide evidence for an important role of this transcriptional repressor in ERα-positive tumor cell growth.
Appendix
Available only for authorised users
Literature
1.
go back to reference Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004, 351: 2817-2826. 10.1056/NEJMoa041588CrossRefPubMed Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004, 351: 2817-2826. 10.1056/NEJMoa041588CrossRefPubMed
2.
go back to reference Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature. 2000, 406: 747-752. 10.1038/35021093CrossRefPubMed Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature. 2000, 406: 747-752. 10.1038/35021093CrossRefPubMed
3.
go back to reference van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH: Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002, 415: 530-536. 10.1038/415530aCrossRefPubMed van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH: Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002, 415: 530-536. 10.1038/415530aCrossRefPubMed
4.
go back to reference Macgregor JI, Jordan VC: Basic guide to the mechanisms of antiestrogen action. Pharmacol Rev. 1998, 50: 151-196.PubMed Macgregor JI, Jordan VC: Basic guide to the mechanisms of antiestrogen action. Pharmacol Rev. 1998, 50: 151-196.PubMed
5.
go back to reference Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M: Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 2006, 38: 1289-1297. 10.1038/ng1901CrossRefPubMed Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M: Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 2006, 38: 1289-1297. 10.1038/ng1901CrossRefPubMed
6.
go back to reference Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR, Katzenellenbogen BS: Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology. 2003, 144: 4562-4574. 10.1210/en.2003-0567CrossRefPubMed Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR, Katzenellenbogen BS: Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology. 2003, 144: 4562-4574. 10.1210/en.2003-0567CrossRefPubMed
7.
go back to reference Kininis M, Chen BS, Diehl AG, Isaacs GD, Zhang T, Siepel AC, Clark AG, Kraus WL: Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. Mol Cell Biol. 2007, 27: 5090-5104. 10.1128/MCB.00083-07PubMedCentralCrossRefPubMed Kininis M, Chen BS, Diehl AG, Isaacs GD, Zhang T, Siepel AC, Clark AG, Kraus WL: Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. Mol Cell Biol. 2007, 27: 5090-5104. 10.1128/MCB.00083-07PubMedCentralCrossRefPubMed
8.
go back to reference Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M, Chiu KP, Lipovich L, Barnett DH, Stossi F, Yeo A, George J, Kuznetsov VA, Lee YK, Charn TH, Palanisamy N, Miller LD, Cheung E, Katzenellenbogen BS, Ruan Y, Bourque G, Wei CL, Liu ET: Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet. 2007, 3: e87- 10.1371/journal.pgen.0030087PubMedCentralCrossRefPubMed Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M, Chiu KP, Lipovich L, Barnett DH, Stossi F, Yeo A, George J, Kuznetsov VA, Lee YK, Charn TH, Palanisamy N, Miller LD, Cheung E, Katzenellenbogen BS, Ruan Y, Bourque G, Wei CL, Liu ET: Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet. 2007, 3: e87- 10.1371/journal.pgen.0030087PubMedCentralCrossRefPubMed
9.
go back to reference Ellison-Zelski SJ, Solodin NM, Alarid ET: Repression of ESR1 through actions of estrogen receptor alpha and Sin3A at the proximal promoter. Mol Cell Biol. 2009, 29: 4949-4958. 10.1128/MCB.00383-09PubMedCentralCrossRefPubMed Ellison-Zelski SJ, Solodin NM, Alarid ET: Repression of ESR1 through actions of estrogen receptor alpha and Sin3A at the proximal promoter. Mol Cell Biol. 2009, 29: 4949-4958. 10.1128/MCB.00383-09PubMedCentralCrossRefPubMed
10.
go back to reference Cowley SM, Iritani BM, Mendrysa SM, Xu T, Cheng PF, Yada J, Liggitt HD, Eisenman RN: The mSin3A chromatin-modifying complex is essential for embryogenesis and T-cell development. Mol Cell Biol. 2005, 25: 6990-7004. 10.1128/MCB.25.16.6990-7004.2005PubMedCentralCrossRefPubMed Cowley SM, Iritani BM, Mendrysa SM, Xu T, Cheng PF, Yada J, Liggitt HD, Eisenman RN: The mSin3A chromatin-modifying complex is essential for embryogenesis and T-cell development. Mol Cell Biol. 2005, 25: 6990-7004. 10.1128/MCB.25.16.6990-7004.2005PubMedCentralCrossRefPubMed
11.
go back to reference Dannenberg JH, David G, Zhong S, van der Torre J, Wong WH, Depinho RA: mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev. 2005, 19: 1581-1595. 10.1101/gad.1286905PubMedCentralCrossRefPubMed Dannenberg JH, David G, Zhong S, van der Torre J, Wong WH, Depinho RA: mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev. 2005, 19: 1581-1595. 10.1101/gad.1286905PubMedCentralCrossRefPubMed
12.
go back to reference Suzuki H, Ouchida M, Yamamoto H, Yano M, Toyooka S, Aoe M, Shimizu N, Date H, Shimizu K: Decreased expression of the SIN3A gene, a candidate tumor suppressor located at the prevalent allelic loss region 15q23 in non-small cell lung cancer. Lung Cancer. 2008, 59: 24-31. 10.1016/j.lungcan.2007.08.002CrossRefPubMed Suzuki H, Ouchida M, Yamamoto H, Yano M, Toyooka S, Aoe M, Shimizu N, Date H, Shimizu K: Decreased expression of the SIN3A gene, a candidate tumor suppressor located at the prevalent allelic loss region 15q23 in non-small cell lung cancer. Lung Cancer. 2008, 59: 24-31. 10.1016/j.lungcan.2007.08.002CrossRefPubMed
13.
go back to reference Nasmyth K, Stillman D, Kipling D: Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast. Cell. 1987, 48: 579-587. 10.1016/0092-8674(87)90236-4CrossRefPubMed Nasmyth K, Stillman D, Kipling D: Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast. Cell. 1987, 48: 579-587. 10.1016/0092-8674(87)90236-4CrossRefPubMed
14.
go back to reference Sternberg PW, Stern MJ, Clark I, Herskowitz I: Activation of the yeast HO gene by release from multiple negative controls. Cell. 1987, 48: 567-577. 10.1016/0092-8674(87)90235-2CrossRefPubMed Sternberg PW, Stern MJ, Clark I, Herskowitz I: Activation of the yeast HO gene by release from multiple negative controls. Cell. 1987, 48: 567-577. 10.1016/0092-8674(87)90235-2CrossRefPubMed
15.
go back to reference Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE: Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell. 1997, 89: 341-347. 10.1016/S0092-8674(00)80214-7CrossRefPubMed Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE: Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell. 1997, 89: 341-347. 10.1016/S0092-8674(00)80214-7CrossRefPubMed
16.
go back to reference Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D: Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell. 1997, 89: 357-364. 10.1016/S0092-8674(00)80216-0CrossRefPubMed Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D: Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell. 1997, 89: 357-364. 10.1016/S0092-8674(00)80216-0CrossRefPubMed
17.
go back to reference Silverstein RA, Ekwall K: Sin3: a flexible regulator of global gene expression and genome stability. Curr Genet. 2005, 47: 1-17. 10.1007/s00294-004-0541-5CrossRefPubMed Silverstein RA, Ekwall K: Sin3: a flexible regulator of global gene expression and genome stability. Curr Genet. 2005, 47: 1-17. 10.1007/s00294-004-0541-5CrossRefPubMed
18.
go back to reference Ayer DE, Lawrence QA, Eisenman RN: Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell. 1995, 80: 767-776. 10.1016/0092-8674(95)90355-0CrossRefPubMed Ayer DE, Lawrence QA, Eisenman RN: Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell. 1995, 80: 767-776. 10.1016/0092-8674(95)90355-0CrossRefPubMed
19.
go back to reference Murphy M, Ahn J, Walker KK, Hoffman WH, Evans RM, Levine AJ, George DL: Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev. 1999, 13: 2490-2501. 10.1101/gad.13.19.2490PubMedCentralCrossRefPubMed Murphy M, Ahn J, Walker KK, Hoffman WH, Evans RM, Levine AJ, George DL: Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev. 1999, 13: 2490-2501. 10.1101/gad.13.19.2490PubMedCentralCrossRefPubMed
20.
go back to reference Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998, 393: 386-389. 10.1038/30764CrossRefPubMed Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998, 393: 386-389. 10.1038/30764CrossRefPubMed
21.
go back to reference Roopra A, Sharling L, Wood IC, Briggs T, Bachfischer U, Paquette AJ, Buckley NJ: Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex. Mol Cell Biol. 2000, 20: 2147-2157. 10.1128/MCB.20.6.2147-2157.2000PubMedCentralCrossRefPubMed Roopra A, Sharling L, Wood IC, Briggs T, Bachfischer U, Paquette AJ, Buckley NJ: Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex. Mol Cell Biol. 2000, 20: 2147-2157. 10.1128/MCB.20.6.2147-2157.2000PubMedCentralCrossRefPubMed
22.
go back to reference Lutz M, Burke LJ, Barreto G, Goeman F, Greb H, Arnold R, Schultheiss H, Brehm A, Kouzarides T, Lobanenkov V, Renkawitz R: Transcriptional repression by the insulator protein CTCF involves histone deacetylases. Nucleic Acids Res. 2000, 28: 1707-1713. 10.1093/nar/28.8.1707PubMedCentralCrossRefPubMed Lutz M, Burke LJ, Barreto G, Goeman F, Greb H, Arnold R, Schultheiss H, Brehm A, Kouzarides T, Lobanenkov V, Renkawitz R: Transcriptional repression by the insulator protein CTCF involves histone deacetylases. Nucleic Acids Res. 2000, 28: 1707-1713. 10.1093/nar/28.8.1707PubMedCentralCrossRefPubMed
23.
go back to reference Brown MA, Sims RJ, Gottlieb PD, Tucker PW: Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer. 2006, 5: 26- 10.1186/1476-4598-5-26PubMedCentralCrossRefPubMed Brown MA, Sims RJ, Gottlieb PD, Tucker PW: Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer. 2006, 5: 26- 10.1186/1476-4598-5-26PubMedCentralCrossRefPubMed
24.
go back to reference Burgio G, La Rocca G, Sala A, Arancio W, Di Gesu D, Collesano M, Sperling AS, Armstrong JA, van Heeringen SJ, Logie C, Tamkun JW, Corona DF: Genetic identification of a network of factors that functionally interact with the nucleosome remodeling ATPase ISWI. PLoS Genet. 2008, 4: e1000089- 10.1371/journal.pgen.1000089PubMedCentralCrossRefPubMed Burgio G, La Rocca G, Sala A, Arancio W, Di Gesu D, Collesano M, Sperling AS, Armstrong JA, van Heeringen SJ, Logie C, Tamkun JW, Corona DF: Genetic identification of a network of factors that functionally interact with the nucleosome remodeling ATPase ISWI. PLoS Genet. 2008, 4: e1000089- 10.1371/journal.pgen.1000089PubMedCentralCrossRefPubMed
25.
go back to reference Wysocka J, Myers MP, Laherty CD, Eisenman RN, Herr W: Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev. 2003, 17: 896-911. 10.1101/gad.252103PubMedCentralCrossRefPubMed Wysocka J, Myers MP, Laherty CD, Eisenman RN, Herr W: Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev. 2003, 17: 896-911. 10.1101/gad.252103PubMedCentralCrossRefPubMed
26.
go back to reference Yang L, Mei Q, Zielinska-Kwiatkowska A, Matsui Y, Blackburn ML, Benedetti D, Krumm AA, Taborsky GJ, Chansky HA: An ERG (ets-related gene)-associated histone methyltransferase interacts with histone deacetylases 1/2 and transcription co-repressors mSin3A/B. Biochem J. 2003, 369: 651-657. 10.1042/BJ20020854PubMedCentralCrossRefPubMed Yang L, Mei Q, Zielinska-Kwiatkowska A, Matsui Y, Blackburn ML, Benedetti D, Krumm AA, Taborsky GJ, Chansky HA: An ERG (ets-related gene)-associated histone methyltransferase interacts with histone deacetylases 1/2 and transcription co-repressors mSin3A/B. Biochem J. 2003, 369: 651-657. 10.1042/BJ20020854PubMedCentralCrossRefPubMed
27.
go back to reference Yang X, Zhang F, Kudlow JE: Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell. 2002, 110: 69-80. 10.1016/S0092-8674(02)00810-3CrossRefPubMed Yang X, Zhang F, Kudlow JE: Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell. 2002, 110: 69-80. 10.1016/S0092-8674(02)00810-3CrossRefPubMed
28.
go back to reference Sif S, Saurin AJ, Imbalzano AN, Kingston RE: Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev. 2001, 15: 603-618. 10.1101/gad.872801PubMedCentralCrossRefPubMed Sif S, Saurin AJ, Imbalzano AN, Kingston RE: Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev. 2001, 15: 603-618. 10.1101/gad.872801PubMedCentralCrossRefPubMed
29.
go back to reference Prall OW, Rogan EM, Sutherland RL: Estrogen regulation of cell cycle progression in breast cancer cells. J Steroid Biochem Mol Biol. 1998, 65: 169-174. 10.1016/S0960-0760(98)00021-1CrossRefPubMed Prall OW, Rogan EM, Sutherland RL: Estrogen regulation of cell cycle progression in breast cancer cells. J Steroid Biochem Mol Biol. 1998, 65: 169-174. 10.1016/S0960-0760(98)00021-1CrossRefPubMed
30.
go back to reference Saceda M, Lippman ME, Chambon P, Lindsey RL, Ponglikitmongkol M, Puente M, Martin MB: Regulation of the estrogen receptor in MCF-7 cells by estradiol. Mol Endocrinol. 1988, 2: 1157-1162. 10.1210/mend-2-12-1157CrossRefPubMed Saceda M, Lippman ME, Chambon P, Lindsey RL, Ponglikitmongkol M, Puente M, Martin MB: Regulation of the estrogen receptor in MCF-7 cells by estradiol. Mol Endocrinol. 1988, 2: 1157-1162. 10.1210/mend-2-12-1157CrossRefPubMed
31.
go back to reference Green DR: Apoptotic pathways: the roads to ruin. Cell. 1998, 94: 695-698. 10.1016/S0092-8674(00)81728-6CrossRefPubMed Green DR: Apoptotic pathways: the roads to ruin. Cell. 1998, 94: 695-698. 10.1016/S0092-8674(00)81728-6CrossRefPubMed
32.
go back to reference Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA: MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell. 2003, 113: 207-219. 10.1016/S0092-8674(03)00234-4CrossRefPubMed Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA: MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell. 2003, 113: 207-219. 10.1016/S0092-8674(03)00234-4CrossRefPubMed
33.
go back to reference Zhang H, Stephens LC, Kumar R: Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clin Cancer Res. 2006, 12: 1479-1486. 10.1158/1078-0432.CCR-05-1519CrossRefPubMed Zhang H, Stephens LC, Kumar R: Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clin Cancer Res. 2006, 12: 1479-1486. 10.1158/1078-0432.CCR-05-1519CrossRefPubMed
34.
go back to reference Collett K, Eide GE, Arnes J, Stefansson IM, Eide J, Braaten A, Aas T, Otte AP, Akslen LA: Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin Cancer Res. 2006, 12: 1168-1174. 10.1158/1078-0432.CCR-05-1533CrossRefPubMed Collett K, Eide GE, Arnes J, Stefansson IM, Eide J, Braaten A, Aas T, Otte AP, Akslen LA: Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin Cancer Res. 2006, 12: 1168-1174. 10.1158/1078-0432.CCR-05-1533CrossRefPubMed
35.
go back to reference Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, Sabel MS, Livant D, Weiss SJ, Rubin MA, Chinnaiyan AM: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA. 2003, 100: 11606-11611. 10.1073/pnas.1933744100PubMedCentralCrossRefPubMed Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, Sabel MS, Livant D, Weiss SJ, Rubin MA, Chinnaiyan AM: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA. 2003, 100: 11606-11611. 10.1073/pnas.1933744100PubMedCentralCrossRefPubMed
36.
go back to reference Gompel A, Somai S, Chaouat M, Kazem A, Kloosterboer HJ, Beusman I, Forgez P, Mimoun M, Rostene W: Hormonal regulation of apoptosis in breast cells and tissues. Steroids. 2000, 65: 593-598. 10.1016/S0039-128X(00)00172-0CrossRefPubMed Gompel A, Somai S, Chaouat M, Kazem A, Kloosterboer HJ, Beusman I, Forgez P, Mimoun M, Rostene W: Hormonal regulation of apoptosis in breast cells and tissues. Steroids. 2000, 65: 593-598. 10.1016/S0039-128X(00)00172-0CrossRefPubMed
37.
go back to reference Kristensen LS, Nielsen HM, Hansen LL: Epigenetics and cancer treatment. Eur J Pharmacol. 2009, 625: 131-142. 10.1016/j.ejphar.2009.10.011CrossRefPubMed Kristensen LS, Nielsen HM, Hansen LL: Epigenetics and cancer treatment. Eur J Pharmacol. 2009, 625: 131-142. 10.1016/j.ejphar.2009.10.011CrossRefPubMed
38.
go back to reference Wong ST: Emerging treatment combinations: integrating therapy into clinical practice. Am J Health Syst Pharm. 2009, 66: S9-14. 10.2146/ajhp090439CrossRefPubMed Wong ST: Emerging treatment combinations: integrating therapy into clinical practice. Am J Health Syst Pharm. 2009, 66: S9-14. 10.2146/ajhp090439CrossRefPubMed
39.
go back to reference Luu TH, Morgan RJ, Leong L, Lim D, McNamara M, Portnow J, Frankel P, Smith DD, Doroshow JH, Gandara DR, Aparicio A, Somlo G, Wong C: A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin Cancer Res. 2008, 14: 7138-7142. 10.1158/1078-0432.CCR-08-0122PubMedCentralCrossRefPubMed Luu TH, Morgan RJ, Leong L, Lim D, McNamara M, Portnow J, Frankel P, Smith DD, Doroshow JH, Gandara DR, Aparicio A, Somlo G, Wong C: A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin Cancer Res. 2008, 14: 7138-7142. 10.1158/1078-0432.CCR-08-0122PubMedCentralCrossRefPubMed
40.
go back to reference Munster P, Marchion D, Bicaku E, Lacevic M, Kim J, Centeno B, Daud A, Neuger A, Minton S, Sullivan D: Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC. Clin Cancer Res. 2009, 15: 2488-2496. 10.1158/1078-0432.CCR-08-1930CrossRefPubMed Munster P, Marchion D, Bicaku E, Lacevic M, Kim J, Centeno B, Daud A, Neuger A, Minton S, Sullivan D: Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC. Clin Cancer Res. 2009, 15: 2488-2496. 10.1158/1078-0432.CCR-08-1930CrossRefPubMed
41.
go back to reference Baltus GA, Kowalski MP, Tutter AV, Kadam S: A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J Biol Chem. 2009, 284: 6998-7006. 10.1074/jbc.M807670200PubMedCentralCrossRefPubMed Baltus GA, Kowalski MP, Tutter AV, Kadam S: A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J Biol Chem. 2009, 284: 6998-7006. 10.1074/jbc.M807670200PubMedCentralCrossRefPubMed
42.
go back to reference Vermeulen M, Walter W, Le Guezennec X, Kim J, Edayathumangalam RS, Lasonder E, Luger K, Roeder RG, Logie C, Berger SL, Stunnenberg HG: A feed-forward repression mechanism anchors the Sin3/histone deacetylase and N-CoR/SMRT corepressors on chromatin. Mol Cell Biol. 2006, 26: 5226-5236. 10.1128/MCB.00440-06PubMedCentralCrossRefPubMed Vermeulen M, Walter W, Le Guezennec X, Kim J, Edayathumangalam RS, Lasonder E, Luger K, Roeder RG, Logie C, Berger SL, Stunnenberg HG: A feed-forward repression mechanism anchors the Sin3/histone deacetylase and N-CoR/SMRT corepressors on chromatin. Mol Cell Biol. 2006, 26: 5226-5236. 10.1128/MCB.00440-06PubMedCentralCrossRefPubMed
43.
go back to reference Ashkenazi A, Dixit VM: Death receptors: signaling and modulation. Science. 1998, 281: 1305-1308. 10.1126/science.281.5381.1305CrossRefPubMed Ashkenazi A, Dixit VM: Death receptors: signaling and modulation. Science. 1998, 281: 1305-1308. 10.1126/science.281.5381.1305CrossRefPubMed
44.
go back to reference Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM: The receptor for the cytotoxic ligand TRAIL. Science. 1997, 276: 111-113. 10.1126/science.276.5309.111CrossRefPubMed Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM: The receptor for the cytotoxic ligand TRAIL. Science. 1997, 276: 111-113. 10.1126/science.276.5309.111CrossRefPubMed
45.
go back to reference Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A: Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem. 1996, 271: 12687-12690. 10.1074/jbc.271.22.12687CrossRefPubMed Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A: Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem. 1996, 271: 12687-12690. 10.1074/jbc.271.22.12687CrossRefPubMed
46.
go back to reference MacFarlane M: TRAIL-induced signaling and apoptosis. Toxicol Lett. 2003, 139: 89-97. 10.1016/S0378-4274(02)00422-8CrossRefPubMed MacFarlane M: TRAIL-induced signaling and apoptosis. Toxicol Lett. 2003, 139: 89-97. 10.1016/S0378-4274(02)00422-8CrossRefPubMed
47.
go back to reference Hsu H, Xiong J, Goeddel DV: The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 1995, 81: 495-504. 10.1016/0092-8674(95)90070-5CrossRefPubMed Hsu H, Xiong J, Goeddel DV: The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 1995, 81: 495-504. 10.1016/0092-8674(95)90070-5CrossRefPubMed
48.
go back to reference Sax JK, El-Deiry WS: Identification and characterization of the cytoplasmic protein TRAF4 as a p53-regulated proapoptotic gene. J Biol Chem. 2003, 278: 36435-36444. 10.1074/jbc.M303191200CrossRefPubMed Sax JK, El-Deiry WS: Identification and characterization of the cytoplasmic protein TRAF4 as a p53-regulated proapoptotic gene. J Biol Chem. 2003, 278: 36435-36444. 10.1074/jbc.M303191200CrossRefPubMed
49.
go back to reference Wang J, Chun HJ, Wong W, Spencer DM, Lenardo MJ: Caspase-10 is an initiator caspase in death receptor signaling. Proc Natl Acad Sci USA. 2001, 98: 13884-13888. 10.1073/pnas.241358198PubMedCentralCrossRefPubMed Wang J, Chun HJ, Wong W, Spencer DM, Lenardo MJ: Caspase-10 is an initiator caspase in death receptor signaling. Proc Natl Acad Sci USA. 2001, 98: 13884-13888. 10.1073/pnas.241358198PubMedCentralCrossRefPubMed
50.
go back to reference Zou H, Henzel WJ, Liu X, Lutschg A, Wang X: Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997, 90: 405-413. 10.1016/S0092-8674(00)80501-2CrossRefPubMed Zou H, Henzel WJ, Liu X, Lutschg A, Wang X: Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997, 90: 405-413. 10.1016/S0092-8674(00)80501-2CrossRefPubMed
51.
go back to reference Ledgerwood EC, Morison IM: Targeting the apoptosome for cancer therapy. Clin Cancer Res. 2009, 15: 420-424. 10.1158/1078-0432.CCR-08-1172CrossRefPubMed Ledgerwood EC, Morison IM: Targeting the apoptosome for cancer therapy. Clin Cancer Res. 2009, 15: 420-424. 10.1158/1078-0432.CCR-08-1172CrossRefPubMed
52.
go back to reference Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997, 91: 479-489. 10.1016/S0092-8674(00)80434-1CrossRefPubMed Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997, 91: 479-489. 10.1016/S0092-8674(00)80434-1CrossRefPubMed
53.
go back to reference Fei P, Wang W, Kim Sh, Wang S, Burns TF, Sax JK, Buzzai M, Dicker DT, McKenna WG, Bernhard EJ, El-Deiry WS: Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell. 2004, 6: 597-609. 10.1016/j.ccr.2004.10.012CrossRefPubMed Fei P, Wang W, Kim Sh, Wang S, Burns TF, Sax JK, Buzzai M, Dicker DT, McKenna WG, Bernhard EJ, El-Deiry WS: Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell. 2004, 6: 597-609. 10.1016/j.ccr.2004.10.012CrossRefPubMed
54.
go back to reference Chinnadurai G, Vijayalingam S, Gibson SB: BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions. Oncogene. 2009, 27: S114-S127. 10.1038/onc.2009.49.CrossRef Chinnadurai G, Vijayalingam S, Gibson SB: BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions. Oncogene. 2009, 27: S114-S127. 10.1038/onc.2009.49.CrossRef
55.
go back to reference Pungaliya P, Kulkarni D, Park HJ, Marshall H, Zheng H, Lackland H, Saleem A, Rubin EH: TOPORS functions as a SUMO-1 E3 ligase for chromatin-modifying proteins. J Proteome Res. 2007, 6: 3918-3923. 10.1021/pr0703674CrossRefPubMed Pungaliya P, Kulkarni D, Park HJ, Marshall H, Zheng H, Lackland H, Saleem A, Rubin EH: TOPORS functions as a SUMO-1 E3 ligase for chromatin-modifying proteins. J Proteome Res. 2007, 6: 3918-3923. 10.1021/pr0703674CrossRefPubMed
56.
go back to reference Farias EF, Petrie K, Leibovitch B, Murtagh J, Chornet MB, Schenk T, Zelent A, Waxman S: Interference with Sin3 function induces epigenetic reprogramming and differentiation in breast cancer cells. Proc Natl Acad Sci USA. 2010, 107: 11811-11816. 10.1073/pnas.1006737107PubMedCentralCrossRefPubMed Farias EF, Petrie K, Leibovitch B, Murtagh J, Chornet MB, Schenk T, Zelent A, Waxman S: Interference with Sin3 function induces epigenetic reprogramming and differentiation in breast cancer cells. Proc Natl Acad Sci USA. 2010, 107: 11811-11816. 10.1073/pnas.1006737107PubMedCentralCrossRefPubMed
57.
go back to reference Hong H, Kohli K, Trivedi A, Johnson DL, Stallcup MR: GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc Natl Acad Sci USA. 1996, 93: 4948-4952. 10.1073/pnas.93.10.4948PubMedCentralCrossRefPubMed Hong H, Kohli K, Trivedi A, Johnson DL, Stallcup MR: GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc Natl Acad Sci USA. 1996, 93: 4948-4952. 10.1073/pnas.93.10.4948PubMedCentralCrossRefPubMed
58.
go back to reference Osborne CK, Yochmowitz MG, Knight WA, McGuire WL: The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer. 1980, 46: 2884-2888. 10.1002/1097-0142(19801215)46:12+<2884::AID-CNCR2820461429>3.0.CO;2-UCrossRefPubMed Osborne CK, Yochmowitz MG, Knight WA, McGuire WL: The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer. 1980, 46: 2884-2888. 10.1002/1097-0142(19801215)46:12+<2884::AID-CNCR2820461429>3.0.CO;2-UCrossRefPubMed
59.
go back to reference Ravdin PM, Green S, Dorr TM, McGuire WL, Fabian C, Pugh RP, Carter RD, Rivkin SE, Borst JR, Belt RJ: Prognostic significance of progesterone receptor levels in estrogen receptor-positive patients with metastatic breast cancer treated with tamoxifen: results of a prospective Southwest Oncology Group study. J Clin Oncol. 1992, 10: 1284-1291.PubMed Ravdin PM, Green S, Dorr TM, McGuire WL, Fabian C, Pugh RP, Carter RD, Rivkin SE, Borst JR, Belt RJ: Prognostic significance of progesterone receptor levels in estrogen receptor-positive patients with metastatic breast cancer treated with tamoxifen: results of a prospective Southwest Oncology Group study. J Clin Oncol. 1992, 10: 1284-1291.PubMed
60.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262CrossRefPubMed
61.
go back to reference Valley CC, Solodin NM, Powers GL, Ellison SJ, Alarid ET: Temporal variation in estrogen receptor-alpha protein turnover in the presence of estrogen. J Mol Endocrinol. 2008, 40: 23-34. 10.1677/JME-07-0067CrossRefPubMed Valley CC, Solodin NM, Powers GL, Ellison SJ, Alarid ET: Temporal variation in estrogen receptor-alpha protein turnover in the presence of estrogen. J Mol Endocrinol. 2008, 40: 23-34. 10.1677/JME-07-0067CrossRefPubMed
Metadata
Title
Maximum growth and survival of estrogen receptor-alpha positive breast cancer cells requires the Sin3A transcriptional repressor
Authors
Stephanie J Ellison-Zelski
Elaine T Alarid
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2010
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-263

Other articles of this Issue 1/2010

Molecular Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine